Newtonian and extended Lagrangian dynamics

7 downloads 0 Views 188KB Size Report
MTK. Constant Pressure. Andersen. MTK. PR. Nosé Klein. Wentzcovitch. NPT. MTK NPT. CP-MD. 1.12. Other Ensembles . P=costant . . HC.Andersen, J. Chem.
Newtonian and extended Lagrangian dynamics

Gianni Cardini and Riccardo Chelli Dipartimento di Chimica “Ugo Schiff” Università di Firenze, Via della Lastruccia 3, 50019 Sesto F.no, Firenze [email protected], [email protected]

SMART January 25-29, 2016

Introduction

Introduction

The model

The Molecular Dynamics Method

The simulation Integrators Velocity Verlet Multiple time step

NVT

. Numerical experiments on model systems . You need:

Nosé - Hoover

MTK Constant Pressure Andersen MTK

• to define a model

PR Nosé Klein

• equations of motion

Wentzcovitch

NPT

• numerical integration

MTK NPT

CP-MD

. • A COMPUTER

1.2

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

2 / 58

Introduction

It is useful!

The model The simulation Integrators Velocity Verlet Multiple time step

NVT

.

Molecular dynamics methods provide essentially exact results for a model

.

• Test of theories in controlled conditions • Test of a model

Constant Pressure Andersen MTK PR Nosé Klein

• MD can suggest new experiments

.

Nosé - Hoover

MTK

• Microscopic description

Wentzcovitch

NPT MTK NPT

CP-MD

1.3

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

3 / 58

Introduction

How to?

The model The simulation Integrators Velocity Verlet Multiple time step

. Model . .Stucture, conditions, potential

NVT Nosé - Hoover

MTK

. Rule to solve the equations of motions . .numerical integration alghorithm, time step {ri (t)} ∧ {vi (t)} . analysis .

Constant Pressure Andersen MTK PR Nosé Klein Wentzcovitch

NPT MTK NPT

CP-MD

1.4

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

4 / 58

Introduction

Reminder

The model The simulation Integrators Velocity Verlet Multiple time step

NVT

. Molecular dynamics gives exact results on a model . • If the model is wrong the results are wrong! • If you ask a wrong question ...

.

you will receive a wrong answer!

Nosé - Hoover

MTK Constant Pressure Andersen MTK PR Nosé Klein Wentzcovitch

NPT MTK NPT

CP-MD

1.5

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

5 / 58

Introduction

The model

The model The simulation Integrators Velocity Verlet

. Microscopic description of a chemical system . • Initial position and momentum of the particles .

• Interaction law

Multiple time step

NVT Nosé - Hoover

MTK Constant Pressure Andersen MTK

. No nuclear quantum effects . .Classical mechanics

PR Nosé Klein Wentzcovitch

NPT MTK NPT

. No electronic transition . Born Oppenheimer approximation .

CP-MD

1.6

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

6 / 58

Introduction

Interaction law, Analitical potential V =



v1 (ri ) +

i





v2 (ri , rj ) +

The model



ij

ijk

The simulation

v3 (ri , rj , rk )+

Integrators Velocity Verlet Multiple time step

NVT

v4 (ri , rj , rk , rl ) + · · ·

Nosé - Hoover

MTK

ijkl

Constant Pressure

. one body:v1 (ri ) . .external field

Andersen MTK PR Nosé Klein Wentzcovitch

. two bodies:v2 (ri , rj ) . atom-atom, electrostatics, stretching . . three bodies:v3 (ri , rj , rk ), bending .

NPT MTK NPT

CP-MD

. four bodies:v4 (ri , rj , rk , rl ), torsion . 1.7

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

7 / 58

Introduction

The simulation

The model

NE ensemble

The simulation Integrators

. Isolated system . C . lusters

Velocity Verlet Multiple time step

NVT Nosé - Hoover

. Newtonian mechanics . Equation of motion from II law: F = ma = −∇r V (r) .

MTK Constant Pressure Andersen MTK PR Nosé Klein

. Constraints . Holonomic constraints [f ({r}, t) = 0] .

Wentzcovitch

NPT MTK NPT

CP-MD

. Lagrangian mechanics . ˙ =K −V L({q}, {q}) . two scalars! 1.8

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

8 / 58

Introduction

Lagrangian N particles

The model

N 1 ∑ ˙ =K −V = L({q}, {q}) mi q˙ 2j − V ({q}) 2 j=1,N

The simulation Integrators Velocity Verlet Multiple time step

NVT

. Equations of motion .

Nosé - Hoover

MTK

d ∂L ∂L − =0 dt ∂ q˙ j ∂qj

. . M holonomic constraints: fk ({r}, t) = 0 . M ∑ Gj = − λk ∇j fk ({r}, t)

Constant Pressure Andersen MTK PR Nosé Klein Wentzcovitch

NPT MTK NPT

CP-MD

k =1

λk Lagrange multipliers d ∂L ∂L − = Gj dt ∂ q˙ j ∂qj

.

1.9

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

9 / 58

Introduction

Hamiltonian

The model The simulation

. From Lagrangian .

