State Newton's forward and backward interpolating formula. 15. Using Lagranges find y at x = 2 for the following. X : 0
Visit : Civildatas.blogspot.in
NUMERICAL METHIODS Unit I : Solution of equations and eigen value problems
Part B
vil d
ata
s.b
log
sp ot. in
Part A 1. If g(x) is continuous in [a,b] then under what condition the iterative method x = g(x) has unique solution in [a,b]. 2. By Newton’s method find an iterative formula to find 1/N. 3. Find the positive root of x3 + 5x – 3 = o usind fixed point iteration method with 0.6 as first approximation. ⎛1 3 ⎞ ⎟⎟ by Gauss – Jordan method. 4. Find inverse of A = ⎜⎜ ⎝2 7⎠ 5. State the convergence and order of convergence for method of false position. 6. Why Gauss Seidel iteration is a method of successive corrections. 7. Compare Gauss Jacobi and Gauss Siedel methods for solving linear system of the form AX = B. 8. State the conditions for convergence of Gauss Siedel method for solving a system of equations. 9. Find an iterative formula to find N where N is a positive number. 10. Compare Gaussian elimination method and Gauss-Jordan method. 11. What type of eigen value can be obtained using power method. 12. State the order of convergence and convergence condition for Newton Raphson,s method. ⎡1 2 ⎤ 13. Find the dominant eigen value of A = ⎢ ⎥ by power method. ⎣3 4⎦ 14. How is the numerically smallest eigen value of A obtained. 15. State two difference between direct and iterative methods for solving system of equations.
1. Consider the non – linear system x2 – 2x – y +0.5 =0 and x2+4y2 – 4 = 0. Use Newton – Raphson method with the starting value (x0, y0) = (2.00, 0.25) and compute (x1, y1), (x2, y2) and (x3, y3) .
Ci
2. Fins the real root of xex – 3 = 0 by regula - falsi method. 3. Find the real root using method of false position for x3 – 2x – 5 = 0 coreect to three decimal places.
Visit : Civildatas.blogspot.in
Visit : Civildatas.blogspot.in
⎡ 2 −1 0 ⎤ 4. Find all the eigen values of the matrix ⎢⎢− 1 2 − 1⎥⎥ by power method (Apply ⎢⎣ 0 − 1 2 ⎥⎦ only 3 iterations).
sp ot. in
5. Use Newton’s backward difference formula to construct an interpolating polynomial of degree 3 for the data: f( - 0.75) = - 0.0718125, f( - 0.5) = - 0.02475, f( - 0.25) = - 0.3349375 and f(0) = 1 1.101. Hence find f (- ). 3 6. Solve the system of equations using Gauss Seidel iterative methods. 20x – y – 2z = 17, 3x + 20y – z = -18, 2x – 3y +20z = 25.
log
7.Find the largest eigen values and its corresponding vector of the matrix ⎡ 1 3 − 1⎤ ⎢ 3 2 4 ⎥ by power method. ⎢ ⎥ ⎢⎣− 1 4 10 ⎥⎦
s.b
⎡2 2 3⎤ 8. Using Gauss- Jordan obtain the inverse of the matrix ⎢⎢2 1 1⎥⎥ ⎢⎣1 3 5⎥⎦
9. Using Gauss Seidel method solve the system of equations starting with the values x = 1 , y = -2 and z = 3, x + 3y + 5z = 173.61, x – 27y + 2z = 71.31, 41x – 2y + 3z = 65.46
Ci
vil d
ata
10. Solve the following equations by Jacobi’s iteration method x + y + z = 9, 2x – 3y + 4z = 13, 3x + 4y + 5z = 40.
Visit : Civildatas.blogspot.in
Visit : Civildatas.blogspot.in
Unit II : Interpolation and Approxiamtion Part A
vil d
ata
s.b
log
sp ot. in
1. Construct a linear interpolating polynomial given the points (x0,y0) and (x1,y1). 2. Obtain the interpolation quadratic polynomial for the given data by using Newton’s forward difference formula. X: 0 2 4 6 Y : -3 5 21 45 3. Obtain the divided difference table for the following data. X : -1 0 2 3 Y : -8 3 1 12 4. Find the polynomial which takes the following values. X : 0 1 2 Y : 1 2 1 5. Define forward, backward, central differences and divided differences. 6. Evaluate ∆10 (1-x) (1-2x) (1-3x)--------(1-10x), by taking h=1. 7. Show that the divided difference operator ∆ is linear. 8. State the order of convergence of cubic spline. 9. What are the natural or free conditions in cubic spline. 10. Find the cubic spline for the following data X:0 2 4 6 Y:1 9 21 41 11. State the properties of divided differences. 1 −1 12. Show that ∆3 ( ) = . bcd a abcd 13. Find the divided differences of f(x) = x3 + x + 2 for the arguments 1,3,6,11. 14. State Newton’s forward and backward interpolating formula. 15. Using Lagranges find y at x = 2 for the following X:0 1 3 4 5 Y:0 1 81 256 625
