New Methodologies for Oligosaccharide Synthesis - Chemistry

92 downloads 443 Views 5MB Size Report
10 Mar 2004 ... NH2. Amino Acid. Polypeptide (linear). Linhorst, T. K. Essentials of Carbohydrate Chemistry and Biochemistry, Wiley-VCH: Weinheim, 2003.
New Methodologies for Oligosaccharide Synthesis

Man-Kit Lau Department of Chemistry Michigan State University

March 10, 2004

Outline

1.

Introduction

2.

Solid Phase Approach: Automated Oligosaccharide Synthesizer

3.

Solution Phase Approach: OptiMer One-Pot Oligosaccharide Synthesis

4.

Summary

Outline

1.

Introduction

2.

Solid Phase Approach: Automated Oligosaccharide Synthesizer

3.

Solution Phase Approach: OptiMer One-Pot Oligosaccharide Synthesis

4.

Summary

What are Oligosaccharides?

O H HO H H

H

OH

OH H OH OH CH2OH

O

HO HO

OH HO

D-Glucose

OH HO HO

O OH HO

HOW?

O HO

O OH HO

O HO

O OH HO

Maltotriose

Lehninger, A. L.; Nelson, D. L.; Cox, M. M. Principles of Biochemistry, Worth Publishers, Inc., 1993.

Traditional View of Oligosaccharides

Energy Storage Structural Scaffold

Starch

Plant

Animal

Starch

Glycogen

Cellulose

Chitin

Cellulose

Lehninger, A. L.; Nelson, D. L.; Cox, M. M. Principles of Biochemistry, Worth Publishers, Inc., 1993.

Cell Surface Glycoproteins

cell surface glycoproteins act as protein ligands for cell-cell recognition

Bertozzi, C. R.; Kiessling, L. L. Science 2001, 291, 2357. Sears, P.; Wong, C.-H. Angew. Chem. Int. Ed. 1999, 38, 2300.

Synthetic Chemistry is Key to Studying Glycobiology Biopolymer

Primary Synthetic Methods

DNA

1. Automated nucleic acid synthesis 2. Polymerase chain reaction (PCR)

Protein

1. Automated peptide synthesis 2. Overexpression system 3. Even unnatural proteins can be made now

Oligosaccharide

1. Isolation from natural sources 2. Enzymatic synthesis 3. Chemical synthesis

Protein and DNA Synthesis: Template Driven Glycoprotein Synthesis: Post-Translational Attachment

Koeller, K. M.; Wong, C.-H. Chem. Rev. 2000, 100, 4465.

Glycoprotein Biosynthesis

Structural homogeneity is difficult to achieve.

Bertozzi, C. R.; Kiessling, L. L. Science 2001, 291, 2357.

Possible Routes to Homogeneous Oligosaccharides

Oligosaccharides

¥

Enzymatic Synthesis

Natural Sources

Chemical Synthesis

Ultimate Goal: General and Efficient Synthesis of Oligosaccharides

Koeller, K. M.; Wong, C.-H. Chem. Rev. 2000, 100, 4465. Plante, O. J.; Palmacci, E. R.; Seeberger, P. H. Science 2001, 291, 1523. Sears, P.; Wong, C.-H. Science 2001, 291, 2344.

Oligosaccharides Synthesis: A Big Challenge

“ There are no universal reaction conditions for oligosaccharides synthesis” - Hans Paulsen

Paulsen, H. Angew. Chem. Int. Ed. Engl. 1982, 21, 155.

Structural Complexity of DNA and Peptides

Monomeric Building Blocks

(HO)2P O Nucleotide nucleotide

O

Oligomeric Biomolecules

base

DNA (linear)

O OH

Amino Acid amino acid

R

COOH NH2

Polypeptide (linear)

Linhorst, T. K. Essentials of Carbohydrate Chemistry and Biochemistry, Wiley-VCH: Weinheim, 2003.

Structural Complexity of Oligosaccharides

Monomeric Building Blocks

pyranoside

OH HO HO HO

Oligomeric Biomolecules

OH HO HO HO OH HO

O OH

HO HO

O

a O O HO

HO

O

O

OH

b Linear and branched!

