nonlinear partial differential equations

131 downloads 0 Views 325KB Size Report
Valentin F. Zaitsev. Chapman and Hall/CRC ...... 33, pp. 305–309, 1976. Danilov, V. G. and Subochev, P. Yu., Wave solutions of semilinear parabolic equations,.
HANDBOOK OF

NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS SECOND EDITION UPDATED, REVISED AND EXTENDED Andrei D. Polyanin Valentin F. Zaitsev Chapman and Hall/CRC Press (January 2012) ISBN-10: 1584883553 ISBN-13: 978-1584883555

PREFACE TO THE SECOND EDITION The Handbook of Nonlinear Partial Differential Equations, a unique reference for scientists and engineers, contains over 3,000 nonlinear partial differential equations with solutions, as well as exact, symbolic, and numerical methods for solving nonlinear equations. First-, second-, third-, fourth-, and higher-order nonlinear equations and systems of equations are considered. Equations of parabolic, hyperbolic, elliptic, mixed, and general types are discussed. A large number of new exact solutions to nonlinear equations are described. In total, the handbook contains several times more nonlinear PDEs and exact solutions than any other book currently available. In selecting the material, the authors gave the highest priority to the following five major types of equations: • Equations that arise in various applications (heat and mass transfer theory, wave theory, nonlinear mechanics, hydrodynamics, gas dynamics, plasticity theory, nonlinear acoustics, combustion theory, nonlinear optics, theoretical physics, differential geometry, control theory, chemical engineering sciences, biology, and others). • Equations of general form that depend on arbitrary functions; exact solutions of such equations are of principal value for testing numerical and approximate methods. • Equations for which the general solution or solutions of quite general form, with arbitrary functions, could be obtained. • Equations that involve many free parameters. • Equations whose solutions are reduced to solving linear partial differential equations or linear integral equations. The second edition has been substantially updated, revised, and expanded. More than 1,500 new equations with exact solutions, as well some methods and many examples, have been added. The new edition has been increased by a total of over 1,000 pages. New to the second edition: • • • • •

First-order nonlinear partial differential equations with solutions. Some second-, third-, fourth-, and higher-order nonlinear equations with solutions. Parabolic, hyperbolic, elliptic, and other systems of equations with solutions. Some exact methods and transformations. Symbolic and numerical methods for solving nonlinear PDEs with Maple, Mathematica, and MATLAB. • Many new examples and tables included for illustrative purposes. • A large list of references consisting of over 1,300 sources. • Extensive table of contents and detailed index. Note that the first part of the book can be used as a database of test problems for numerical and approximate methods for solving nonlinear partial differential equations. We would like to express our deep gratitude to Alexei Zhurov and Alexander Aksenov for fruitful discussions and valuable remarks. We are very thankful to Inna Shingareva and Carlos Liz´arraga-Celaya who wrote three chapters (39–41) of the book at our request. i

ii

P REFACE

The authors hope that the handbook will prove helpful for a wide audience of researchers, university and college teachers, engineers, and students in various fields of applied mathematics, mechanics, physics, chemistry, biology, economics, and engineering sciences. Andrei D. Polyanin Valentin F. Zaitsev September 2011

PREFACE TO THE FIRST EDITION Nonlinear partial differential equations are encountered in various fields of mathematics, physics, chemistry, and biology, and numerous applications. Exact (closed-form) solutions of differential equations play an important role in the proper understanding of qualitative features of many phenomena and processes in various areas of natural science. Exact solutions of nonlinear equations graphically demonstrate and allow unraveling the mechanisms of many complex nonlinear phenomena such as spatial localization of transfer processes, multiplicity or absence of steady states under various conditions, existence of peaking regimes, and many others. Furthermore, simple solutions are often used in teaching many courses as specific examples illustrating basic tenets of a theory that admit mathematical formulation. Even those special exact solutions that do not have a clear physical meaning can be used as “test problems” to verify the consistency and estimate errors of various numerical, asymptotic, and approximate analytical methods. Exact solutions can serve as a basis for perfecting and testing computer algebra software packages for solving differential equations. It is significant that many equations of physics, chemistry, and biology contain empirical parameters or empirical functions. Exact solutions allow researchers to design and run experiments, by creating appropriate natural conditions, to determine these parameters or functions. This book contains more than 1,600 nonlinear mathematical physics equations and nonlinear partial differential equations and their solutions. A large number of new exact solutions to nonlinear equations are described. Equations of parabolic, hyperbolic, elliptic, mixed, and general types are discussed. Second-, third-, fourth-, and higher-order nonlinear equations are considered. The book presents exact solutions to equations of heat and mass transfer, wave theory, nonlinear mechanics, hydrodynamics, gas dynamics, plasticity theory, nonlinear acoustics, combustion theory, nonlinear optics, theoretical physics, differential geometry, control theory, chemical engineering sciences, biology, and other fields. Special attention is paid to general-form equations that depend on arbitrary functions; exact solutions of such equations are of principal value for testing numerical and approximate methods. Almost all other equations contain one or more arbitrary parameters (in fact, this book deals with whole families of partial differential equations), which can be fixed by the reader at will. In total, the handbook contains significantly more nonlinear PDEs and exact solutions than any other book currently available.