Integrators Velocity Verlet Multiple time step

NVT

˙ ∂L(q, q) p= ∂ q˙ .

−→

dq H(q, p) = ·p=K +V dt

Nosé - Hoover

MTK Constant Pressure Andersen

. Equations of motion .

MTK PR Nosé Klein Wentzcovitch

NPT

dq ∂H = dt ∂p ∂H dp =− dt ∂q

.

MTK NPT

CP-MD

6N first order diff. eq. instead of 3N second order

1.10

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

10 / 58

Introduction

Condensed phase simulations

The model

NVE ensemble

Surface effects −→ Periodic Boundary Conditions Angular Momentum no more conserved . Spurious correlations . .minimum image

The simulation

. PBC & Electrostatics:Ewald . V (ϵ = 1) = Vd + Vr + Vs + Vshape

Constant Pressure

i=1 j=1

Nosé - Hoover

MTK

PR Nosé Klein Wentzcovitch

NPT MTK NPT

CP-MD

R=0



∑ 1 1 ∑∑ qi qj (4π/Λ) exp(−k 2 /4α2 ) cos(k · rij ) 2 k2 N

Vr =

NVT

MTK

∞ ′

N

Velocity Verlet Multiple time step

Andersen

∑ erfc(α∥rij + R∥) 1 ∑∑ Vd = qi qj 2 ∥rij + R∥ N

Integrators

N

i=1 j=1

Vs = − √απ .

∑N

2 i=1 qi

G. Cardini, R. Chelli (U.Firenze)

k̸=0

Vshape =

2π 3Λ MD



2

N

i=1 qi ri

1.11

SMART January 25-29, 2016

11 / 58

Introduction

Other Ensembles

The model The simulation

. P=costant . HC.Andersen, J. Chem. Phys 72 (1980) 2384 (NPH) M. Parrinello, A. Rahaman, Phys. Rev. Lett. 45 (1980) 1196. .

Integrators Velocity Verlet Multiple time step

NVT Nosé - Hoover

MTK Constant Pressure

. T=costant . HC.Andersen, J. Chem. Phys 72 (1980) 2384 (MC/MD) S. . Nosé, Mol. Phys. (1984) 255 (NVT) . Extended Lagrangians . New dynamical variables are added .

Andersen MTK PR Nosé Klein Wentzcovitch

NPT MTK NPT

CP-MD

L = L′ + K (new v) − V (new v)

1.12

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

12 / 58

Introduction

Numerical Integration

The model

Choice of the time step, ∆t

The simulation Integrators Velocity Verlet Multiple time step

NVT Nosé - Hoover

. Large as possible . to . sample the phase space with less steps as possible

MTK Constant Pressure Andersen MTK PR

. but sufficiently small . to sample the fastest motion and to obtain an acceptable conservation of the constants of the motion .

Nosé Klein Wentzcovitch

NPT MTK NPT

CP-MD

1.13

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

13 / 58

Numerical integrators and Lioville operators

.

df = dt

n=1

The model The simulation

. Time evolution of f (x) . x ≡ ({q, p}) ∈ phase space 3N [ ∑

Introduction

Integrators Velocity Verlet Multiple time step

NVT

∂f ∂H ∂f ∂H − ∂qn ∂pn ∂pn ∂qn

]

Nosé - Hoover

MTK Constant Pressure Andersen MTK PR

. Liouville operator: L . ] 3N [ ∑ ∂H ∂ ∂H ∂ ıL = − ∂pn ∂qn ∂qn ∂pn n=1 . ıLf (x) =

Nosé Klein Wentzcovitch

NPT MTK NPT

CP-MD

df (x) dt 1.14

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

14 / 58

Introduction

Numerical integrators and Lioville operators . formal solution . f (xt ) = eıLt f (x0 ) .

The model The simulation Integrators Velocity Verlet Multiple time step

classical propagator: eıLt ; qm propagator e−ıHt/ℏ Starting point for approximate solutions . ıL = ıL1 + ıL2 .

NVT Nosé - Hoover

MTK Constant Pressure Andersen MTK PR

ıL1 =

3N ∑

Nosé Klein

∂H ∂ ∂pn ∂qn

n=1 3N ∑

ıL2 = − . . do not commute .

n=1

Wentzcovitch

NPT MTK NPT

CP-MD

∂H ∂ ∂qn ∂pn

[ıL1 , ıL2 ] ̸= 0

.

1.15

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

15 / 58

Introduction

Numerical integrators and Lioville operators

The model The simulation

. ıLt e ̸= eıL1 t eıL2 t . often the action of eıL1 t and eıL2 t can be evaluated exactly . . symmetric Trotter theorem (1959) . given two operators such that [A, B] ̸= 0 then ( t )m t t e(A+B)t = lim eB 2m eA m eB 2m m→∞ . . Applying the symmetric Trotter theorem . )m ( t t t eıLt = lim eıL2 2m eıL1 m eıL2 2m m→∞ .