Linhorst, T. K. Essentials of Carbohydrate Chemistry and Biochemistry, Wiley-VCH: Weinheim, 2003.

Possible Isomers Among Biopolymers

Oligomer

Oligonucleotides

Oligopeptides

Oligosaccharides

Dimer

2

2

20

Trimer

6

6

720

Tetramer

24

24

34,560

Pentamer

120

120

2,144,640 2,144,640

Linhorst, T. K. Essentials of Carbohydrate Chemistry and Biochemistry, Wiley-VCH: Weinheim, 2003.

Selective Protection and Deprotection Steps 1o hydroxyl anomeric hydroxyl O

OH HO HO

H HO H H

O OH

OH

H OH H OH aldehyde OH CH2OH

3 x 2o hydroxyl OH HO HO

O OH H2N

1o amine

glucosamine

Selective Protection and Deprotection Steps

OH HO

1. ClCH2C(O)Cl DMF, -50oC, 55% 2. BzCl, pyridine, 90%

O

HO

OMCA BzO

OCH3

O

BzO

OH methyl-D-glucopyranoside

OCH3 OBz

OH BzO

thiourea CH2Cl2

O

BzO

OCH3 OBz

O

O

Ac =

Bz =

O

MCA = monochloroacetyl =

Cl

Linhorst, T. K. Essentials of Carbohydrate Chemistry and Biochemistry, Wiley-VCH: Weinheim, 2003.

Glycosidic Bond Formation OR RO RO

activator (Lewis Acid)

O L

OR RO RO

OR O

O

RO RO

RO RO

RO oxonium ion

glycosyl donor

glycosyl acceptor

R'

O

H

OR O

RO RO

OR' RO

NH L= R=

Br , O

SR ,

O

,

O

CCl3

O ,

etc.

O ,

,

etc.

O O

Classical Approaches Towards Oligosaccharide Synthesis

1.

Chemical Synthesis: eg. Glycosyl halide coupling. OAc

OAc ROH, Ag2CO3, CH2Cl2

O

AcO AcO

Br

-AgBr

AcO

O

AcO AcO

OR AcO

-AgBr anchimeric assistance OAc AcO AcO

OAc O

AcO AcO

O

O

O

O

R O H

O

Linhorst, T. K. Essentials of Carbohydrate Chemistry and Biochemistry, Wiley-VCH: Weinheim, 2003.

Classical Approaches Towards Oligosaccharide Synthesis

2.

Enzymatic Synthesis: eg. Synthesis of the core trisaccharide of N-linked glycoprotein.

OH HO HO

OH O OpNP

b-mannosidase from Helix pomatia (edible snails)

+ OH HO HO

O O NHAc HO

OH

OH HO HO

OH

OH O O HO

OH

O O NHAc HO

O OH NHAc

O OH NHAc

20% yield

pNP: para-nitrophenyl

Scigelova, M.; Singh, S.; Crout, D. H. G. J. Chem. Soc., Perkin Trans. 1 1999, 7, 777. Koeller, K. M.; Wong, C.-H. Chem. Rev. 2000, 100, 4465.

Outline

1.

Introduction

2.

Solid Phase Approach: Automated Oligosaccharide Synthesizer

3.

Solution Phase Approach: OptiMer One-Pot Oligosaccharide Synthesis

4.

Summary

Solid Phase: Automated Oligosaccharide Synthesizer

The first automated oligosaccharide synthesizer based on Applied Biosystems Inc. Model 433A Peptide synthesizer

Plante, O. J.; Palmacci, E. R.; Seeberger, P. H. Science, 2001, 291, 1523.

Solid Phase Synthesis of Oligosaccharides OP4 O

O 1

P1O

OP4 O

Deprotection OP3

O 1

Coupling

P1O

OP2

OP4

OH

O P1O

OP2

O 1

OP8

O OP2 P5O

O 2 OP7 OP6

Deprotection OP4 O P1O

...

