New Exact Explicit Nonlinear Wave Solutions for the Broer-Kaup

1 downloads 0 Views 2MB Size Report
Jan 10, 2014 - where both and are integral constants, respectively. From the first equation of system (3), we obtain. = + Γ’ΒˆΒ’. 1. 2. 2. (4).
Hindawi Publishing Corporation Journal of Applied Mathematics Volume 2014, Article ID 984791, 7 pages http://dx.doi.org/10.1155/2014/984791

Research Article New Exact Explicit Nonlinear Wave Solutions for the Broer-Kaup Equation Zhenshu Wen School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China Correspondence should be addressed to Zhenshu Wen; [email protected] Received 27 November 2013; Accepted 10 January 2014; Published 20 February 2014 Academic Editor: Yongkun Li Copyright Β© 2014 Zhenshu Wen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We study the nonlinear wave solutions for the Broer-Kaup equation. Many exact explicit expressions of the nonlinear wave solutions for the equation are obtained by exploiting the bifurcation method and qualitative theory of dynamical systems. These solutions contain solitary wave solutions, singular solutions, periodic singular solutions, and kink-shaped solutions, most of which are new. Some previous results are extended.

1. Introduction

2. Bifurcation of Phase Portraits

In 1975, Broer [1] obtained a dispersive equation as follows:

In this section, we give the process of obtaining the bifurcation of phase portraits corresponding to (1). For given constant 𝑐, substituting 𝑒(π‘₯, 𝑑) = πœ‘(πœ‰), πœ‚(π‘₯, 𝑑) = πœ“(πœ‰) with πœ‰ = π‘₯ βˆ’ 𝑐𝑑 into (1), it follows

1 𝑒𝑑 + πœ‚π‘₯ + (𝑒2 )π‘₯ = 0, 2

(1)

πœ‚π‘‘ + (π‘’πœ‚ + 𝑒 + 𝑒π‘₯π‘₯ )π‘₯ = 0, which describes the evolution of horizontal velocity component 𝑒(π‘₯, 𝑑) of water waves of height πœ‚(π‘₯, 𝑑) propagating in both directions in an infinite narrow channel of finite constant depth. Equation (1) plays an important role in nonlinear physics and gains considerate attention [2–4]. The traveling wave solutions for (1) have been studied by many works, such as [5–10]. In this paper, we employ the bifurcation method and qualitative theory of dynamical systems [11–21] to investigate the nonlinear wave solutions for (1), and we obtain many exact explicit expressions of nonlinear wave solutions for (1). These nonlinear wave solutions contain solitary wave solutions, singular solutions, periodic singular solutions, and kink-shaped solutions, most of which, to our knowledge, are newly obtained. The remainder of this paper is organized as follows. In Section 2, we show the bifurcation of phase portraits corresponding to (1). We state our main results and the theoretical derivation for the main results in Section 3. A short conclusion will be given in Section 4.

σΈ€  1 βˆ’π‘πœ‘σΈ€  + πœ“σΈ€  + (πœ‘2 ) = 0, 2 σΈ€ 

σΈ€ σΈ€  σΈ€ 

(2)

βˆ’π‘πœ“ + (πœ“πœ‘ + πœ‘ + πœ‘ ) = 0. Integrating (2) once leads to 1 βˆ’π‘πœ‘ + πœ“ + πœ‘2 = 𝑔, 2

(3)

βˆ’π‘πœ“ + πœ“πœ‘ + πœ‘ + πœ‘σΈ€ σΈ€  = 𝐺, where both 𝑔 and 𝐺 are integral constants, respectively. From the first equation of system (3), we obtain 1 πœ“ = 𝑔 + π‘πœ‘ βˆ’ πœ‘2 . 2

(4)

Substituting (4) into the second equation of system (3) leads to 1 3𝑐 πœ‘σΈ€ σΈ€  = πœ‘3 βˆ’ πœ‘2 + (𝑐2 βˆ’ 𝑔 βˆ’ 1) πœ‘ + 𝑐𝑔 + 𝐺. 2 2

(5)

2

Journal of Applied Mathematics y

y

y

πœ™

πœ™

G < c βˆ’ G0

πœ™

y πœ™7

Ξ“3

y

Ξ“βˆ’5

πœ™6 πœ™

πœ™1

πœ™3 πœ™5

Ξ“+4

βˆ’πœ™0

c βˆ’ G0 < G < c

G = c βˆ’ G0

Ξ“βˆ’4

y + Ξ“1

Ξ“βˆ’2

πœ™0

πœ™

G=c y

Ξ“+5

πœ™8

Ξ“βˆ’1

Ξ“+2

πœ™

πœ™

πœ™4 πœ™2

c < G < G0 + c

G = G0 + c

G > G0 + c

Figure 1: The phase portraits of system (7).