Integrators Velocity Verlet Multiple time step

NVT Nosé - Hoover

MTK Constant Pressure Andersen MTK PR Nosé Klein Wentzcovitch

NPT MTK NPT

CP-MD

1.16

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

16 / 58

Introduction

Numerical integrators and Lioville operators

The model The simulation

.

Integrators

posing ∆t =

.

eıLt = .

Velocity Verlet

t m

Multiple time step

lim

m→∞,∆t→0

( ) ∆t ∆t m eıL2 2 eıL1 ∆t eıL2 2

NVT Nosé - Hoover

MTK Constant Pressure

. Hans de Raedt e Bart de Raedt: Approximate propagation . [ Phys. Rev. A28 ( 1983) 3575-3580 ]

Andersen MTK PR Nosé Klein Wentzcovitch

NPT ∆t

.

eıL∆t ≈ eıL2 2 eıL1 ∆t eıL2

∆t 2

+ O(∆t 3 )

MTK NPT

CP-MD

. Tuckerman et al. . reversible integrators .

1.17

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

17 / 58

Numerical integrators and Liouville operators . Example: one dimensional Hamiltonian . p2 H= + V (q) 2m .

Introduction The model The simulation Integrators Velocity Verlet Multiple time step

NVT Nosé - Hoover

MTK Constant Pressure ∆t ∂ ∂ F (q) ∂p ıL2 = F (q) −→ eıL2 ∆t/2 = e 2 ∂p p ∂ ∆t p ∂ ıL1 = −→ eıL1 ∆t = e m ∂q m ∂q

Andersen MTK PR Nosé Klein Wentzcovitch

NPT MTK NPT

CP-MD

. Exponential of operators . e .

a∆t

=

∞ ∑ (a∆t)k k =0

k! 1.18

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

18 / 58

Introduction

Numerical integrators and Liouville operators

The model

. First operator . e

∆t ∂ F (q) ∂p 2

The simulation Integrators

( ) ∑ ( ) ( ) ∞ 1 ∆t ∂ k q(0) q(0) = F (q) p(0) p(0) k! 2 ∂p k=0 ( ) ( ) q(0) q(0) ( ) = = p(0) + ∆t p ∆t 2 F (q) 2

Velocity Verlet Multiple time step

NVT Nosé - Hoover

MTK Constant Pressure Andersen MTK PR Nosé Klein Wentzcovitch

.momentun translation

NPT

. Second operator . ( ) ( ( ) p) p ∂ q(0) q(0) + ∆t m q(∆t) ∆t m ∂q e = = p( ∆t p( ∆t p( ∆t 2 ) 2 ) 2 )

MTK NPT

CP-MD

.position translation 1.19

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

19 / 58

Introduction

Numerical integrators and Lioville operators

The model

Position is changed then recompute the force . Third operator . ( ) ( ) ∆t ∂ q(∆t) q(∆t) F (q(∆t)) ∂p 2 e = ∆t p( ∆t p( ∆t 2 ) 2 ) + 2 F (q(∆t)) ) ( q(∆t) = p(∆t)

The simulation Integrators Velocity Verlet Multiple time step

NVT Nosé - Hoover

MTK Constant Pressure Andersen MTK PR Nosé Klein Wentzcovitch

NPT

.momentum translation

MTK NPT

CP-MD

This is Velocity Verlet Warning When the system is subject to olonomic constraints (SHAKE, RATTLE ...) the Lagrange multipliers have to be determined to full convergence. 1.20

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

20 / 58

Introduction

Multiple time step

The model The simulation Integrators Velocity Verlet Multiple time step

Complex systems −→ different time scale Potential Energy

NVT Nosé - Hoover

MTK

U({ri }) = U intra + U inter

Constant Pressure Andersen MTK PR

Atomic Forces

Nosé Klein Wentzcovitch

∂ Fi = − U = −∇i U intra − ∇i U inter = Fintra + Finter i i ∂ri

NPT MTK NPT

CP-MD

Internal forces −→ fast motions Intermolecular forces −→ slow motions

1.21

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

21 / 58

Multiple time step . System characterized by fast and slow motions . Liouville operator

Introduction The model The simulation Integrators Velocity Verlet Multiple time step

ıL = ıLfast + ıLslow p ∂ ∂ ıLfast = + Ffast m ∂q ∂p ∂ ıLslow = Fslow ∂p

. . Reference Hamiltonian .

NVT Nosé - Hoover

MTK Constant Pressure Andersen MTK PR Nosé Klein Wentzcovitch

NPT MTK NPT

CP-MD

p2 + U(q)fast 2m dU(q)fast Ffast (q) = − dq p q˙ = m Href =

G. Cardini, R. Chelli (U.Firenze)

fast

MD

1.22

SMART January 25-29, 2016

22 / 58

Introduction

Multiple time step

The model The simulation Integrators Velocity Verlet Multiple time step

. RESPA, reference system propagator alghorithm . Tuckerman et al. JCP 97(1992) 1990 Factorization of the full propagator

NVT Nosé - Hoover

MTK Constant Pressure Andersen MTK

e

.

ıL∆t

=e

ıLslow ∆t 2

e

ıLfast ∆t ıLslow ∆t 2

PR

e

Nosé Klein Wentzcovitch

.