O 1

OP4 O

OP8 O

OP2 P5O

O 2 O OP6 P9O

OP12 O 3

Coupling

P1O

O 1 O OP2 P5O

OP11 OP10

=

H2C HC n

P = protecting group Fréchet, J. M. J.; Schuerch, C. J. Am. Chem. Soc. 1971, 93, 492.

OP8 O 2 OH OP6

First Solid Phase Synthesis of Disaccharide

OR BnO BnO

OH O

BnO BnO

=

BnO

OR O Br

BnO

O

n

BnO

75% yield

O O BnO

O

O

R=

HC

O

BnO BnO

OH

H2C

BnO BnO

Bn = NO2

Fréchet, J. M. J.; Schuerch, C. J. Am. Chem. Soc. 1971, 93, 492.

Solid Phase Synthesis of Oligosaccharides Using Glycal Assembly HO

O O

O

O O

O

P3O

O P1O

OP2 glycal

O

OP4

O P1O

O

P3O OH

P1O

OP2 1,2-epoxyglycal

O

OP2

O

OP4

[O] O

P5O

...

O O

P3O OH

P1O OP2

=

H2C

O

P6O O

O

O

P6O O OH

OP4

P5O

O

OH

O P3O OH

P1O OP2

O O OP4

Si(iPr)2

HC n

P = protecting group

Randolph, J. T.; McClure, K. F.; Danishefsky, S. J. J. Am. Chem. Soc. 1995, 117, 5712.

Tetrasaccharide Synthesis Using Glycal Assembly O O

O O

O O

O O

O

O

CH2Cl2

O

OH

O

O O

O

O

O

O

ZnCl2, THF

O

O

O

O

O HO O O

O

O

O

O

O

O O

O

1.

O HO O

OH

O O

Bn =

O HO O

=

H2C

Si(iPr)2

HC n

2. BnO BnO

O O O

O

, CH2Cl2

O

repeat O

O

O O

O

O

O HO O

O O O

O

O HO O O

O

O

ZnCl2, THF

O HO BnO BnO

O

74% overall yield

Randolph, J. T.; McClure, K. F.; Danishefsky, S. J. J. Am. Chem. Soc. 1995, 117, 5712.

Choice of Glycosylating Agents

OLev

OLev

1. DMDO 2. HOP(O)(OBu)2 3. PivCl, DMAP

O

BnO BnO

BnO BnO

O O PivO

P(OBu)2 O

OBn AcO BnO BnO

K2CO3, Cl3CCN

O OH

BnO BnO

OBn AcO

O O

CCl3 NH

O

Ac =

N

Bn =

Piv =

DMAP =

O

O

tBu

Lev =

N

O O

Plante, O. J.; Andrade, R. B.; Seeberger, P. H. Org. Lett. 1999, 1, 211. Schmidt, R. R. Angew. Chem. Int. Ed. Engl. 1986, 25, 212.

The Octenediol Linker 1. TMSOTf 2.

OLev

BnO BnO HO Cl

BnO

O O PivO

OBn

BnO

P(OBu)2

O

O

PivO

O

O

Merrifield's resin

O

H2C CH2 Cl Cl

Merrifield's resin =

1. NBS

O OR

BnO BnO

2. ROH

PivO

H2C Cl

HC

Ru PCy3

OLev

OLev BnO BnO

PCy3 Ph

NBS = O

Br N

O O PivO

O O

Lev =

O

Piv =

O O

tBu

Cy =

n

Andrade, R. B.; Plante, O. J.; Melean, L. G.; Seeberger, P. H. Org. Lett. 1999, 1, 1811.

Automated Solid Phase Synthesis of Protected b-Phytoalexin Elicitor (PE) OLev

OBn BnO BnO

O

Lev =

BnO

O O PivO BnO BnO OBn

O O

O

Piv =

O BnO O

tBu

BnO BnO

O O PivO O BnO O

BnO

O O PivO BnO BnO

O O PivO

Bn =

Plant glucan oligosaccharide. Induce plant to produce antibiotic phytoalexin.

Plante, O. J.; Palmacci, E. R.; Seeberger, P. H. Science 2001, 291, 1523.