By setting πœ‘ = πœ™ + 𝑐, (5) becomes 1 1 πœ™σΈ€ σΈ€  = πœ™3 βˆ’ (𝑐2 + 2𝑔 + 2) πœ™ + 𝐺 βˆ’ 𝑐. 2 2

Let 3

(6)

dπœ™ = 𝑦, dπœ‰ (7)

1 1 1 𝐻 (πœ™, 𝑦) = 𝑦2 βˆ’ πœ™4 + (𝑐2 + 2𝑔 + 2) πœ™2 βˆ’ (𝐺 βˆ’ 𝑐) πœ™. 2 8 4 (8) Now, we study the bifurcation of phase portraits of system (7). Set

1 1 𝑓 (πœ™) = πœ™3 βˆ’ (𝑐2 + 2𝑔 + 2) πœ™ + 𝐺 βˆ’ 𝑐. 2 2

(9)

Obviously, 𝑓0 (πœ™) has three zero points, which can be expressed as πœ™ = 0, Β±πœ™0 ,

(10)

where πœ™0 = βˆšπ‘2 + 2𝑔 + 2, when 𝑐2 + 2𝑔 + 2 > 0. Additionally, it is easy to obtain the two extreme points of 𝑓(πœ™) as follows: 1 πœ™Β±βˆ— = ±√ (𝑐2 + 2𝑔 + 2). 3

πœ† Β± = Β±βˆšπ‘“σΈ€  (πœ™π‘– ).

(13)

From the qualitative theory of dynamical systems, we therefore know that

with first integral

1 1 𝑓0 (πœ™) = πœ™3 βˆ’ (𝑐2 + 2𝑔 + 2) πœ™, 2 2

(12)

which is the absolute value of extreme values of 𝑓0 (πœ™). Let (πœ™π‘– , 0) be one of the singular points of system (7). Then the characteristic values of the linearized system of system (7) at the singular point (πœ™π‘– , 0) are

Letting 𝑦 = πœ™σΈ€  , we obtain a planar system

d𝑦 1 3 1 2 = πœ™ βˆ’ (𝑐 + 2𝑔 + 2) πœ™ + 𝐺 βˆ’ 𝑐, dπœ‰ 2 2

2 󡄨 󡄨 √ (𝑐 + 2𝑔 + 2) , 𝑔0 = 󡄨󡄨󡄨𝑓0 (πœ™Β±βˆ— )󡄨󡄨󡄨 = 27

(11)

(i) if 𝑓󸀠 (πœ™π‘– ) > 0, then (πœ™π‘– , 0) is a saddle point; (ii) if 𝑓󸀠 (πœ™π‘– ) < 0, then (πœ™π‘– , 0) is a center point; (iii) if 𝑓󸀠 (πœ™π‘– ) = 0, then (πœ™π‘– , 0) is a degenerate saddle point. Therefore, based on the above analysis, we obtain the bifurcation of phase portraits of system (7) in Figure 1.

3. Main Results and the Theoretic Derivations of the Main Results In this section, we state our results about solitary wave solutions, singular solutions, periodic singular solutions, and kink-shaped solutions for the first component of system (7). To relate conveniently, we omit πœ‘ = πœ™ + 𝑐 and the expression of the second component of system (7), that is, πœ“ = 𝑔 + π‘πœ‘ βˆ’ (1/2)πœ‘2 , in the following theorem. Theorem 1. For given constants 𝑐 and 𝛼 (1 < 𝛼 < 3), which will be given later, the Broer-Kaup equation (1) has the following exact explicit nonlinear wave solutions. (1) When 𝐺 = 𝑐, one obtains two kink-shaped solutions πœ™1Β± (π‘₯, 𝑑) = Β±βˆšπ‘2 + 2𝑔 + 2 tanh (

βˆšπ‘2 + 2𝑔 + 2 2

(π‘₯ βˆ’ 𝑐𝑑)) , (14)