P REFACE

iii

The supplement of the book presents exact analytical methods for solving nonlinear mathematical physics equations. When selecting the material, the authors have given a pronounced preference to practical aspects of the matter; that is, to methods that allow effectively “constructing” exact solutions. Apart from the classical methods, the book also describes wide-range methods that have been greatly developed over the last decade (the nonclassical and direct methods for symmetry reductions, the differential constraints method, the method of generalized separation of variables, and others). For the reader’s better understanding of the methods, numerous examples of solving specific differential equations and systems of differential equations are given throughout the book. For the convenience of a wide audience with different mathematical backgrounds, the authors tried to do their best, wherever possible, to avoid special terminology. Therefore, some of the methods are outlined in a schematic and somewhat simplified manner, with necessary references made to books where these methods are considered in more detail. Many sections were written so that they could be read independently from each other. This allows the reader to quickly get to the heart of the matter. The handbook consists of chapters, sections, and subsections. Equations and formulas are numbered separately in each subsection. The equations within subsections are arranged in increasing order of complexity. The extensive table of contents provides rapid access to the desired equations. Separate parts of the book may be used by lecturers of universities and colleges for practical courses and lectures on nonlinear mathematical physics equations for graduate and postgraduate students. Furthermore, the books may be used as a database of test problems for numerical and approximate methods for solving nonlinear partial differential equations. We would like to express our deep gratitude to Alexei Zhurov for fruitful discussions and valuable remarks. The authors hope that this book will be helpful for a wide range of scientists, university teachers, engineers, and students engaged in the fields of mathematics, physics, mechanics, control, chemistry, and engineering sciences. Andrei D. Polyanin Valentin F. Zaitsev September 2003

CONTENTS Preface to the new edition

xxvii

Preface to the first edition

xxviii

Authors

xxxi

Some notations and remarks

xxxiii

Part I Exact Solutions of Nonlinear Partial Differential Equations 1. First-Order Quasilinear Equations 1.1. Equations with Two Independent Variables Containing Arbitrary Parameters . 1.1.1. Coefficients of Equations Contain Power-Law Functions . . . . . . . . . . . . 1.1.2. Coefficients of Equations Contain Exponential Functions . . . . . . . . . . . . 1.1.3. Coefficients of Equations Contain Hyperbolic Functions . . . . . . . . . . . . . 1.1.4. Coefficients of Equations Contain Logarithmic Functions . . . . . . . . . . . . 1.1.5. Coefficients of Equations Contain Trigonometric Functions . . . . . . . . . . 1.2. Equations with Two Independent Variables Containing Arbitrary Functions . . 1.2.1. Equations Contain Arbitrary Functions of One Variable . . . . . . . . . . . . . 1.2.2. Equations Contain Arbitrary Functions of Two Variables . . . . . . . . . . . . 1.3. Other Quasilinear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.1. Equations with Three Independent Variables . . . . . . . . . . . . . . . . . . . . . . . 1.3.2. Equations with Arbitrary Number of Independent Variables . . . . . . . . . . 2. First-Order Equations with Two Independent Variables Quadratic in Derivatives 2.1. Equations Containing Arbitrary Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∂w 2.1.1. Equations of the Form ∂w ∂x ∂y = f (x, y, w) . . . . . . . . . . . . . . . . . . . . . . . . . ∂w ∂w 2.1.2. Equations of the Form f (x, y, w) ∂w ∂x ∂y + g(x, y, w) ∂x = h(x, y, w) . . ∂w ∂w 2.1.3. Equations of the Form f (x, y, w) ∂w ∂x ∂y + g(x, y, w) ∂x + h(x, y, w) ∂w ∂y = s(x, y, w) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( ∂w )2 2.1.4. Equations of the Form ∂w = g(x, y, w) . . . . . . . . . . . ∂x + f (x, y, w) ∂y ( ∂w )2 ∂w 2.1.5. Equations of the Form ∂x + f (x, y, w) ∂x + g(x, y, w) ∂w ∂y = h(x, y, w) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( )2 ( )2 2.1.6. Equations of the Form f (x, y, w) ∂w +g(x, y, w) ∂w = h(x, y, w) ∂x ∂y ( ∂w )2 ∂w ∂w 2.1.7. Equations of the Form f (x, y) ∂x + g(x, y) ∂x ∂y = h(x, y, w) . . . . 2.1.8. Other Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2. Equations Containing Arbitrary Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∂w 2.2.1. Equations of the Form ∂w ∂x ∂y = f (x, y, w) . . . . . . . . . . . . . . . . . . . . . . . . . ( ∂w )2 2.2.2. Equations of the Form f (x, y) ∂w = h(x, y, w) . . . . ∂x + g(x, y, w) ∂y ( ∂w )2 ∂w 2.2.3. Equations of the Form ∂x + f (x, y, w) ∂x + g(x, y, w) ∂w ∂y = h(x, y, w) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( )2 ( )2 +g(x, y, w) ∂w = h(x, y, w) 2.2.4. Equations of the Form f (x, y, w) ∂w ∂x ∂y v