Defining τ =

.

∆t n

fast ∆t

.

eıL

NPT MTK NPT

[ τ fast ∂ ]n p ∂ τ fast ∂ F (q) ∂p τ m F (q) ∂p = e2 e ∂q e 2

CP-MD

1.23

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

23 / 58

Introduction

Multiple time step

The model The simulation Integrators Velocity Verlet Multiple time step

NVT

. full RESPA propagator .

Nosé - Hoover

MTK Constant Pressure

e

ıL∆t

∆t slow ∂ F (q) ∂p 2

Andersen

=e [ τ fast ∂ ]n p ∂ τ fast ∂ F (q) ∂p τ m F (q) ∂p 2 ∂q 2 e e e

MTK PR Nosé Klein Wentzcovitch

NPT

.

e

∆t slow ∂ F (q) ∂p 2

MTK NPT

CP-MD

1.24

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

24 / 58

Introduction

Multiple time step

The model The simulation Integrators

. Pseudocode .

Velocity Verlet Multiple time step

NVT

p = p + 0.5 * dt * Fslow do j=1,n p = p + 0.5 * dt/n * Ffast q = q + dt/n * p/m ! modified coordinates call FastForce p = p + 0.5 * dt/n * Ffast enddo ! coordinates call SlowForce p = p + 0.5 * dt * Fslow ! momenta

Nosé - Hoover

MTK Constant Pressure Andersen MTK PR Nosé Klein Wentzcovitch

NPT MTK NPT

CP-MD

1.25

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

25 / 58

Introduction

Canonical Ensemble

The model The simulation Integrators Velocity Verlet Multiple time step

NVT Nosé - Hoover

. NVT . System in contact with an infinite thermal bath. The H of the system is not conserved. The H follows a Boltzmann distribution e−βH .

MTK Constant Pressure Andersen MTK PR Nosé Klein Wentzcovitch

NPT MTK NPT

CP-MD

1.26

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

26 / 58

Introduction

Canonical Ensemble

The model The simulation

. Nosé Lagrangian . S.Nosé, Mol.Phys. 52 (1984) 255 A new degree of freedom: s s describes the interaction with an external bath by a velocity scaling. .

Integrators Velocity Verlet Multiple time step

NVT Nosé - Hoover

MTK Constant Pressure Andersen MTK PR

. Extended Lagrangian .

.

Nosé Klein Wentzcovitch

NPT

( ) N ∑ mi s2 dri 2 LNose = − U({r}) 2 dt i ( ) Q ds 2 + − (3N + 1)kTeq ln(s) 2 dt

MTK NPT

CP-MD

1.27

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

27 / 58

Introduction

Canonical Ensemble

The model The simulation

. Nosé Hamiltonian . conjugate momenta from the Lagrangian

Integrators Velocity Verlet Multiple time step

NVT Nosé - Hoover

MTK

∂L = mi s2 r˙ i ∂ r˙ i ∂L ps ≡ = Q s˙ ∂ s˙

Constant Pressure

pi ≡

Andersen MTK PR Nosé Klein Wentzcovitch

NPT MTK NPT

Hamiltonian of the extended system (N particles + s) HNose = .

N ∑ i

CP-MD

p2i ps2 − (3N + 1)kTeq ln(s) − U({r}) + 2Q 2mi s2

1.28

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

28 / 58

Introduction

Canonical Ensemble

The model The simulation Integrators

. Nosé equations of motion . virtual variables:p, r, t

.

Velocity Verlet Multiple time step

NVT Nosé - Hoover

dri ∂H pi = = dt dpi mi s 2 dpi ∂H U({r}) = =− dt dri ∂ri ds ∂H ps = = dt dps Q ) ( N ∑ p2 dps ∂H 1 i = = − (3N + 1)kTeq 2 dt ds s mi s

MTK Constant Pressure Andersen MTK PR Nosé Klein Wentzcovitch

NPT MTK NPT

CP-MD

i

1.29

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

29 / 58

Introduction

Canonical Ensemble

The model

. real variables . r and s correspond to the real variables, while ⃗π = p/s , ′ .ps = ps /s and τ = t/s

The simulation

. equations of motion .

MTK

Integrators Velocity Verlet Multiple time step

NVT Nosé - Hoover

Constant Pressure Andersen MTK

.

dri dri pi ⃗πi =s = = dτ dt mi s mi d⃗πi dpi /s dpi 1 ds =s = − pi dτ dt dt s dt ds ds sps′ =s = dτ dt Q ) ( N ′ ∑ ⃗π 2 1 dsps /Q s dps i − (3N + 1)kTeq = = dτ Q dt mi Q

PR Nosé Klein Wentzcovitch

NPT MTK NPT

CP-MD

i

1.30

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

30 / 58

Introduction

Canonical Ensemble

The model The simulation

. Constant of the motion in real variables .

Integrators Velocity Verlet Multiple time step

NVT

HNose

N ∑ ⃗πi2 = + U({r}) 2mi

Nosé - Hoover

MTK Constant Pressure

i

.