Journal of Applied Mathematics

3

two singular solutions

+ √6 βˆ’ 2𝛼 sinh (√

πœ™2Β± (π‘₯, 𝑑) = Β±βˆšπ‘2 + 2𝑔 + 2 coth (

βˆšπ‘2 + 2𝑔 + 2 2

𝑐2 + 2𝑔 + 2 (3 βˆ’ 𝛼) 𝛼 2

(π‘₯ βˆ’ 𝑐𝑑) ) , Γ— |π‘₯ βˆ’ 𝑐𝑑| ) + 4 βˆ’ 2𝛼)

(15) and four periodic singular solutions

𝑐2 + 2𝑔 + 2 (3 βˆ’ 𝛼) Γ— (2 cosh (√ (π‘₯ βˆ’ 𝑐𝑑)) 𝛼 2

πœ™3Β± (π‘₯, 𝑑) = ±√2 (𝑐2 + 2𝑔 + 2) Γ— sec (√

𝑐2 + 2𝑔 + 2 (π‘₯ βˆ’ 𝑐𝑑)) , 2

+ √6 βˆ’ 2𝛼 sinh (√ (16)

πœ™4Β± (π‘₯, 𝑑) =

±√2 (𝑐2

𝑐2 + 2𝑔 + 2 (3 βˆ’ 𝛼) 𝛼 2

+ 2𝑔 + 2)

βˆ’1

Γ— |π‘₯ βˆ’ 𝑐𝑑| ) βˆ’ 2) ,

𝑐2 + 2𝑔 + 2 Γ— csc (√ (π‘₯ βˆ’ 𝑐𝑑)) . 2

(18) and two periodic singular solutions

(2) When 𝑐 < 𝐺 < 𝐺0 + 𝑐, one gets two solitary wave solutions πœ™5Β± (π‘₯, 𝑑) = ±√

πœ™7Β± (π‘₯, 𝑑) = Β± (πœ™2 (πœ™6 βˆ’ πœ™7 ) sin (arcsin (

𝑐2 + 2𝑔 + 2 𝛼

βˆ’

𝑐2 + 2𝑔 + 2 (3 βˆ’ 𝛼) Γ— (√2𝛼 βˆ’ 2 cosh (√ (π‘₯ βˆ’ 𝑐𝑑)) 𝛼 2

2πœ™2 βˆ’ πœ™6 βˆ’ πœ™7 ) πœ™6 βˆ’ πœ™7

βˆšβˆ’ (πœ™2 βˆ’ πœ™6 ) (πœ™2 βˆ’ πœ™7 ) 2

Γ— |π‘₯ βˆ’ 𝑐𝑑| ) (19) + 2πœ™6 πœ™7 βˆ’ πœ™2 πœ™6 βˆ’ πœ™2 πœ™7 )

+2𝛼 βˆ’ 4)

Γ— ((πœ™6 βˆ’ πœ™7 ) sin (arcsin (

𝑐2 + 2𝑔 + 2 (3 βˆ’ 𝛼) Γ— (√2𝛼 βˆ’ 2 cosh (√ 𝛼 2

βˆ’

βˆ’1

Γ— (π‘₯ βˆ’ 𝑐𝑑) ) + 2) ,

βˆ’1

where πœ™2 , πœ™6 , and πœ™7 will be given in the proof of the theorem.

πœ™8Β± (π‘₯, 𝑑) = ±√

2

𝑐 + 2𝑔 + 2 𝛼

Γ— (2 cosh (√

2

(3) When 𝐺 = 𝐺0 + 𝑐, one obtains four singular solutions as follows:

πœ™6Β± (π‘₯, 𝑑) = ±√

βˆšβˆ’ (πœ™2 βˆ’ πœ™6 ) (πœ™2 βˆ’ πœ™7 )

Γ— |π‘₯ βˆ’ 𝑐𝑑|) βˆ’ 4πœ™2 ) , (17)

two singular solutions

2πœ™2 βˆ’ πœ™6 βˆ’ πœ™7 ) πœ™6 βˆ’ πœ™7

𝑐2 + 2𝑔 + 2 3 2

𝑐2 + 2𝑔 + 2 (3 βˆ’ 𝛼) (π‘₯ βˆ’ 𝑐𝑑)) 𝛼 2

Γ—

(1 + √(𝑐2 + 2𝑔 + 2) /3|π‘₯ βˆ’ 𝑐𝑑|) + 3 (1 +

√(𝑐2

2

+ 2𝑔 + 2) /3|π‘₯ βˆ’ 𝑐𝑑|) βˆ’ 1

,

4

Journal of Applied Mathematics

Γ—

At the same time, we note that if πœ™ = πœ™(πœ‰) is a solution of system, then πœ™ = πœ™(πœ‰+𝛾) is also a solution of system. Specially, we take 𝛾 = πœ‹/2; we obtain another two solutions

𝑐2 + 2𝑔 + 2 3

πœ™9Β± (π‘₯, 𝑑) = ±√

(𝑐2 + 2𝑔 + 2) (π‘₯ βˆ’ 𝑐𝑑)2 + 9 (𝑐2 + 2𝑔 + 2) (π‘₯ βˆ’ 𝑐𝑑)2 βˆ’ 3

.