1 3 3 3 11 14 16 17 19 19 30 35 35 39 43 43 43 45 47 51 59 63 69 73 77 77 79 86 89

vi

C ONTENTS

( )2 ∂w + f (x, y, w) ∂w 2.2.5. Equations of the Form ∂w ∂x ∂x ∂y = g(x, y, w) . . . . . . . . 2.2.6. Other Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

92 95

3. First-Order Nonlinear Equations with Two Independent Variables of General Form 3.1. Nonlinear Equations Containing Arbitrary Parameters . . . . . . . . . . . . . . . . . . . . . 3.1.1. Equations Contain the Fourth Powers of Derivatives . . . . . . . . . . . . . . . . 3.1.2. Equations Contain Derivatives in Radicands . . . . . . . . . . . . . . . . . . . . . . . 3.1.3. Equations Contain Arbitrary Powers of Derivatives . . . . . . . . . . . . . . . . . 3.1.4. More Complicated Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2. Equations Containing Arbitrary Functions of Independent Variables . . . . . . . . . 3.2.1. Equations Contain One Arbitrary Power of Derivative . . . . . . . . . . . . . . . 3.2.2. Equations Contain Two or Three Arbitrary Powers of Derivatives . . . . . 3.3. Equations Containing Arbitrary Functions of Derivatives . . . . . . . . . . . . . . . . . . 3.3.1. Equations Contain Arbitrary Functions of One Variable . . . . . . . . . . . . . 3.3.2. Equations Contain Arbitrary Functions of Two Variables . . . . . . . . . . . . 3.3.3. Equations Contain Arbitrary Functions of Three Variables . . . . . . . . . . . 3.3.4. Equations Contain Arbitrary Functions of Four Variables . . . . . . . . . . . .

99 99 99 101 102 105 107 107 111 113 113 116 120 123

4. First-Order Nonlinear Equations with Three or More Independent Variables 4.1. Nonlinear Equations with Three Variables Quadratic in Derivatives . . . . . . . . . 4.1.1. Equations Contain Squares of One or Two Derivatives . . . . . . . . . . . . . . 4.1.2. Equations Contain Squares of Three Derivatives . . . . . . . . . . . . . . . . . . . . 4.1.3. Equations Contain Products of Derivatives with Respect to Different Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.4. Equations Contain Squares and Products of Derivatives . . . . . . . . . . . . . 4.2. Other Nonlinear Equations with Three Variables Containing Parameters . . . . . 4.2.1. Equations Cubic in Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.2. Equations Contain Roots and Moduli of Derivatives . . . . . . . . . . . . . . . . . 4.2.3. Equations Contain Arbitrary Powers of Derivatives . . . . . . . . . . . . . . . . . 4.3. Nonlinear Equations with Three Variables Containing Arbitrary Functions . . . 4.3.1. Equations Quadratic in Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.2. Equations with Power Nonlinearity in Derivatives . . . . . . . . . . . . . . . . . . 4.3.3. Equations with Arbitrary Dependence on Derivatives . . . . . . . . . . . . . . . . 4.3.4. Nonlinear Equations of General Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4. Nonlinear Equations with Four Independent Variables . . . . . . . . . . . . . . . . . . . . . 4.4.1. Equations Quadratic in Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4.2. Equations Contain Power-Law Functions of Derivatives . . . . . . . . . . . . . 4.5. Nonlinear Equations with Arbitrary Number of Variables Containing Arbitrary Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5.1. Equations Quadratic in Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5.2. Equations with Power-Law Nonlinearity in Derivatives . . . . . . . . . . . . . . 4.6. Nonlinear Equations with Arbitrary Number of Variables Containing Arbitrary Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.1. Equations Quadratic in Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.2. Equations with Power-Law Nonlinearity in Derivatives . . . . . . . . . . . . . . 4.6.3. Equations Contain Arbitrary Functions of Two Variables . . . . . . . . . . . . 4.6.4. Nonlinear Equations of General Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