Andersen

(sps′ )2 + + (3N + 1)kTeq ln s 2Q

MTK PR Nosé Klein Wentzcovitch

NPT

• transformation to real variables is not canonical

MTK NPT

CP-MD

• HNose It is not an Hamiltonian • implementation in real variables • eqm are not easy to be implemented in MD

1.31

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

31 / 58

Introduction

Canonical Ensemble

The model

. Nosé - Hoover equations . Hoover Phys.Rev.A31 (1985)1695: non canonical change of variables in Nosé eqm ds ⃗πi = psi ,dτ = dts , 1s dτ = dη dt and ps = pη and posing the number of dof to 3N

.

pi r˙i = m pη p˙ i = −∇i U({r}) − pi Q pη η˙ = Q N ∑ p2i p˙ η = − 3NkTeq mi

The simulation Integrators Velocity Verlet Multiple time step

NVT Nosé - Hoover

MTK Constant Pressure Andersen MTK PR Nosé Klein Wentzcovitch

NPT MTK NPT

CP-MD

i

1.32

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

32 / 58

Canonical Ensemble . Nosé - Hoover . • η acts as a friction term • p˙ η twice the difference of kinetic energy and its canonical average

Introduction The model The simulation Integrators Velocity Verlet Multiple time step

NVT Nosé - Hoover

MTK

• It is a non Hamiltonian system

Constant Pressure Andersen

Conserved Energy

MTK PR Nosé Klein

pη2 H(r, p, η, pη ) = H(r, p) + + 3NkTeq 2Q

Wentzcovitch

NPT MTK NPT

The real ∑Hamiltonian is ηH(r, ∑Np). When N F = 0 also e i i i Fi is constant and the distribution function of the momenta is wrong

.

CP-MD

p2 1 f (p) ̸= √ e− 2mkT 2πmkT 1.33

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

33 / 58

Introduction

Canonical Ensemble

The model The simulation Integrators

. Nosé - Hoover . Martyna et al. J. Chem. Phys. 97 (1992) 2635 The wrong distribution function is due to the existence of two conservation laws. The eqm do not have a sufficient number of variables! .

Velocity Verlet Multiple time step

NVT Nosé - Hoover

MTK Constant Pressure Andersen MTK PR Nosé Klein

. Nosé - Hoover Chain . The f (pη ) must follow a Maxwell-Boltzmann distribution pη must be coupled to a thermostat. The chain of thermostats should be infinite The lenght is chosen finite (M thermostats) .

Wentzcovitch

NPT MTK NPT

CP-MD

1.34

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

34 / 58

Introduction

Canonical Ensemble . Nosé - Hoover Chain eqm .

.

The model The simulation Integrators

pi r˙ i = m pη p˙ i = Fi − 1 pi Q1 p ηj η˙j = j = 1, · · · · · · , M Qj   N 2 ∑ pi pη p˙ η1 =  − 3NkT  − 2 pη1 mi Q2 i=1,N [ 2 ] pηj−1 pηj+1 j = 2, · · · · · · , M − 1 p˙ ηj = − kT − pη Qj−1 Qj+1 j [ 2 ] pηM−1 p˙ ηM = − kT QM−1

Velocity Verlet Multiple time step

NVT Nosé - Hoover

MTK Constant Pressure Andersen MTK PR Nosé Klein Wentzcovitch

NPT MTK NPT

CP-MD

1.35

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

35 / 58

Introduction

Canonical Ensemble

The model The simulation Integrators

. Nosé - Hoover Chain . Previous equations cannot be transformed in an Hamiltonian system Optimal choice: Q1 = 3NkT τ 2 , Qj = NkT τ 2 j = 2, · · · , M τ. > 10∆t . Conserved Energy . H = H(r, p) +

NVT Nosé - Hoover

MTK Constant Pressure Andersen MTK PR Nosé Klein Wentzcovitch

NPT MTK NPT

M p2 ∑ ηj j=1

.

Velocity Verlet Multiple time step

2Qj

+ 3NkT η1 + kT

M ∑

CP-MD

ηj

j=2

1.36

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

36 / 58

Introduction

Canonical Ensemble

The model The simulation Integrators Velocity Verlet Multiple time step

NVT

. Massive Nosé - Hoover Chain . add a separate chain to each atom of the system much more rapid equilibration some modes are often weakly coupled Tobias et al. J. Phys. Chem. 97 (1993) 12959 rapid thermalization of a protein in solution .

Nosé - Hoover

MTK Constant Pressure Andersen MTK PR Nosé Klein Wentzcovitch

NPT MTK NPT

CP-MD

1.37

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

37 / 58

Introduction

Canonical Ensemble

The model The simulation Integrators Velocity Verlet Multiple time step

. Integration of Nosé - Hoover Chain eqm . The Liouville operator can be written as:

NVT Nosé - Hoover

MTK Constant Pressure

ıL = ıLNHC + ıL1 + ıL2

Andersen MTK PR

.e

ıL∆t

=e

ıLNHC ∆t/2 ıL2 ∆t/2 ıL1 ∆t ıL2 ∆t/2 ıLNHC ∆t/2

e

e

e

e

3

+O(∆t )

Nosé Klein Wentzcovitch

NPT

. Velocity Verlet . eıLH ∆t = eıL2 ∆t/2 eıL1 ∆t eıL2 ∆t/2 .