Automated Solid Phase Synthesis of Protected b-Phytoalexin Elicitor (PE) OH O

BnO BnO

O PivO

O

HO O

Coupling TMSOTf

Deprotection H2NNH2

OLev

3 equiv. O

BnO BnO

O PivO

P(OBu)2 O

O

Lev =

OLev BnO BnO

O O PivO

O

O O

O

Piv = Bn =

Plante, O. J.; Palmacci, E. R.; Seeberger, P. H. Science 2001, 291, 1523.

tBu

Automated Solid Phase Synthesis of Protected b-Phytoalexin Elicitor (PE) OH OH

OBn BnO BnO

BnO OBnO O BnO BnO

O O

OO PivO PivO BnO O BnO

O O PivO

O

Coupling TMSOTf

Deprotection H2NNH2

10 equiv. BnO BnO

O BnO O BnO

O O PivO

O BnO O BnO

P(OBu)2 O

O

OLev

OBn BnO BnO

OLev

OBn

Lev =

O PivO BnO BnO

O

O

O

O O PivO

O

Piv =

O

Bn =

Plante, O. J.; Palmacci, E. R.; Seeberger, P. H. Science 2001, 291, 1523.

tBu

Automated Solid Phase Synthesis of Protected b-Phytoalexin Elicitor (PE) OH

O BnO OBn BnO BnO OBn OPivO BnO O O BnO BnO BnO O BnO BnO BnO

OH O

O

O O PivO O BnO PivO BnO BnO BnO

O

O PivO PivO

O

O O O

Coupling TMSOTf

Deprotection H2NNH2

OLev

10 equiv. O

BnO BnO

O PivO

P(OBu)2 O

OLev BnO BnO OBn BnO BnO

O

O

Lev =

O PivO O BnO O

BnO

O

O

O PivO BnO BnO

O

Piv =

O O O PivO

O

Bn =

Plante, O. J.; Palmacci, E. R.; Seeberger, P. H. Science 2001, 291, 1523.

tBu

Automated Solid Phase Synthesis of Protected b-Phytoalexin Elicitor (PE) OH OLev

OBn BnO BnO

O O BnO O BnO O O BnO O PivO OBn PivO O BnO O BnO O BnO BnO O O O BnO BnO PivO PivO OBn BnO O BnO O BnO O BnO O BnO O O PivO O BnO PivO BnO BnO BnO

O O PivO

Cleavage Cl

PCy3 Ph

Ru H2C Deprotection Cl

Coupling TMSOTf

CH2

PCy3

BnO BnO

O BnO O BnO

OLev

OBn BnO BnO

OLev

OBn

10 equiv. O BnO O BnO

O O PivO

P(OBu)2 O

O PivO BnO BnO OBn BnO BnO

O

O

O

Lev =

O PivO O BnO O

BnO

O

O

O PivO BnO BnO

O

Piv =

O O O PivO

O

Bn =

Plante, O. J.; Palmacci, E. R.; Seeberger, P. H. Science 2001, 291, 1523.

tBu

Coupling Cycle For Phosphate Donors Step Function 1 2 3 4 5 6 7 8 9 10 11 12

Couple Wash Couple Wash Wash Wash Deprotection Wash Wash Wash Wash Wash

Reagent

Time/min

5 equiv. donor and 5 equiv. TMSOTf CH2Cl2 5 equiv. donor and 5 equiv. TMSOTf 1:9 (MeOH : CH2Cl2) THF 3:2 (pyridine : acetic acid) 2 x 20 equiv. H2NNH2 3:2 (pyridine : acetic acid) 1:9 (MeOH : CH2Cl2) 0.2 M acetic acid in THF THF CH2Cl2

30 6 30 4 4 3 80 3 4 4 4 6

Each cycle: 3 hours

Plante, O. J.; Palmacci, E. R.; Seeberger, P. H. Science 2001, 291, 1523.

Solid Phase Synthesis of Protected b-Phytoalexin Elicitor OTBDPS

OH NO2

O

BzO BzO

O

BnO HO

a

BzO O

O

b

O BzO BzO BzO

O

SPh

O

AcO AcO

OAc

AcO

O BzO

, DMTST, then Et3N

BzO BzO

SPh

O OBz

O

BzO BzO OAc

, DMTST, then HF/pyr.

