Control. Antimicrobial activity in the cell-free hemolymph. Time (h). 0. 6 9 12. 24 .... 80. 100. Toll mutants. Wild type. Time (days). % survival. Aspergillus infection ... domain. Leucine rich repeat domains. NF-κB. NF-κB activation by Toll and IL-1 ...
The Antimicrobial Defense of Drosophila, A Paradigm for Innate Immunity
Jules Hoffmann, Strasbourg, France
Bacteria
Viruses
Protozoa Fungi
Jos Hoffmann 1911-2000
Pierre Joly 1913-1996
Antimicrobial Defenses in Insects : First Investigations
Metchnikoff
Paillot Phagocytosis « Cellular Immunity » Metchnikoff, 1880
Antimicrobial substances in the blood « Humoral Immunity» Paillot 1920-1935 Glaser
Induction of an antimicrobial activity in Drosophila by an immune challenge
1 Hyalophora cecropia
Injection of bacteria Antimicrobial activity in the cell-free hemolymph
2 Hans Boman 1924-2008
3 Control 0
3
6
9
12 24 Time (h)
48
Systemic (“humoral”) antimicrobial response in Drosophila – identification of antimicrobial peptides P
P P P GG P GG GGG
G
P
G
G
G G
G
G
G
Diptericin G
G G
G G GG G
G
G
Fat body cells
P
P P
G G G
P
G G G
G
Metchnikowin
G
Attacin
Cecropin Drosocin
Defensin
P
NF-κB response elements in the promoter of the diptericin gene -1 kb
enhancer
-150
-140 -62
-31
coding sequence of the diptericin gene
κB-Response element NLS
1
678
REL Stewart 1987
1
Ank
DORSAL CACTUS
Diptericin-LacZ reporter gene
Unchallenged
Challenged
482
Versailles, 18 years ago, Innate Immunity Conference Michael Zasloff Jean-Marc Reichhart Dan Hultmark
Klas Kärre
Danièle Hoffmann
Charlie Janeway Shunji Natori
Alan Ezekowitz Bob Lehrer Hans Boman Charles Hetru
Ingrid Faye
Gene cascade controlling the dorso-ventral axis in the Drosophila embryo CHORION
Easter
PERIVITELLIN SPACE Spätzle
Snake
EMBRYO
Gastrulation Defective Windbeutel and Pipe
Tube Toll
Cactus Pelle
Nudel
FOLLICLE CELLS
Christiane Nüsslein-Volhard
Cell membrane
Nuclear membrane
Dorsal
Do the genes of the Spätzle/Toll/Dorsal cassette control the challenge-induced expression of diptericin ? wild type
Infection
-
6h
Tolldeficient -
6h P
Diptericin
P P P GG P GG GGG
G
P
G
G
Diptericin 1990
rp49
G
G G
G
G
P
P P P GG P GG GGG
G
P
G
G
G G
G
G
G
Diptericin G
G G
G G GG G
G
G
Fat body cells
Drosomycin 1994 P
P P
G G G
P
G G G
G
Metchnikowin
G
Attacin
Cecropin Drosocin
Defensin
P
The challenge-induced expression of the Drosomycin gene is dependent on the Toll pathway. wild type
Infection
-
6h
Tolldeficient -
6h
Diptericin Drosomycin Drosomycin 1994 rp49
Two distinct pathways control the expression of antimicrobial peptides wild type
Infection
-
6h
Tolldeficient Cactdeficient -
-
6h
imd -
6h
Diptericin Drosomycin rp49
Toll
Imd
pathways
Imd pathway mutants are sensitive to bacterial infections 100
of survival
80
60
wild type Imd mutants
%
40
20
0
1
2
3
Time (days)
4
5
6
E. coli infection
Toll pathway mutants are sensitive to fungal infections 100
% survival
80
60
Wild type Toll mutants
40
20
0
1
2
3
4
Time (days)
5
6
Aspergillus infection
Overwhelming fungal infection in a Toll deficient background
Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. Cell, 1996, 20:973-83
NF-κB activation by Toll and IL-1
Leucine rich repeat domains
CD14
Leucine rich repeat domains
Toll
Ig-like domains
IL-1R
GPI anchor TIR domain
NF-κB
TIR domain
NF-κB
Cell membrane
Activation of NF-κB by TLR family members Mycoplasmal Lipopeptide
LPS
Bacterial Lipopeptide
Flagellin
MD-2 TLR 2 TLR 4
TLR 6 TLR 2
TLR 1
TLR 5
Endosome
Adaptor proteins (MyD88, TRIF, TIRAP,TRAM)
NF-κΒ and IRFs Antimicrobial Peptides etc
Activation of Adaptive Immune Responses
TLR 3 dsRNA
TLR 7 ssRNA CpG DNA
TLR 9
Fungi Receptors
Gram positive bacteria
Proteolytic cascade
Spaetzle
Toll-4 Toll-5 Toll-6 Toll-3 Toll-7 Toll-2 Toll-8 Toll-9
Toll
NF-κB
A mutation in the PGRPSA gene (semmelweis) compromises the antiGram-positive defense
Survival rate
100
A mutation in the PGRP-LC gene compromises the defense against Gramnegative bacteria
Infection by
Infection by
Streptococcus faecalis
Enterobacter cloacae 100
wt
wt 50
50
seml PGRP-LC12
24
Time (h)
36
12
24 36 Time (h)
Royet and coll. 2001, Royet, Ferrandon and coll., Anderson and coll., Ezekowitz and coll. 2002
48
A mutation in the gene encoding GNBP3 compromises resistance to Candida infections
Survival (%)
100 80
wt Loss of function mutant of GNBP3
60 40 20 1
2
Time in days
3
4
Microbial Inducers of Immune Responses and Cognate Receptors in Flies: Peptidoglycan Recognition Proteins and Glucan Binding Proteins
Peptidoglycan MurNAc
GlcNAc
MurNAc
β-(1,3) -Glucan
GlcNAc
Glc
Lys
Lys
DAP
Glc
DAP
Glc
Glc
GNBP PGRP Roussel and coll. Werner and coll.; Kim and coll.; Reiser and coll.; Chang and coll.