125 125 125 130 131 133 134 134 136 136 139 139 146 148 150 154 154 156 158 158 161 162 162 167 168 169

C ONTENTS

5. Second-Order Parabolic Equations with One Space Variable

vii 175

5.1. Equations with Power-Law Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 ∂2w 2 5.1.1. Equations of the Form ∂w ∂t = a ∂x2 + bw + cw . . . . . . . . . . . . . . . . . . . . . 175 ∂w ∂2w 2 3 ........ ∂t = a ∂x2 + b0 + b1 w + b2 w + b3 w 2 ∂ w k m n ............. 5.1.3. Equations of the Form ∂w ∂t = a ∂x2 + bw + cw + sw 2 ∂ w 5.1.4. Equations of the Form ∂w ∂t = a ∂x2 + f (x, t, w) . . . . . . . . . . . . . . . . . . . . . ∂2w k ∂w 5.1.5. Equations of the Form ∂w ∂t = a ∂x2 + bw ∂x + f (w) . . . . . . . . . . . . . . . . ∂w ∂2w 5.1.6. Equations of the Form ∂w ∂t = a ∂x2 + f (x, t, w) ∂x + g(x, t, w) . . . . . . . ( ) 2 ∂ w ∂w 2 5.1.7. Equations of the Form ∂w + f (x, t, w) . . . . . . . . . . . . ∂t = a ∂x2 + b ∂x ( ) ∂w ∂2w 5.1.8. Equations of the Form ∂t = a ∂x2 + f x, t, w, ∂w ∂x . . . . . . . . . . . . . . . . . ( ) k ∂ 2 w + f x, t, w, ∂w 5.1.9. Equations of the Form ∂w = aw .............. 2 ∂t ∂x ∂x( ) ∂ ∂w ∂w m 5.1.10. Equations of the Form ∂t = a ∂x w ∂x . . . . . . . . . . . . . . . . . . . . . . . ( m ∂w ) ∂ k 5.1.11. Equations of the Form ∂w = a ∂t ∂x w ∂x + bw . . . . . . . . . . . . . . . . . 5.1.12. Equations of the Form ∂w ∂t = ( m ∂w ) ∂ a ∂x w ∂x + bw + c1 wk1 + c2 wk2 + c3 wk3 . . . . . . . . . . . . . . . . . . . . . [ ] ∂ (w) ∂w + g(w) . . . . . . . . . . . . . . . . 5.1.13. Equations of the Form ∂w ∂t = ∂x f ∂x ( m ∂w ) ∂w ∂ 5.1.14. Equations of the Form ∂t = a ∂x w ∂x + f (x, t, w) . . . . . . . . . . . . [ ] ∂w ∂w ∂ 5.1.15. Equations of the Form ∂w ∂t = ∂x [f (w) ∂x ] + g(w) ∂x . . . .). . . . . . . . . ( ∂w ∂w ∂ 5.1.16. Equations of the Form ∂t = ∂x f (w) ∂x + g x, t, w, ∂w ∂x . . . . . . . .

5.1.2. Equations of the Form

176 182 185 186 190 193 195 197 210 219

228 233 236 237 242 5.1.17. Other Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

5.2. Equations with Exponential Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∂2w 5.2.1. Equations of the Form ∂w b1 eλw + b2 e2λw . . . . . . . . . . . . ∂t = a ∂x2( + b0 + ) ∂ 5.2.2. Equations of the Form ∂w eλw ∂w ∂t = a ∂x ∂x ] + f (w) . . . . . . . . . . . . . . . . . . [ ∂w ∂ ∂w 5.2.3. Equations of the Form ∂t = ∂x f (w) ∂x + g(w) . . . . . . . . . . . . . . . . . . 5.2.4. Other Equations Explicitly Independent of x and t . . . . . . . . . . . . . . . . . . 5.2.5. Equations Explicitly Dependent on x and/or t . . . . . . . . . . . . . . . . . . . . . .

254 254 256 259 262 266

5.3. Equations with Hyperbolic Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.1. Equations Involving Hyperbolic Cosine . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.2. Equations Involving Hyperbolic Sine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.3. Equations Involving Hyperbolic Tangent . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.4. Equations Involving Hyperbolic Cotangent . . . . . . . . . . . . . . . . . . . . . . . .

268 268 269 270 270

5.4. Equations with Logarithmic Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 ∂2w 5.4.1. Equations of the Form ∂w ∂t = a ∂x2 + f (x, t, w) . . . . . . . . . . . . . . . . . . . . . 271 5.4.2. Other Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 5.5. Equations with Trigonometric Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5.1. Equations Involving Cosine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5.2. Equations Involving Sine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5.3. Equations Involving Tangent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5.4. Equations Involving Cotangent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5.5. Equations Involving Inverse Trigonometric Functions . . . . . . . . . . . . . . .