AcO AcO

O BzO O

O BnO O

O BzO BzO BzO

AcO

SPh

OAc

, DMTST, then HF/pyr.

Si(Ph)2(tBu)

O

Fmoc =

AcO AcO

O

Me OTf DMTST = Me S S Me

O

AcO AcO OAc

AcO AcO

O AcO O BnO O

AcO

O BzO BzO BzO OAc AcO AcO

O

AcO O

O BnO O

O BzO BzO BzO OAc

AcO

O

AcO AcO

O BzO O BnO O

AcO

O

O O BzO O BnO O

AcO

O O

BzO BzO BzO

O BzO BzO BzO

O BzO

O

hv

O

NO2

O

O

AcO AcO OAc

OAc

TBDPS =

O BzO

c

OH

OTBDPS

(c)

NO2

O

O

OAc

(b)

O BzO BzO BzO

O

O OBz

O

O BnO O

AcO AcO

NO2

OTBDPS BnO (a) FmocO

OH

OAc

NO2

O O BzO

O

O OAc BzO

20% overall yield

Nicolaou, K. C.; Winssinger, N.; Pastor, J.; DeRoose, F. J. Am. Chem. Soc. 1997, 119, 449.

Automated vs. Non-Automated Syntheses OAc

OLev

OBn BnO BnO

O BnO O BnO

O O PivO BnO BnO OBn BnO BnO

AcO AcO

O O PivO O BnO O

BnO

O

AcO AcO OAc

O O PivO BnO BnO

O O PivO

O AcO O BnO O

AcO

O O BzO BzO BzO OAc AcO AcO

O O BzO O BnO O

AcO

O O BzO BzO BzO

O OAc BzO

automated (Seeberger)

non-automated (Nicolaou)

automated

labor intensive

10 machine hours

122 reaction hours

80% yield

20% yield

Plante, O. J.; Palmacci, E. R.; Seeberger, P. H. Science 2001, 291, 1523. Nicolaou, K. C.; Winssinger, N.; Pastor, J.; DeRoose, F. J. Am. Chem. Soc. 1997, 119, 449.

Other Protected Oligosaccharides Synthesized with Automated Synthesizer Approach BnO BnO

OBn OAc O

n = 3, 74% yield (90% average yield per unit) n = 5, 42% yield (84% average yield per unit) n = 8, 34% yield (87% average yield per unit)

OBn O

BnO BnO

BnO BnO

O

OBn O

BnO BnO

n

O

OBn O

O

O

50% yield (84% average yield per unit)

OBn O

BnO BnO OBn BnO

polymannoside

O

OBn OAc O

O OPiv BnO

BnO

Leishmania tetrasaccharide O O

O

TCAHN =

N H O

CCl3

BnO OBn BnO

Ac =

HO O

O

Piv =

O

O TCAHN OBn

tBu

PivO

OPiv

OBn

O

O

O

12.6% yield (66% average yield per unit)

BnO OBn

OBn

O

PivO

O BnO

O HO O PivO

Lewisx pentasaccharide

Bn =

Plante, O. J.; Palmacci, E. R.; Seeberger, P. H. Science 2001, 291, 1523. Hewitt, M. C.; Seeberger, P. H. Org. Lett. 2001, 3, 3699. Love, K. R.; Seeberger, P. H. Angew. Chem. Int. Ed. 2004, 43, 602.

How About More Complex Molecules? OH OH HO AcHN

OH

HO2C O

OH

O

O HO

O

O

HO

HO

O

OR NHAc

O OH HO

HO

Sialyl Lewisx tetrasaccharide 4% overall yield in 8 steps (Denishefsky and Wong, 1992)

HO OH

HO OH

O

O HO

O

O

O AcNH

O OH HO

HO

OH OH

O O HO

HO2C

O HO

O OR HO

O HO HO

OH HO NHAc

Fucosyl GM1 5% overall yield in 15 steps (Denishefsky, 1999)

Danishefsky, S. J.; Gervay, J.; Peterson, J. M.; McDonald, F. E.; Koseki, K.; Oriyama, T.; Griffith, D. A.; Wong, C.-H.; Dumas, D. P. J. Am. Chem. Soc. 1992, 114, 8329. Allen, J. R.; Danishefsky, S. J. J. Am. Chem. Soc. 1999, 121, 10875.