MTK NPT

CP-MD

1.38

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

38 / 58

Introduction

Canonical Ensemble . Thermostat forces .

The model The simulation Integrators





G1 = 

Velocity Verlet Multiple time step

N ∑ pi2 − 3NkT  mi

NVT Nosé - Hoover

MTK

i=1,N

Gj = .

pη2j−1 Qj−1

Constant Pressure Andersen

− kT

MTK PR Nosé Klein Wentzcovitch

.

NPT MTK NPT

ıLNHC = −

N ∑ pη i=1

+ .

∑ pηj ∂ ∂ + ∂pi Qj ∂ηj M

1

Q1

M−1 ∑(

pi ·

G j − p ηj

j=1

CP-MD

j=1

pηj+1 Qj+1

)

∂ ∂ + GM ∂pηj ∂pηM 1.39

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

39 / 58

Introduction

Canonical Ensemble

The model The simulation Integrators Velocity Verlet Multiple time step

NVT

Factorization of the propagator is not sufficient! The resulting integrator is not sufficiently robust. The application of RESPA alone require many cycles. An improvement has been obtained coupling RESPA with an higher order fatorization scheme: Suzuki-Yoshida [Phys. Lett. A150(1990)262,J. Math. Phys. 32(1991)400]

Nosé - Hoover

MTK Constant Pressure Andersen MTK PR Nosé Klein Wentzcovitch

NPT MTK NPT

CP-MD

1.40

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

40 / 58

Introduction

Canonical Ensemble

The model

. Suzuki-Yoshida . Given a primitive factorization, S(λ), of an operator

The simulation Integrators Velocity Verlet Multiple time step

NVT

S(λ) = eλA2 /2 eλA2 eλA1 /2 = eλ(A1 +A2 )

Nosé - Hoover

MTK

chosen an even order of the error in the factorization 2s this gives nSY = 5s−1 weigths, wα , such that:

Constant Pressure Andersen MTK PR Nosé Klein

nSY ∑

Wentzcovitch

wα = 1

α=1

NPT MTK NPT

CP-MD

The factorization is eλ(A1 +A2 ) ≈ .

nSY ∏

S(wα λ)

α=1 1.41

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

41 / 58

Introduction

Canonical Ensemble

The model The simulation Integrators

. RESPA . Setting λ = ∆t/2

Velocity Verlet Multiple time step

NVT Nosé - Hoover

MTK

e

ıLNHC ∆t/2



nSY ∏

Constant Pressure

S(wα ∆t/2)

Andersen MTK PR

α=1

Nosé Klein Wentzcovitch

the operator is to be applied n times with a time step wα ∆t 2n [n ( )]n SY ∏ ∆t ıLNHC ∆t/2 e ≈ S wα 2n α=1 .

NPT MTK NPT

CP-MD

1.42

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

42 / 58

Introduction

Canonical Ensemble

The model The simulation

. Factorization of eıLNHC ∆t/2 . The choice is not unique ∂ A new kind of operator ecx ∂x Given a function p, the action of the operator is [∞ ] ∑ c k ( ∂ )k ∂ cp ∂p e p p= p k! ∂p =p

k=0 ∞ ∑

k =0

Integrators Velocity Verlet Multiple time step

NVT Nosé - Hoover

MTK Constant Pressure Andersen MTK PR Nosé Klein Wentzcovitch

NPT

ck = pec k!

MTK NPT

CP-MD

c .Given a function f (p), the results is f (pe )

Terms of this kind will act scaling the momentum of the thermal bath. 1.43

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

43 / 58

Isoenthalpic-Isobaric Ensemble . Andersen . H.C.Andersen, J.Chem. Phys. 72 (1980) 2384 First attempt to perform MD simulations at costant P The volume,V , is treated as a dynamical variable. Cartesian coordinates {ri } are replaced by scaled coordinates {⃗ ρi }: ρ ⃗i = ri V −1/3

Introduction The model The simulation Integrators Velocity Verlet Multiple time step

NVT Nosé - Hoover

MTK Constant Pressure Andersen MTK PR Nosé Klein

Postulated Lagrangian:

Wentzcovitch

NPT

N N ∑ ∑ ⃗˙ i · ρ ⃗˙ i − ⃗˙ V , V˙ ) = 1 mV 2/3 L({⃗ ρ}, {ρ}, ρ U(V 1/3 ρij ) 2 i=1

MTK NPT

CP-MD

ii

1 ⃗2 + Π + Pext V 2MP

NVT Nosé - Hoover

MTK Constant Pressure Andersen MTK PR Nosé Klein Wentzcovitch

. Andersen real variables . Conserved Energy H = H0 (r, p) +

NPT MTK NPT

CP-MD

pV2 + Pext V 2MP

with pV = MP V˙ . 1.45

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

45 / 58

Introduction

Isoenthalpic-Isobaric Ensemble . MTK eqm . Martyna, Tobias, Klein J.Chem.Phys. 101(1994)4177 1 V˙ a . variable ϵ = 3 ln(V /V0 ) with momentum pϵ = MP 3V