276 276 277 278 278 279

viii

C ONTENTS

5.6. Equations Involving Arbitrary Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 ∂2w 5.6.1. Equations of the Form ∂w ∂t = a ∂x2 + f (x, t, w) . . . . . . . . . . . . . . . . . . . . . 279 ∂w ∂2w ∂w ∂t = a ∂x2 + f (x, t) ∂x + g(x, t, w) . . . . . . . . . . ∂2w ∂w 5.6.3. Equations of the Form ∂w ∂t = a ∂x2 + f (x, t, w) ∂x + g(x, t, w) . . . . . . . ( ∂w )2 ∂2w 5.6.4. Equations of the Form ∂w + f (x, t, w) . . . . . . . . . . . . ∂t = a ∂x2 + b ∂x ( ∂w )2 ∂w ∂2w 5.6.5. Equations of the Form ∂t = a ∂x2 +b ∂x +f (x, t, w) ∂w ∂x +g(x, t, w) ∂w 5.6.6. Equations of the Form ∂t = ( )2 2 a ∂∂xw2 + f (x, t, w) ∂w + g(x, t, w) ∂w ∂x ∂x + h(x, t, w) . . . . . . . . . . . . . . . . ( ) ∂w ∂2w 5.6.7. Equations of the Form ∂t = a ∂x2 + f x, t, w, ∂w ∂x . . . . . . . . . . . . . . . . . ( ) ∂2w ∂w 5.6.8. Equations of the Form ∂w ............ ∂t = f (x, t) ∂x2 + g x, t, w, ∂x 2 ∂ w ∂w 5.6.9. Equations of the Form ∂w ∂t = aw ∂x2 + f (x, t, w) ∂x + g(x, t, w) . . . . . . 5.6.10. Equations of the Form ∂w = ∂t ( ∂w )2 ∂2w (aw + b) ∂x2 + f (x, t, w) ∂x + g(x, t, w) ∂w ∂x + h(x, t, w) . . . . . . . . ∂w ∂2w m 5.6.11. Equations of the Form ∂t = aw ∂x2 + f (x, t) ∂w ∂x + g(x, t, w) . . . . . ( ∂w ) ∂w ∂ 5.6.12. Equations of the Form ∂t = a ∂x w ∂x + f (x, t) ∂w ∂x + g(x, t, w) . . ( m ∂w ) ∂w ∂ 5.6.13. Equations of the Form ∂t = a ∂x w ∂x + f (x, t) ∂w ∂x + g(x, t, w) . ( λw ∂w ) ∂w ∂ 5.6.14. Equations of the Form ∂t = a ∂x e ∂x + f (x, t, w) . . . . . . . . . . . . [ ] ( ) ∂w ∂w ∂ 5.6.15. Equations of the Form ∂w ∂t = ∂x f (w) ∂x + g x, t, w, ∂x . . . . . . . . ∂2w 5.6.16. Equations of the Form ∂w ∂t = f (x, w) ∂x2 . . . . . . . . . . . . . . . . . . . . . . . . ) ( ∂2w ∂w ....... 5.6.17. Equations of the Form ∂w ∂t = f (x, t, w) ∂x2 + g x, t, w, ∂x ) ) ( ( ∂w ∂w ∂ 2 w ∂w 5.6.18. Equations of the Form ∂t = f x, w, ∂x ∂x2 + g x, t, w, ∂x . . . . .

5.6.2. Equations of the Form

284 286 290 293 294 298 299 303 306 308 311 312 316 318 327 329

339 5.6.19. Evolution Equations Nonlinear in the Second Derivative . . . . . . . . . . . 346 5.6.20. Nonlinear Equations of the Thermal (Diffusion) Boundary Layer . . . 346

5.7. Nonlinear Schr¨odinger Equations and Related Equations . . . . . . . . . . . . . . . . . . ∂2w 5.7.1. Equations of the Form i ∂w ∂t + ∂x2 + f (|w|)w = 0 Involving Arbitrary Parameters . . . . . . . . . . . . . . . . . . . . .(. . . . . .). . . . . . . . . . . . . . . . . . . . . . . . . 1 ∂ n ∂w 5.7.2. Equations of the Form i ∂w ∂t + xn ∂x x ∂x + f (|w|)w = 0 Involving Arbitrary Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7.3. Other Equations Involving Arbitrary Parameters . . . . . . . . . . . . . . . . . . . . 5.7.4. Equations with Cubic Nonlinearities Involving Arbitrary Functions . . . 5.7.5. Equations of General Form Involving Arbitrary Functions of a Single Argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7.6. Equations of General Form Involving Arbitrary Functions of Two Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