Outline

1.

Introduction

2.

Solid Phase Approach: Automated Oligosaccharide Synthesizer

3.

Solution Phase Approach: OptiMer One-Pot Oligosaccharide Synthesis

4.

Summary

Solution Phase: OptiMer Programmed One-Pot Oligosaccharide Synthesis

Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H. J. Am. Chem. Soc. 1999, 121, 734.

The “Armed - Disarmed” Concept Armed

Disarmed

React Faster

React Slower

HO

HO O

O

HO

L

O activator

+ HO

HO O

+

O O

O L

L

L

Mootoo, D. R.; Date, V.; Fraser-Reid, B. J. Am. Chem. Soc. 1988, 110, 2662. Linhorst, T. K. Essentials of Carbohydrate Chemistry and Biochemistry, Wiley-VCH: Weinheim, 2003.

Protecting Groups Control

HO

HO O

O L

EDG

activator

+ HO

HO O

EWG

HO

EDG

O EDG

+

O O

O L

EWG

L

EWG

EDG = electron donating group EWG = electron withdrawing group

Mootoo, D. R.; Date, V.; Fraser-Reid, B. J. Am. Chem. Soc. 1988, 110, 2662. Linhorst, T. K. Essentials of Carbohydrate Chemistry and Biochemistry, Wiley-VCH: Weinheim, 2003.

L

Disaccharide Synthesis Using Protecting Groups Control OBn

armed

OBn

O

BnO BnO

O BnO

NBS

BnO BnO

O BnO BzO BzO

+ OH

disarmed

62% yield a:b=1:1

O

O O BzO

O

BzO BzO

O BzO

OH

Br N

NBS = O O

Bz =

O

BzO BzO

O

is NOT formed O

BzO BzO BzO

O O BzO

Bn =

Mootoo, D. R.; Date, V.; Fraser-Reid, B. J. Am. Chem. Soc. 1988, 110, 2662.

Disaccharide Synthesis Using Protecting Groups Control

Br Br OBn BnO BnO

O O

O BnO

N

O

Br

OBn

O

O

BnO BnO

O

BnO BnO

OBn

O BnO

BnO

HO BzO BzO

OBn BnO BnO O

Bz =

O

O O BzO

O BnO BzO BzO

O O BzO

Bn =

Mootoo, D. R.; Date, V.; Fraser-Reid, B. J. Am. Chem. Soc. 1988, 110, 2662.

Anomeric Reactivity Control

HO

HO O

O

HO

L1

O activator

+ HO

HO O

+

O O

O L2

L2

L2

L1 is better leaving group than L2

Mootoo, D. R.; Date, V.; Fraser-Reid, B. J. Am. Chem. Soc. 1988, 110, 2662. Linhorst, T. K. Essentials of Carbohydrate Chemistry and Biochemistry, Wiley-VCH: Weinheim, 2003.

One-Pot Synthesis of Protected Ciclamycin O S

O S +

O O

less reactive

+

O

TMSO

S

OMe

OBn

O HO

most reactive

0.05 equiv. TfOH -78oC

OBn

least reactive

S O S

O +

O

O OBn O

O HO

OBn

S

Bn = O

-70oC

O OBn O O OBn O

Ciclamycin Ciclamycin

25% overall yield

O

O S

OMe

>

S

O

Raghavan, S.; Kahne, D. J. Am. Chem. Soc. 1993, 115, 1580.

>>

S

Strategy for Sequential One-Pot Linear and Branched Oligosaccharides Synthesis

O X

O X

HO

O X

HO

less reactive

O OR

HO

least reactive

reducing end

O O

O O

most reactive donor

O O

O OR

O O O X most reactive donor

HO less reactive

O O X

HO reducing end

O OR

O O

O O O

O OR

Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H. J. Am. Chem. Soc. 1999, 121, 734.