πœ™ = ±√2 (𝑐2 + 2𝑔 + 2)csc (√ (20)

Proof. (1) When 𝐺 = 𝑐, we consider the following two kinds of orbits. (i) First, we see that there are two heteroclinic orbits Ξ“1Β± connected as two saddle points (πœ™0 , 0) and (βˆ’πœ™0 , 0) from Figure 1. In (πœ™, 𝑦)-plane, from (8), the expressions of the heteroclinic orbits are given as 1 𝑦 = Β± (πœ™02 βˆ’ πœ™2 ) . 2

πœ™

𝑓(πœ™) = 0 to be πœ™1 = √(𝑐2 + 2𝑔 + 2)/𝛼 (1 < 𝛼 < 3), and then we can obtain another two solutions of 𝑓(πœ™) = 0 as follows: 1 𝑐2 + 2𝑔 + 2 √ πœ™2 = √ ( 4𝛼 βˆ’ 3 βˆ’ 1) , 2 𝛼

(21)

0

∫

d𝑠 1󡄨 󡄨 = σ΅„¨σ΅„¨πœ‰σ΅„¨σ΅„¨ , (πœ™02 βˆ’ 𝑠2 ) 2 󡄨 󡄨

+∞

πœ™

(22)

d𝑠 1󡄨 󡄨 = σ΅„¨σ΅„¨σ΅„¨πœ‰σ΅„¨σ΅„¨σ΅„¨ . 2 2 (𝑠 βˆ’ πœ™0 ) 2

(27)

Noting that πœ™ = πœ™(πœ‰) and πœ‰ = π‘₯ βˆ’ 𝑐𝑑, we get four periodic singular solutions πœ™3Β± (π‘₯, 𝑑) and πœ™4Β± (π‘₯, 𝑑) as (16). (2) When 𝑐 < 𝐺 < 𝐺0 + 𝑐, we set the largest solution of

(28)

2

1 𝑐 + 2𝑔 + 2 √ πœ™3 = βˆ’ √ ( 4𝛼 βˆ’ 3 + 1) . 2 𝛼

Substituting (21) into the first equation of system (7) and integrating along the heterclinic orbits, it follows that ∫

𝑐2 + 2𝑔 + 2 πœ‰) . 2

(i) First, we see that there is a homoclinic orbit Ξ“3 , which passes the saddle point (πœ™1 , 0). In (πœ™, 𝑦)-plane, from (8), the expressions of the homoclinic orbit are given as 1 2 𝑦 = Β± √(πœ™1 βˆ’ πœ™) (πœ™ βˆ’ πœ™4 ) (πœ™ βˆ’ πœ™5 ), 2

From (22), we have

(29)

where πœ™ = Β±βˆšπ‘2 + 2𝑔 + 2 tanh (

βˆšπ‘2 + 2𝑔 + 2 2

πœ‰) ,

πœ™4 = √ (23)

πœ™ = Β±βˆšπ‘2 + 2𝑔 + 2 coth (

βˆšπ‘2 + 2𝑔 + 2 2

πœ™5 = βˆ’βˆš

πœ‰) .

Noting that πœ™ = πœ™(πœ‰) and πœ‰ = π‘₯ βˆ’ 𝑐𝑑, we get two kinkshaped solutions πœ™1Β± (π‘₯, 𝑑) and two singular solutions πœ™2Β± (π‘₯, 𝑑) as (14) and (15). (ii) Second, from the phase portrait in Figure 1, we note that there are two special orbits Ξ“2Β± , which have the same Hamiltonian as that of the center point (0, 0). In (πœ™, 𝑦)-plane, from (8), the expressions of these two orbits are given as 1 𝑦 = Β± πœ™βˆšπœ™2 βˆ’ 2πœ™02 . 2

+∞

πœ™

d𝑠 π‘ βˆšπ‘ 2 βˆ’