348

352 354 355

6. Second-Order Parabolic Equations with Two or More Space Variables

367

6.1. Equations with Two Space Variables Involving Power-Law Nonlinearities ... [ ] ∂ [ ] ∂ ∂w ∂w ∂w p 6.1.1. Equations of the Form ∂t = ∂x f (x) ∂x + ∂y g(y) ∂y + aw . . . . . ( n ∂w ) ( k ∂w ) ∂ ∂ 6.1.2. Equations of the Form ∂w ............ ∂t = a ∂x w ∂x + b ∂y w ∂y [ ] ∂ [ ] ∂w ∂ ∂w ∂w 6.1.3. Equations of the Form ∂t = ∂x f (w) ∂x + ∂y g(w) ∂y + h(w) . . . . 6.1.4. Other Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

367 367

348

358 362

368 374 377

C ONTENTS

ix

6.2. Equations with Two Space Variables Involving Exponential Nonlinearities . . . 384 [ ] ∂ [ ] ∂w ∂ ∂w ∂w λw 6.2.1. Equations of the Form ∂t = ∂x f (x) ∂x + ∂y g(y) ∂y + ae . . . . . 384 ( βw ∂w ) ( λw ∂w ) ∂ ∂ 6.2.2. Equations of the Form ∂w ∂t = a ∂x e ∂x + b ∂y e ∂y + f (w) . . . 385 6.3. Other Equations with Two Space Variables Involving Arbitrary Parameters . . . 388 6.3.1. Equations with Logarithmic Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . 388 6.3.2. Equations with Trigonometrical Nonlinearities . . . . . . . . . . . . . . . . . . . . . 389 6.4. Equations Involving Arbitrary Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4.1. Heat and Mass Transfer Equations in Quiescent or Moving Media with Chemical Reactions . . . . . . . . . [. . . . . . . . .] . . . . . [. . . . . . . .]. . . . . . . . . . . . . ∂ ∂ ∂w ∂w 6.4.2. Equations of the Form ∂w ∂t = ∂x f (x) ∂x + ∂y g(y) ∂y + h(w) . . . . . [ ] [ ] ∂ ∂w ∂ ∂w 6.4.3. Equations of the Form ∂w ∂t = ∂x f (w) ∂x + ∂y g(w) ∂y + h(t, w) . . 6.4.4. Other Equations Linear in the Highest Derivatives . . . . . . . . . . . . . . . . . . 6.4.5. Nonlinear Diffusion Boundary Layer Equations . . . . . . . . . . . . . . . . . . . . 6.4.6. Equations Nonlinear in the Highest Derivatives . . . . . . . . . . . . . . . . . . . . . 6.5. Equations with Three or More Space Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5.1. Equations of Mass Transfer in Quiescent or Moving Media with Chemical Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5.2. Heat Equations with Power-Law or Exponential Temperature-Dependent Thermal Diffusivity . . . . . . . . . . . . . . . . . . . . . . . 6.5.3. Equations of Heat and Mass Transfer in Anisotropic Media . . . . . . . . . . 6.5.4. Other Equations with Three Space Variables . . . . . . . . . . . . . . . . . . . . . . . 6.5.5. Equations with n Space Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

390 390 392 394 398 402 404 406 406 409 412 414 417

6.6. Nonlinear Schr¨odinger Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 6.6.1. Two-Dimensional Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 6.6.2. Three and n-Dimensional Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428 7. Second-Order Hyperbolic Equations with One Space Variable

433

7.1. Equations with Power-Law Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433 2 ∂2w n 2n−1 . . . . . . . . . . . . 433 7.1.1. Equations of the Form ∂∂tw 2 = ∂x2 + aw + bw + cw 7.1.2. Equations of the Form 7.1.3. Equations of the Form 7.1.4. Equations of the Form

7.1.7. 7.1.8. 7.1.9.

2

= a ∂∂xw2 + f (x, t, w) . . . . . . . . . . . . . . . . . . . . 436 ) ( 2 . . . . . . . . . . . . . . . . 439 = a ∂∂xw2 + f x, t, w, ∂w ∂x ) ( ∂2w ∂w = f (x) ∂x2 + g x, t, w, ∂x . . . . . . . . . . . . . 442 2

= awn ∂∂xw2 + f (x, w) . . . . . . . . . . . . . . . . . . . ( n ∂w ) ∂ Equations of the Form = a ∂x w ∂x . . . . . . . . . . . . . . . . . . . . . . . . ( ) ∂ k .................. Equations of the Form wn ∂w = a ∂x ∂x + bw ( ) ∂ k1 k2 k3 . . Equations of the Form wn ∂w = a ∂x ∂x + b1 w + b2 w + b3 w Other Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.1.5. Equations of the Form 7.1.6.