OptiMer Database of Thioglycosyl Donors

Number in bracket represents the Relative Reactivity Value (RRV)

Ritter, T. K.; Mong, K.-K. T.; Liu, H.; Nakatani, T.; Wong, C.-H. Angew. Chem. Int. Ed. 2003, 42, 4657.

OptiMer Database of Thioglycosyl Donors

Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H. J. Am. Chem. Soc. 1999, 121, 734.

OptiMer Database of Thioglycosyl Donors

Ye, X.-S.; Wong, C.-H. J. Org. Chem. 2000, 65, 2410.

OptiMer Database of Thioglycosyl Donors

Ritter, T. K.; Mong, T. K.-K.; Liu, H.; Nakatani, T.; Wong, C.-H. Angew. Chem. Int. Ed. 2003, 42, 4657.

Relative Reactivity in Competitive Reactions

O SR

donor (D0)

O product (Dt) OMe NIS

HPLC analysis

MeOH (5eq.) O SR

reference (R0)

O reference OMe product (Rt)

OAc AcO

reference compound =

AcO AcO

O STol

NIS = O

I N

O

Zhang, Z.; Ollmann, I. R.; Ye, X. -S.; Wischnat, R.; Baasov, T.; Wong, C.-H. J. Am. Chem. Soc. 1999, 121, 734.

Relative Reactivity in Competitive Reaction

RRV =

kD kR

=

In([Dt]/[D0]) In([Rt]/[R0])

OAc

R0

AcO

The result is normalized based on

D0

O STol

RRV = 1

Rt

Dt

AcO AcO

t = 0h t = 2h

Larger the number, higher the reactivity

Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H. J. Am. Chem. Soc. 1999, 121, 734.

Sequential One-Pot Synthesis of Globo H

OH

OH

OHOH O

HO

O

OHOH O

O

O O

AcNH

HO O OH

O OH HO

HO

OH

O HO Globo H

Globo H 1% overall yield in 19 steps (Denishefsky, 1995)

HO

O HO

O OR HO

Human breast tumor associated antigen. First total synthesis was reported by Danishefsky in 1995 using glycal assembly.

Bilodeau, M. T.; Park, T. K.; Hu, S.; Randolph, J. T.; Danishefsky, S. J.; Livingston, P. O.; Zhang, S. J. Am. Chem. Soc. 1995, 117, 7840.

Sequential One-Pot Synthesis of Globo H OH

OH

OHOH O

HO

OHOH O

O

O

O O

AcNH

OptiMer

HO O OH

O

O

OH HO

OH

HO

Globo H Globo H

HO

O

O HO

HO

OR HO

BnO OBn

Bn =

BzO OBz O

BnO

ClBn = Cl

NO2

R=

O TrocHN

STol OClBn

(67% yield)

OHOBn O

O N H

O

RRV = 6

NBz =

TrocHN =

O O

HO O

NBzO ONBz

O

CCl3

OMe

BnO

STol OBn

OBn

RRV = 72,000

OBn

O BnO BnO

O BnO

O OR BnO

Burkhart, F.; Zhang, Z.; Wacowich-Sgarbi, S.; Wong, C.-H. Angew. Chem. Int. Ed. 2001, 40, 1274.

Sequential One-Pot Synthesis of Globo H O

O BnO

NBzO ONBz O O

BnO

RRV = 6

BnO

R=

BnO

NBz = TrocHN =

N H

Cl OH

OHOH O

HO

O

HO

HO

O O

O

BnO O

OBn

TrocNH

ClBnO O OBn

O

BnO

O

O BnO

OR BnO

1. Zn-AcOH 2. Ac2O-pyridine 3. NaOMe-MeOH 4. H2-Pd/C

O HO O OH

OH

O

Globo H Globo H 20% overall yield

BnO Globo H

O

AcNH

OBn

O

CCl3

OHOH O

41% yield

O

OBn

NO2

O OH

O

BzO ONBz

O O

ClBn =

BzO OBz O

OMe O

Bn =

OR BnO

BzO OBn

O

O

O BnO

STol OClBn

TrocHN

I N

OBn

O

O

O HO

OH

OHOBn

NIS, TfOH, CH2Cl2 BzO OBz

NIS = O

RRV = 72,000

OBn

BnO

BnO OBn

STol OBn

HO HO

O HO

O OR HO

Burkhart, F.; Zhang, Z.; Wacowich-Sgarbi, S.; Wong, C.-H. Angew. Chem. Int. Ed. 2001, 40, 1274.