2πœ™02

=

1 󡄨󡄨 󡄨󡄨 σ΅„¨πœ‰σ΅„¨ . 2󡄨 󡄨

𝑐 + 2𝑔 + 2 (√2𝛼 βˆ’ 2 + 1) . 𝛼

πœ™

d𝑠

πœ™4

(πœ™1 βˆ’ 𝑠) √(𝑠 βˆ’ πœ™4 ) (𝑠 βˆ’ πœ™5 )

∫

+∞

∫

(24)

=

1 󡄨󡄨 󡄨󡄨 σ΅„¨πœ‰σ΅„¨ , 2󡄨 󡄨

1󡄨 󡄨 = σ΅„¨σ΅„¨σ΅„¨πœ‰σ΅„¨σ΅„¨σ΅„¨ . (𝑠 βˆ’ πœ™1 ) √(𝑠 βˆ’ πœ™4 ) (𝑠 βˆ’ πœ™5 ) 2 d𝑠

From (31), we have πœ™ = ±√

𝑐2 + 2𝑔 + 2 𝛼

(25) Γ— (√2𝛼 βˆ’ 2 cosh (√

From (25), we have 𝑐2 + 2𝑔 + 2 πœ™ = ±√2 (𝑐2 + 2𝑔 + 2)sec (√ πœ‰) . 2

(26)

(30)

2

Substituting (29) into the first equation of system (7) and integrating along the homoclinic orbit, it follows that

πœ™

Substituting (24) into the first equation of system (7) and integrating along the two orbits Ξ“2Β± , it follows that ∫

𝑐2 + 2𝑔 + 2 (√2𝛼 βˆ’ 2 βˆ’ 1) , 𝛼

+ 2𝛼 βˆ’ 4)

𝑐2 + 2𝑔 + 2 (3 βˆ’ 𝛼) πœ‰) 𝛼 2

(31)

Journal of Applied Mathematics

5 30

βˆ’1

𝑐2 + 2𝑔 + 2 (3 βˆ’ 𝛼) πœ‰) + 2) , Γ— (√2𝛼 βˆ’ 2 cosh (√ 𝛼 2 πœ™ = ±√

𝑐2 + 2𝑔 + 2 𝛼

Γ— (2 cosh (√

20 10 βˆ’15

βˆ’10

βˆ’5

5

𝑐2 + 2𝑔 + 2 (3 βˆ’ 𝛼) πœ‰) 𝛼 2

βˆ’30

Figure 2: The graphic of πœ™8+ (πœ‰) when 𝑐 = 2, 𝑔 = 1, and 𝛼 = 2.

From (35), we have πœ™ = Β± (πœ™2 (πœ™6 βˆ’ πœ™7 ) sin (arcsin (

+ 4 βˆ’ 2𝛼) 𝑐2 + 2𝑔 + 2 (3 βˆ’ 𝛼) Γ— (2 cosh (√ πœ‰) 𝛼 2 + √6 βˆ’ 2𝛼 sinh (√

βˆ’

𝑐2 + 2𝑔 + 2 (3 βˆ’ 𝛼) 󡄨󡄨 󡄨󡄨 σ΅„¨πœ‰σ΅„¨) 𝛼 2 󡄨 󡄨

(32) Noting that πœ™ = πœ™(πœ‰) and πœ‰ = π‘₯ βˆ’ 𝑐𝑑, we get two solitary solutions πœ™5Β± (π‘₯, 𝑑) and two singular solutions πœ™6Β± (π‘₯, 𝑑) as (17) and (18). (ii) Second, from the phase portrait in Figure 1, we note that there are another two special orbits Ξ“4Β± , which have the same Hamiltonian as that of the center point (πœ™2 , 0). In (πœ™, 𝑦)plane, from (8), the expressions of these two orbits are given as (33)

where πœ™6 = βˆ’πœ™2 + √2 (𝑐2 + 2𝑔 + 2) βˆ’ 2πœ™22 ,

(34)

πœ™7 = βˆ’πœ™2 βˆ’ √2 (𝑐2 + 2𝑔 + 2) βˆ’ 2πœ™22 . Substituting (33) into the first equation of system (7) and integrating along these two special orbits Ξ“4Β± , it follows that

πœ™

βˆšβˆ’ (πœ™2 βˆ’ πœ™6 ) (πœ™2 βˆ’ πœ™7 )

Γ— ((πœ™6 βˆ’ πœ™7 ) sin ( arcsin (

βˆ’ 2) .