∂2w ∂t2 ∂2w ∂t2 ∂2w ∂t2 ∂2w ∂t2 ∂2w ∂t2 ∂2w ∂t2 ∂2w ∂t2

447 450 454 458 460

7.2. Equations with Exponential Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469 2 ∂2w βw + ceγw . . . . . . . . . . . . . . . . . . 469 7.2.1. Equations of the Form ∂∂tw 2 = a ∂x2 + be ∂2w ∂t2 ∂2w ∂t2

2

= a ∂∂xw2 + f (x, t, w) . . . . . . . . . . . . . . . . . . . . 472 ( ) 2 7.2.3. Equations of the Form = f (x) ∂∂xw2 + g x, t, w, ∂w . . . . . . . . . . . . . 475 ∂x 7.2.4. Other Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480 7.2.2. Equations of the Form

x

C ONTENTS

7.3. Other Equations Involving Arbitrary Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3.1. Equations with Hyperbolic Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . 7.3.2. Equations with Logarithmic Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . 7.3.3. Sine-Gordon Equation and Other Equations with Trigonometric Nonlinearities . . . . . . . . .2. . . . . . . . . . . . . .[ . . . . . . . .]. . . . . . . . . . . . . . . . . . . ∂w ∂ ∂w 7.3.4. Equations of the Form ∂∂tw ................. 2 + a ∂t = ∂x f (w) ∂x [ ] ∂2w ∂w ∂ ∂w 7.3.5. Equations of the Form ∂t2 + f (w) ∂t = ∂x g(w) ∂x . . . . . . . . . . . . . . 7.4. Equations Involving Arbitrary Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 ∂2w 7.4.1. Equations of the Form ∂∂tw 2 = a ∂x2 + f (x, t, w) . . . . . . . . . . . . . . . . . . . . ( ) 2 ∂2w ∂w 7.4.2. Equations of the Form ∂∂tw ................ 2 = a ∂x2 + f x, t, w, ∂x ( ) ∂2w ∂2w ∂w 7.4.3. Equations of the Form ∂t2 = f (x) ∂x2 + g x, t, w, ∂x . . . . . . . . . . . . . ( ) 2 ∂2w ∂w ............ 7.4.4. Equations of the Form ∂∂tw 2 = f (w) ∂x2 + g x, t, w, ∂x ( ) ∂2w ∂2w ∂w 7.4.5. Equations of the Form ∂t2 = f (x, w) ∂x2 + g x, t, w, ∂x . . . . . . . . . . ) ( 2 ∂2w ∂w 7.4.6. Equations of the Form ∂∂tw ........... 2 = f (t, w) ∂x2 + g x, t, w, ∂x 7.4.7. Other Equations Linear in the Highest Derivatives . . . . . . . . . . . . . . . . . . ) ( ∂2w ∂w ....................... 7.5. Equations of the Form ∂x∂y = F x, y, w, ∂w , ∂x ∂y

485 485 486 490 494 496 499 499 505 511 517 526 529 530 540

∂2w ∂x∂y

7.5.1. Equations Involving Arbitrary Parameters of the Form = f (w) . . 540 7.5.2. Other Equations Involving Arbitrary Parameters . . . . . . . . . . . . . . . . . . . . 544 7.5.3. Equations Involving Arbitrary Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 546 8. Second-Order Hyperbolic Equations with Two or More Space Variables 8.1. Equations with Two Space Variables Involving Power-Law Nonlinearities . . . [ ] ∂ [ ] 2 ∂w ∂w ∂ p ..... 8.1.1. Equations of the Form ∂∂tw 2 = ∂x f (x) ∂x + ∂y g(y) ∂y + aw ( ) ( ) 2 ∂ ∂ n ∂w k ∂w 8.1.2. Equations of the Form ∂∂tw ........... 2 = a ∂x w ∂x + b ∂y w ∂y [ ] [ ] ∂2w ∂w ∂ ∂w ∂ 8.1.3. Equations of the Form ∂t2 = ∂x f (w) ∂x + ∂y g(w) ∂y . . . . . . . . . . 8.1.4. Other Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2. Equations with Two Space Variables Involving Exponential Nonlinearities . . . [ ] ∂ [ ] 2 ∂w ∂w ∂ λw . . . . 8.2.1. Equations of the Form ∂∂tw 2 = ∂x f (x) ∂x + ∂y g(y) ∂y + ae ( βw ∂w ) ( λw ∂w ) 2 ∂ ∂ 8.2.2. Equations of the Form ∂∂tw ......... 2 = a ∂x e ∂x + b ∂y e ∂y 8.2.3. Other Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3. Nonlinear Telegraph Equations with Two Space Variables . . . . . . . . . . . . . . . . . 8.3.1. Equations Involving Power-Law Nonlinearities . . . . . . . . . . . . . . . . . . . . . 8.3.2. Equations Involving Exponential Nonlinearities . . . . . . . . . . . . . . . . . . . . 8.4. Equations with Two Space Variables Involving Arbitrary Functions . . . . . . . . . [ ] ∂ [ ] 2 ∂ ∂w ∂w 8.4.1. Equations of the Form ∂∂tw 2 = ∂x f (x) ∂x + ∂y g(y) ∂y + h(w) . . . . [ ] ∂ [ ] 2 ∂ ∂w ∂w 8.4.2. Equations of the Form ∂∂tw 2 = ∂x f (w) ∂x + ∂y g(w) ∂y + h(w) . . . 8.4.3. Other Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.5. Equations with Three Space Variables Involving Arbitrary Parameters . . . . . . . 2 8.5.1. Equations of the Form ∂∂tw 2 = [ ] ∂ [ ] ∂[ ] ∂ ∂w ∂w ∂w p ................. ∂x f (x) ∂x + ∂y g(y) ∂y + ∂z h(z) ∂z + aw 8.5.2.