Microbial Fungi proteases (β-Glucan) PGRP-SA
GNBP-3
Persephone (serine protease)
Gram positive bacteria (LYS-PGN) Gram negative bacteria (DAP-PGN)
Cascade of serine proteases Spaetzle
PGRP-LC Toll
NF-κB Dif
Effector genes
Relish
Effector genes
DD
Imd
NF-κB activation by Toll in Drosophila Microbial sensors Fungi
Spz TOLL
G+ bacteria
Proteasome
Spz
MyD88 TIR DD
DORSAL /DIF
Drosomycin and hundreds of genes
P
PELLE KD Cactus
TUBE Receptor/ adaptor complex
NF-κB activation by IMD in Drosophila G- Bacteria Dredd
Imd DD
Ub
FADD NF-κB / RELISH
P
IKK Signalosome P IKKβ P
Tak1
Ub
Tab2 IKKγ
Ub
Jnk pathway Diptericin and hundreds of genes Cytoskeletal proteins, proapoptotic signaling
PGRP-LC
TLR4
Toll Spaetzle
LPS
IMD TNF-α
PGN
Toll
TLR4
PGRP
MyD88
MyD88
Imd
Pelle kinase
IRAK
IKK complex
NF-κB (Dorsal, DIF)
TNF-R
RIP
TAK1
NF-κB Cactus
TNF
NF-κB IκB NF-κB (p65/p65)
TAK1 JNK
IKK complex
TAK1 JNK
IKK complex
NF-κB (Relish)
NF-κB IκB
NF-κB (cleaved Relish)
NF-κB
JNK
Phylogeny of Innate Immune Defenses AMP AMP NF-κB NF-κB TAK1 TAK1 TOLL TOLL Sponges Sea anemones (Porifera) (Cnidaria)
Radial diploblastic
AMP AMP AMP NF-κB NF-κB NF-κB TAK1 TAK1 TAK1 TOLL TOLL TOLL Insects Echinoderms Hemichordates Worms Molluscs
AMP NF-κB TAK1 TOLL Chordates
~ 450 million years
Protostomes Deuterostomes Bilateral triploblastic
Cambrian, ~ 550 million years
Precambrian, ~ 600 million years Precambrian, ~ 800 million years Multicellularity origin ~1 billion years
Acknowledgements D. Hoffmann
C. Hetru
JL. Dimarcq
J.M. Reichhart
B. Lemaitre
D. Ferrandon
J. Royet
J.L. Imler
E. Levashina
M. Lagueux
P. Bulet
USA,
Credits : Drosophila immunity
Kathryn Anderson Carl Hashimoto Steve Wasserman Tony Ip
Europe,
Ruth Stewart Shuba Govind
Hans Boman† Hakan Steiner Dan Hultmark Ingrid Faye Ylva Engström Ulli Theopold
Neal Silverman Tom Maniatis Alan Ezekowitz Nathalie Franc Linda Stuart Christine Kocks Norbert Perrimon Herve Agaisse Michael Boutros David Schneider
Bruno Lemaitre François Leulier Julien Royet Mika Ramet Nick Gay
Asia, Shoichiro Kurata Won-Jae Lee Young-Joon Kim
Acknowledgements D. Hoffmann
C. Hetru
B. Lemaitre JL. Dimarcq
J.M. Reichhart
D. Ferrandon
M. Meister
J.L. Imler
E. Levashina
M. Lagueux
J. Royet
P. Bulet
The sea anemone Nematostella
Nematostella Toll MyD88 TAK1
TLR TIR
TRAF6
TIR
MyD88
DD
IKK
Tak1
IKK
NLS RHD
G rich
Ank repeats
NF-κB IκB
NF-κB IκB NF-κB
Microbial ligands Cytokines
Hypothetical receptor
CD28
NF-κB
B.7 TCR
NF-κB
Denditric cell (Antigen Presenting Cells…)
MHC
Peptide
Naive T Cell
Activation of adaptive immunity by innate immunity