1 2 𝑦 = Β± √(πœ™ βˆ’ πœ™2 ) (πœ™ βˆ’ πœ™6 ) (πœ™ βˆ’ πœ™7 ), 2

d𝑠 (𝑠 βˆ’ πœ™2 ) √(𝑠 βˆ’ πœ™6 ) (𝑠 βˆ’ πœ™7 )

=

1 󡄨󡄨 󡄨󡄨 σ΅„¨πœ‰σ΅„¨ . 2󡄨 󡄨

2πœ™2 βˆ’ πœ™6 βˆ’ πœ™7 ) πœ™6 βˆ’ πœ™7

2

󡄨󡄨 󡄨󡄨 σ΅„¨σ΅„¨πœ‰σ΅„¨σ΅„¨)

+ 2πœ™6 πœ™7 βˆ’ πœ™2 πœ™6 βˆ’ πœ™2 πœ™7 )

βˆ’1

+∞

15

βˆ’20

𝑐2 + 2𝑔 + 2 (3 βˆ’ 𝛼) 󡄨󡄨 󡄨󡄨 + √6 βˆ’ 2𝛼 sinh (√ σ΅„¨πœ‰σ΅„¨) 𝛼 2 󡄨 󡄨

∫

10

βˆ’10

(35)

βˆ’

2πœ™2 βˆ’ πœ™6 βˆ’ πœ™7 ) πœ™6 βˆ’ πœ™7

βˆšβˆ’ (πœ™2 βˆ’ πœ™6 ) (πœ™2 βˆ’ πœ™7 ) 2

󡄨󡄨 󡄨󡄨 σ΅„¨σ΅„¨πœ‰σ΅„¨σ΅„¨)

βˆ’1

βˆ’ 4πœ™2 ) . (36) Noting that πœ™ = πœ™(πœ‰) and πœ‰ = π‘₯ βˆ’ 𝑐𝑑, we get two periodic singular solutions πœ™7Β± (π‘₯, 𝑑) as (19). To illustrate, we give the graphic of πœ™8+ (πœ‰) in Figure 2 by taking 𝑐 = 2, 𝑔 = 1, and 𝛼 = 2. (3) When 𝐺 = 𝐺0 + 𝑐, from the phase portrait in Figure 1, we note that there are two orbits Ξ“5Β± , which have the same Hamiltonian as the degenerate saddle point (πœ™8 , 0). In (πœ™, 𝑦)plane, from (8), the expressions of these two orbits are given as 1 3 (37) 𝑦 = Β± √(πœ™ βˆ’ πœ™8 ) (πœ™ + 3πœ™8 ), 2 where 1 (38) πœ™8 = √ (𝑐2 + 2𝑔 + 2). 3 Substituting (37) into the first equation of system (7) and integrating along these two orbits Ξ“5Β± , it follows that ∫

+∞

πœ™

d𝑠 (𝑠 βˆ’ πœ™8 ) √(𝑠 βˆ’ πœ™8 ) (𝑠 + 3πœ™8 )

=

1 󡄨󡄨 󡄨󡄨 σ΅„¨πœ‰σ΅„¨ , 2󡄨 󡄨

6

Journal of Applied Mathematics ∫

βˆ’3πœ™8

d𝑠 (πœ™8 βˆ’ 𝑠) √(πœ™8 βˆ’ 𝑠) (βˆ’3πœ™8 βˆ’ 𝑠)

πœ™

=

πœ‘ = πœ™ + 𝑐,

1 󡄨󡄨 󡄨󡄨 σ΅„¨πœ‰σ΅„¨ . 2󡄨 󡄨 (39)

From (3), we have 2 √(𝑐2 + 2𝑔 + 2) /3 σ΅„¨σ΅„¨σ΅„¨σ΅„¨πœ‰σ΅„¨σ΅„¨σ΅„¨σ΅„¨) + 3 (1 + 𝑐 + 2𝑔 + 2 πœ™ = ±√ , 3 󡄨󡄨 󡄨󡄨 2 2 √ (1 + (𝑐 + 2𝑔 + 2) /3 σ΅„¨σ΅„¨πœ‰σ΅„¨σ΅„¨) βˆ’ 1

πœ™ = ±√

(41) (40)