Part B
1. Using Lagranges interpolation formula find y(10) given that y(5) = 12, y(6) = 13, y(9) = 14 and y(11) = 16.
Ci
2. Find the missing term in the following table x:0 1 2 3 4 y : 1 3 9 - 81 3. From the data given below find the number of students whose weight is between 60 to 70. Wt (x) : 0-40 40-60 60-80 80-100 100-120
Visit : Civildatas.blogspot.in
Visit : Civildatas.blogspot.in
No of students : 250
120
100
70
50
4. From the following table find y(1.5) and y’(1) using cubic spline. X : 1 2 3 Y : -8 -1 18
sp ot. in
5. Given sin 450 = 0.7071, sin 500 = 0.7660, sin 550 = 0.8192, sin 600 = 0.8660, find sin 520 using Newton’s forward interpolating formula. 6. Given log 10 654 = 2.8156, log 10 658 = 2.8182, log 10 659 = 2.8189, log 10 661 = 2.8202, find using Lagrange’s formula the value of log 10 656. 7. Fit a Lagrangian interpolating polynomial y = f(x) and find f(5) x:1 3 4 6 y : -3 0 30 132
log
8. Find y(12) using Newton’ forward interpolation formula given x : 10 20 30 40 50 y : 46 66 81 93 101
s.b
9. Obtain the root of f(x) = 0 by Lagrange’s inverse interpolation given that f(30) = -30, f(34) = -13, f(38) = 3, f(42) = 18.
ata
10. Fit a natural cubic spline for the following data x:0 1 2 3 y:1 4 0 -2 11. Derive Newton’s divided difference formula.
vil d
12. The following data are taken from the steam table: 150 160 170 180 Temp0 c : 140 Pressure : 3.685 4.854 6.502 8.076 10.225 Find the pressure at temperature t = 1420 and at t = 1750 13. Find the sixth term of the sequence 8,12,19,29,42.
Ci
14. From the following table of half yearly premium for policies maturing at different ages, estimate the premium for policies maturing at the age of 46. Age x : 45 50 55 60 65 Premium y : 114.84 96.16 83.32 74.48 68.48 15. Form the divided difference table for the following data x : -2 0 3 5 7 y : -792 108 -72 48 -144
8 -252
Visit : Civildatas.blogspot.in
Visit : Civildatas.blogspot.in
Unit III Differentiation and Integration Part A
sp ot. in
1. What the errors in Trapezoidal and Simpson’s rule. 2. Write Simpson’s 3/8 rule assuming 3n intervals. 1 dx using Gaussian quadrature with two points. 3. Evaluate ∫ 1+ x 4 −1 4. In Numerical integration what should be the number of intervals to apply Trapezoidal, Simpson’s 1/3 and Simpson’s 3/8. 1 x 2 dx 5. Evaluate ∫ using Gaussian three point quadrature formula. 1+ x 4 −1 1
6. State two point Gaussian quadratue formula to evaluate
∫ f ( x)dx .
−1
s.b
log
7. Using Newton backward difference write the formula for first and second order derivatives at the end value x = x0 upto fourth order. dy d2y and at x = x0 using Newtons forward 8. Write down the expression for dx dx 2 difference formula. 9. State Simpson’s 1/3 and Simpson’s 3/8 formula. Π
10. Using trapezoidal rule evaluate ∫ sin xdx by dividing into six equal parts.
ata
0
Part B
vil d
1. Using Newton’s backward difference formula construct an interpolating polynomial of degree three and hence find f(-1/3) given f(-0.75) = - 0.07181250, f(-0.5) = - 0.024750, f(-0.25) = 0.33493750, f(0) = 1.10100. 2. Evaluate
dxdy
∫ ∫ 1+ x + y 2 2
Ci
3. Evaluate I =
dx dy
∫∫ x+ y
by Simpson’s 1/3 rule with ∆x = ∆y = 0.5 where 0