The model The simulation Integrators Velocity Verlet Multiple time step

NVT Nosé - Hoover

MTK Constant Pressure

pi pϵ + ri mi MP ) ( pϵ 3 p˙ i = Fi − pi 1 + MP (3N − Nconstr ) 3Vpϵ V˙ = MP N 3 ∑ p2i p˙ ϵ = 3V (P int − Pext ) + Ndof mi

Andersen

r˙ i =

MTK PR Nosé Klein Wentzcovitch

NPT MTK NPT

CP-MD

i=1

int ] and P int = with P int = 13 Tr [Pαβ αβ G. Cardini, R. Chelli (U.Firenze)

1 V

∑N [ piα piβ i=1 MD

mi

] + Fiα riβ 1.46

SMART January 25-29, 2016

46 / 58

Isoenthalpic-Isobaric Ensemble . Parrinello - Rahman . J.Appl.Phys. 52(1981)7182 Parrinello and Rahaman same estended Lagrangian of Andersen but with variable cell shape transformation matrix from scaled,s, to cartesian,r   ax bx cx H = ay by cy  az bz cz r = Hs real distances by metric matrix G = Ht H √

Introduction The model The simulation Integrators Velocity Verlet Multiple time step

NVT Nosé - Hoover

MTK Constant Pressure Andersen MTK PR Nosé Klein Wentzcovitch

NPT MTK NPT

CP-MD

V = det H, cell sides a = ax2 + ay2 + az2 .... 9 elements of the matrix are used as dynamical variables. 3 sides and 3 angles of the cell. .3 Euler angles!! G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

1.47

47 / 58

Isoenthalpic-Isobaric Ensemble . Molecular case . Nosé and Klein Mol. Phys. 50 (1983) 1055 No rotating simulation box   H11 H12 H13 H =  0 H22 H23  0 0 H33

Introduction The model The simulation Integrators Velocity Verlet Multiple time step

NVT Nosé - Hoover

MTK Constant Pressure Andersen MTK PR Nosé Klein Wentzcovitch

H11 = a

NPT

H12 = b cos(γ)

CP-MD

MTK NPT

H13 = c cos(β)

.

H22 = b sin(γ) cos(α) − cos(β) cos(γ) H23 = c sin(γ) √ 2 − H2 H33 = c 2 − H13 23 G. Cardini, R. Chelli (U.Firenze)

MD

1.48

SMART January 25-29, 2016

48 / 58

Introduction

Isoenthalpic-Isobaric Ensemble

The model The simulation Integrators Velocity Verlet Multiple time step

. Molecular case . Center of mass scaling Small molecules center of mass variables: ⃗α Rα ; Pα ; F internal Pmolec

.

NVT Nosé - Hoover

MTK Constant Pressure Andersen MTK PR Nosé Klein Wentzcovitch

] Molec [ 1 ∑ P2α ⃗ = + Rα · Fα 3V Mα

NPT MTK NPT

CP-MD

α=1

1.49

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

49 / 58

Introduction

Isobaric Ensemble

The model The simulation Integrators Velocity Verlet Multiple time step

NVT Nosé - Hoover

. Wentzcovitch . Phys. Rev. B44 (1991) 2358 Dynamical variable Stress Tensor Very useful to optimize crystal structure .

MTK Constant Pressure Andersen MTK PR Nosé Klein Wentzcovitch

NPT MTK NPT

CP-MD

1.50

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

50 / 58

Introduction

NPT

The model The simulation Integrators

. es Molecules . L =

N ∑ α=1

Velocity Verlet Multiple time step

{

n ∑ i=1

miα ⃗ 2 s2 σ˙ iα 2

}

Mα 2 ⃗ t ⃗ s (H ρ˙ α ) (H ρ˙ α ) + 2

NVT Nosé - Hoover

MTK Constant Pressure Andersen

WP ˙ − U({⃗σiα + H⃗ ρα }) + Tr (H˙ t H) 2 Ws 2 s˙ − Pext det(H) − 3NkText ln s + 2

MTK PR Nosé Klein Wentzcovitch

NPT MTK NPT

CP-MD

.NPT Lagrangian with a simple Nosé Nosé-Hoover chain separated thermostats for atoms and barostat

1.51

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

51 / 58

Introduction

NPT . MTK factorization . Tuckerman et al. J. Phys. A39 (2006) 5629 factorization scheme for an atomic system

The model The simulation Integrators Velocity Verlet Multiple time step

NVT

e

ıL∆t

=

eıLNHC−baro ∆t/2 eıLNHC−part ∆t/2 eıLg,2 ∆t/2 eıL2 ∆t/2 eıLg,1 ∆t eıL1 ∆t eıL2 ∆t/2

Nosé - Hoover

MTK Constant Pressure Andersen

.