Other Oligosaccharides Synthesized with OptiMer OH

HO AcHN

OH

HO2C

OH

O

OH

O

O HO

O

O

HO

HO

OH

O NHAc

OH

O O

O

OH

OH

O HO

O OH

OR

OH HO

O

O O

O OH

O AcNH

O OH HO

HO

Sialyl Lewisx hexasaccharide 8% overall yield in 2 one-pot reactions (cf. 4% overall yield in 8 steps)

HO OH

HO OH HO

HO

OH

O O HO

HO2C

O HO

O OR HO

O HO HO

And more..

OH HO NHAc

Fucosyl GM1 6% overall yield in 3 one-pot reaction (cf. 5% overall yield in 15 steps)

Zhang, Z.; Kikura, K.; Huang, X.-F.; Wong, C.-H. Can. J. Chem. 2002, 80, 1051. Mong, T. K.-K.; Lee, H.-K.; Duron, S. G.; Wong, C.-H. Proc. Natl. Acad. Sci. USA 2003, 100, 797.

Comparison of the Two Approaches

Common Advantages: They both reduce labor cost. They both allow for high throughput synthesis of oligosaccharides

Advantages for the one-pot approach over the automated synthesizer: It fundamentally helps planning of oligosaccharide synthesis It involves no intermediate deprotection Scale-up is possible

Heparin-Like Oligosaccharides: A Synthetic Challenge a

OSO3 O HO

O O3SHN O HO

CO2

O O OH O3SO

a

OSO3 O O3SHN O HO

O O2C

O OSO3 HO

OSO3 O O O3SHN

iduronic acid

Belongs to the family of glycosaminoglycans (GAG). Heparin is widely used as an anticoagulant.

Jacquinet, J.-C.; Petitou, M.; Duchaussoy, P.; Lederman, I.; Choay, J.; Torri, G.; Sinay, P. Carbohydr. Res. 1984, 130, 221. Yu, H. N.; Furukawa, J.-I; Ikeda, T.; Wong, C.-H. Org. Lett. 2004, 6, 723. Orgueira, H. A.; Bartolozzi, A.; Schell, P.; Litjens, R. E. J. N.; Palmacci, E. R.; Seeberger, P. H. Chem. Eur. J. 2003, 9, 140.

Outline

1.

Introduction

2.

Solid Phase Approach: Automated Oligosaccharide Synthesizer

3.

Solution Phase Approach: OptiMer One-Pot Oligosaccharide Synthesis

4.

Summary

Summary

1.

Novel strategies towards oligosaccharide synthesis were discussed: - Solid Phase Automated Oligosaccharide Synthesizer - Solution Phase OptiMer One-Pot Oligosaccharide Synthesis

2.

From a chemical point of view, the reactivity based one-pot strategy makes the design of oligosaccharide synthesis easier.

Acknowledgement Prof. John Frost Dr. Karen Frost

Prof. Chris Chang Prof. Babak Borhan Prof. Joan Broderick

Frost Group

The End

Example in Calculating RRV

OAc AcO 1:

AcO AcO

O STol

LevO OH O STol

PMBO

O

40: O BnO

OBn

OBn

Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H. J. Am. Chem. Soc. 1999, 121, 734.

Accuracy Measurement of Calculated RRV

Experimental values are shown without parentheses Calculated values are shown in parentheses

Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H. J. Am. Chem. Soc. 1999, 121, 734.

Relationship Between Relative Rates and Substrate Comsumption

Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H. J. Am. Chem. Soc. 1999, 121, 734.