𝑐 + 2𝑔 + 2 (𝑐 + 2𝑔 + 2) (π‘₯ βˆ’ 𝑐𝑑) + 9 . 3 (𝑐2 + 2𝑔 + 2) (π‘₯ βˆ’ 𝑐𝑑)2 βˆ’ 3

Noting that πœ™ = πœ™(πœ‰) and πœ‰ = π‘₯ βˆ’ 𝑐𝑑, we get four singular solutions πœ™8Β± (π‘₯, 𝑑) and πœ™9Β± (π‘₯, 𝑑) as (20). Remark 2. One may find that we only consider some special orbits in Figure 1 when 𝐺 β‰₯ 𝑐. In fact, we may obtain exactly the same results when 𝐺 < 𝑐. Remark 3. We employ the software Mathematica to check the correctness of the above nonlinear wave solutions. To illustrate, we show the commands of verifying πœ™8+ (π‘₯, 𝑑), 1 𝑐2 + 2𝑔 + 2 √ πœ™2 = √ ( 4𝛼 βˆ’ 3 βˆ’ 1) , 2 𝛼

2

πœ™7 = βˆ’πœ™2 βˆ’ √2 (𝑐2 + 2𝑔 + 2) βˆ’ 2(πœ™2 ) ,

[1] L. J. F. Broer, β€œApproximate equations for long water waves,” Applied Scientific Research, vol. 31, no. 5, pp. 377–395, 1975.

] (π‘₯ βˆ’ 𝑐𝑑)] ]

+ 2πœ™6 πœ™7 βˆ’ πœ™2 πœ™6 βˆ’ πœ™2 πœ™7 )

βˆ’ 4πœ™2 ) ,

[2] D. J. Kaup, β€œA higher-order water-wave equation and the method for solving it,” Progress of Theoretical Physics, vol. 54, no. 2, pp. 396–408, 1975. [3] B. A. Kupershmidt, β€œMathematics of dispersive water waves,” Communications in Mathematical Physics, vol. 99, no. 1, pp. 51– 73, 1985. [4] M. Ablowitz and H. Segur, β€œSolitons, nonlinear evolution equations and inverse scattering,” Journal of Fluid Mechanics, vol. 244, pp. 721–725, 1992. [5] M. Wang, J. Zhang, and X. Li, β€œApplication of the 𝐺󸀠 /𝐺expansion to travelling wave solutions of the Broer-Kaup and the approximate long water wave equations,” Applied Mathematics and Computation, vol. 206, no. 1, pp. 321–326, 2008.

2πœ™ βˆ’ πœ™6 βˆ’ πœ™7 [ Γ— ((πœ™6 βˆ’ πœ™7 ) Sin [ArcSin [ 2 ] πœ™6 βˆ’ πœ™7 [

βˆ’1

The author declares that there is no conflict of interests regarding the publication of this paper.

References

2πœ™ βˆ’ πœ™6 βˆ’ πœ™7 [ πœ™ = (πœ™2 (πœ™6 βˆ’ πœ™7 ) Sin [ArcSin [ 2 ] πœ™6 βˆ’ πœ™7 [

2

Conflict of Interests

This research was supported by Promotion Program for Young and Middle-Aged Teacher in Science and Technology Research of Huaqiao University (no. ZQN-PY119) and the Foundation of Huaqiao University (no. 12BS223).

2

βˆšβˆ’ (πœ™2 βˆ’ πœ™6 ) (πœ™2 βˆ’ πœ™7 )

In this paper, by employing the bifurcation method and qualitative theory of dynamical systems, we study the nonlinear wave solutions for the Broer-Kaup equation (1) and obtain exact explicit expressions of the various kinds of nonlinear wave solutions, which include solitary wave solutions, singular solutions, periodic singular solutions, and kink-shaped solutions. To the best of our knowledge, most of the nonlinear wave solutions are newly obtained.

Acknowledgments

πœ™6 = βˆ’πœ™2 + √2 (𝑐2 + 2𝑔 + 2) βˆ’ 2(πœ™2 ) ,

βˆ’

4. Conclusions

2

2

βˆ’

1 Simplify [πœ•π‘‘ πœ‘ + πœ•π‘₯ πœ“ + πœ•π‘₯ (πœ‘2 )] , 2 Simplify [πœ•π‘‘ πœ“ + πœ•π‘₯ (πœ‘πœ“ + πœ‘ + πœ•π‘₯,π‘₯ πœ‘)] .

2

2

1 πœ“ = 𝑔 + π‘πœ‘ βˆ’ πœ‘2 , 2

βˆšβˆ’ (πœ™2 βˆ’ πœ™6 ) (πœ™2 βˆ’ πœ™7 ) 2

] (π‘₯ βˆ’ 𝑐𝑑)] ]

[6] D. Ganji, H. B. Rokni, M. Sfahani, and S. Ganji, β€œApproximate traveling wave solutions for coupled whitham-broer-kaup shallow water,” Advances in Engineering Software, vol. 41, no. 7, pp. 956–961, 2010. [7] S. Guo, Y. Zhou, and C. Zhao, β€œThe improved 𝐺󸀠 /𝐺-expansion method and its applications to the Broer-Kaup equations and approximate long water wave equations,” Applied Mathematics and Computation, vol. 216, no. 7, pp. 1965–1971, 2010.