eıLg,2 ∆t/2 eıLNHC−part ∆t/2 eıLNHC−baro ∆t/2

MTK PR Nosé Klein Wentzcovitch

NPT

˙ −1 pg = Wp HH ] N [ ∑ pg pi ıL1 = + ri mi Wp i=1 ( ) ] N [ ∑ ∂ 1 Tr[pg ] ıL2 = Fi − pg Wp + I pi · N f WP ∂pi

MTK NPT

CP-MD

i=1

1.52

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

52 / 58

Introduction

NPT

The model The simulation Integrators

ıLg,1

pg H ∂ = Wp ∂H [

ıLg,1 = det[H](Pint

Velocity Verlet Multiple time step

]

N 1 ∑ p2i ∂ − IPext ) + I Nf mi ∂pg i=1

ıLNHC−part = −

N ∑ i=1

p η1 ∂ pi · + Q1 ∂pi

M ∑ j=1

NVT Nosé - Hoover

MTK Constant Pressure Andersen MTK PR

p ηj ∂ Qj ∂ηj

Nosé Klein Wentzcovitch

NPT

) M−1 ∑( pηj+1 ∂ ∂ Gj − pηj + GM Qj+1 ∂pηj ∂pηM

MTK NPT

CP-MD

j=1

ıLNHC−baro = same as ıLNHC−part with pg

1.53

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

53 / 58

Introduction

NPT

The model The simulation Integrators

. pseudo masses . For T of particles:

Velocity Verlet Multiple time step

NVT Nosé - Hoover

Q1 = 3kT τp2

Qj = kT τp2

MTK Constant Pressure Andersen MTK

For T of barostat

PR Nosé Klein Wentzcovitch

Q1 =

kT τb2

Qj =

kT τb2

NPT MTK NPT

CP-MD

For pressure WP = (3N + 3)kT τb2 Martyna 1992, 1996 .

1.54

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

54 / 58

Introduction

First Principles Molecular Dynamics: CP-MD

The model The simulation

Unified Approach for Molecular Dynamics and Density-Functional Theory R. Car and M. Parrinello Phys. Rev. Lett. 55 (1985) 2471 . CP-MD extended Lagrangian .

Integrators Velocity Verlet Multiple time step

NVT Nosé - Hoover

MTK Constant Pressure Andersen

L=

occ.orb. ∑ ∫ i

+ .



(∫ λij

µi ∥ψ˙ i (r)∥2 dr + ψi∗ (r)ψi (r)dr

1∑ 2

MTK PR

˙ 2 − E[{ψi }, Rα ] Mα R α

Nosé Klein Wentzcovitch

NPT

α

)

MTK NPT

− δij

CP-MD

ij

An intertial factor µi , pseudomass (mass ∗ lenght 2 ), is associated to the electronic degree of freedom. 1.55

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

55 / 58

Introduction

First Principles Molecular Dynamics: CP-MD

The model The simulation Integrators

. CP-MD: equations of motion . Assumption: the system is on the BO surface µψ¨i = −

occ.orb. ∑ δE + λij ψj i = 1, ..., occ.orb δ ψ˙ i j=1

Velocity Verlet Multiple time step

NVT Nosé - Hoover

MTK

(1)

Constant Pressure Andersen MTK PR Nosé Klein Wentzcovitch

¨ I = −∇R E I = 1, .., Atoms MI R I

NPT

(2)

MTK NPT

CP-MD

Hellman-Feynman .

⟨ ⟩ −∇RI E({RI }) = − Ψ0 | ∇RI H | Ψ0

1.56

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

56 / 58

Introduction

First Principles Molecular Dynamics: CP-MD

The model The simulation Integrators Velocity Verlet

. CP-MD: trajectories . The trajectories generated by CP equations does not corresponds to the true ones unless

Multiple time step

NVT Nosé - Hoover

MTK Constant Pressure Andersen MTK

E[{ψi }, {RI }]

PR Nosé Klein Wentzcovitch

is . in the minimum respect {ψi } at each time step This is obtained by choosing the value of µ to obtain a decoupling between electronic and nuclear degree of freedom

NPT MTK NPT

CP-MD

1.57

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

57 / 58

Introduction

Rare events

The model

. Metadynamics . Laio, Parrinello PNAS 99(2002) 12562 Iannuzzi, Laio, Parrinello PRL 90(2003) 238302 .

The simulation

. Estended Lagrangian . collective variables sα

MTK

Integrators Velocity Verlet Multiple time step

NVT Nosé - Hoover

Constant Pressure Andersen MTK PR

L

MTD

=L+

∑1 α

2

Mα s˙ α2 −

∑1 α

2

Nosé Klein

kα [Sα − sα ] − V (t, s) 2

Wentzcovitch

NPT MTK NPT

CP-MD

kα is the force constant that couple the collective variables to the system V (t, s) is a time dependent potential arising from the accumulation of repulsive gaussian hills modified every .50-100 MD steps 1.58

G. Cardini, R. Chelli (U.Firenze)

MD

SMART January 25-29, 2016

58 / 58

Suggest Documents