Journal of Applied Mathematics [8] M. Alquran, K. Al-Khaled, and H. Ananbeh, β€œNew soliton solutions for systems of nonlinear evolution equations by the rational sine-cosine method,” Studies in Mathematical Sciences, vol. 3, no. 1, pp. 1–9, 2011. [9] M. F. El-Sabbagh and S. I. El-Ganaini, β€œThe He’s variational principle to the Broer-Kaup (BK) and Whitham Broer-Kaup (WBK) systems,” International Mathematical Forum, vol. 7, no. 41–44, pp. 2131–2141, 2012. [10] M. F. El-Sabbagh and S. I. El-Ganaini, β€œNew exact solutions of Broer-Kaup (BK) and Whitham Broer-Kaup (WBK)systems via the first integral method,” International Journal of Mathematical Analysis, vol. 6, no. 45–48, pp. 2287–2298, 2012. [11] M. Song, S. Li, and J. Cao, β€œNew exact solutions for the (2 + 1)-dimensional Broer-Kaup-Kupershmidt equations,” Abstract and Applied Analysis, vol. 2010, Article ID 652649, 9 pages, 2010. [12] Z. Wen, Z. Liu, and M. Song, β€œNew exact solutions for the classical drinfel’d-sokolov-Wilson equation,” Applied Mathematics and Computation, vol. 215, no. 6, pp. 2349–2358, 2009. [13] Z. Wen and Z. Liu, β€œBifurcation of peakons and periodic cusp waves for the generalization of the Camassa-Holm equation,” Nonlinear Analysis. Real World Applications, vol. 12, no. 3, pp. 1698–1707, 2011. [14] B. He, Q. Meng, J. Zhang, and Y. Long, β€œPeriodic loop solutions and their limit forms for the Kudryashov-Sinelshchikov equation,” Mathematical Problems in Engineering, vol. 2012, Article ID 320163, 10 pages, 2012. [15] Z. Wen, β€œExtension on bifurcations of traveling wave solutions for a two-component Fornberg-Whitham equation,” Abstract and Applied Analysis, vol. 2012, Article ID 704931, 15 pages, 2012. [16] Z. Wen, β€œBifurcation of traveling wave solutions for a twocomponent generalized πœƒ-equation,” Mathematical Problems in Engineering, vol. 2012, Article ID 597431, 17 pages, 2012. [17] S. Li and Z. Liu, β€œThe traveling wave solutions and their bifurcations for the bbm-like B(m, n) equations,” Journal of Applied Mathematics, vol. 2013, Article ID 490341, 17 pages, 2013. [18] Y. Long and C. Chen, β€œExistence analysis of traveling wave solutions for a generalization of KdV equation,” Mathematical Problems in Engineering, vol. 2013, Article ID 462957, 7 pages, 2013. [19] M. Song, B. S. Ahmed, and A. Biswas, β€œTopological soliton solution and bifurcation analysis of the Klein-Gordon-Zakharov equation in (1 + 1)-dimensions with power law nonlinearity,” Journal of Applied Mathematics, vol. 2013, Article ID 972416, 7 pages, 2013. [20] Y. Wu and Z. Liu, β€œNew types of nonlinear waves and bifurcation phenomena in Schamel-Korteweg-de Vries equation,” Abstract and Applied Analysis, vol. 2013, Article ID 483492, 18 pages, 2013. [21] Z. Wen, β€œBifurcation of solitons, peakons and periodic cusp waves for πœƒ-equation,” Nonlinear Dynamics, 2014.

7

Advances in

Operations Research Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Advances in

Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Applied Mathematics

Algebra

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Probability and Statistics Volume 2014

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Differential Equations Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Submit your manuscripts at http://www.hindawi.com International Journal of

Advances in

Combinatorics Hindawi Publishing Corporation http://www.hindawi.com

Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Journal of

Mathematics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Discrete Mathematics

Journal of

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Discrete Dynamics in Nature and Society

Journal of

Function Spaces Hindawi Publishing Corporation http://www.hindawi.com

Abstract and Applied Analysis

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Journal of

Stochastic Analysis

Optimization

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014