2 Equations of the Form ∂∂tw 2 = [ ] ∂ [ ] ∂[ ] ∂ ∂w ∂w ∂w λw ∂x f (x) ∂x + ∂y g(y) ∂y + ∂z h(z) ∂z + ae

553 553 553 555 565 570 574 574 577 582 583 583 587 589 589 593 599 604 604

. . . . . . . . . . . . . . . . . 606

C ONTENTS

xi

2

8.5.3. Equations of the Form ∂∂tw = ( n ∂w ) ( m ∂w2) ( k ∂w ) ∂ ∂ ∂ a ∂x w ∂x + b ∂y w ∂y + c ∂z w ∂z + swp . . . . . . . . . . . . . . . . . . 608 2

= 8.5.4. Equations of the Form ∂∂tw ( λ w ∂w ) ( λ w2∂w ) ( λ w ∂w ) ∂ ∂ ∂ βw . . . . . . . . . . . . . 615 1 2 3 a ∂x e ∂x + b ∂y e ∂y + c ∂z e ∂z + se 8.6. Equations with Three or More Space Variables Involving Arbitrary Functions 624 2 8.6.1. Equations of the Form ∂∂tw 2 = [ ] [ ] ∂[ ] ∂ ∂w ∂ ∂w ∂w f (x) + f (y) + f (z) 1 2 3 ∂x ∂x ∂y ∂y ∂z ∂z + g(w) . . . . . . . . . . . . . . 624 2

8.6.2. Equations of the Form ∂∂tw 2 = [ ] ∂ [ ] ∂[ ] ∂ ∂w ∂w ∂w ∂x f1 (w) ∂x + ∂y f2 (w) ∂y + ∂z f3 (w) ∂z + g(w) . . . . . . . . . . . . . 629 8.6.3. Other Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637 9. Second-Order Elliptic Equations with Two Space Variables 641 9.1. Equations with Power-Law Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641 2 2 9.1.1. Equations of the Form ∂∂xw2 + ∂∂yw2 = aw + bwn + cw2n−1 . . . . . . . . . . . . 641 9.1.2. Equations of the Form 9.1.3. Equations of the Form 9.1.4. Equations of the Form

2 ∂2w + ∂∂yw2 = f (x, y, w) . . . . . . . . . . . . . . . . . . . . . ∂x2 ) ( 2 ∂2w ∂w ........... + a ∂∂yw2 = F x, y, w, ∂w ∂x , ∂y ∂x2[ ] [ ] ∂ ∂w ∂ + ∂y f2 (x, y) ∂w = g(w) . . . . ∂x [f1 (x, y) ∂x ] [ ] ∂y ∂ ∂w ∂ ∂w ∂x f1 (w) ∂x + ∂y f2 (w) ∂y = g(w) . . . . . . .

9.1.5. Equations of the Form 9.1.6. Other Equations Involving Arbitrary Parameters . . . . . . . . . . . . . . . . . . . . 9.2. Equations with Exponential Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 9.2.1. Equations of the Form ∂∂xw2 + ∂∂yw2 = a + beβw + ceγw . . . . . . . . . . . . . . . 9.2.2. Equations of the Form 9.2.3. Equations of the Form

2 ∂2w + ∂∂yw2 = f (x, y, w) . . . . . . . . . . . . . . . . . . . . . ∂x2[ ] ∂ [ ] ∂w ∂ + ∂y f2 (x, y) ∂w = g(w) . . . . ∂x [f1 (x, y) ∂x ∂y ] [ ] ∂ ∂w ∂ ∂w ∂x f1 (w) ∂x + ∂y f2 (w) ∂y = g(w) . . . . . . .

9.2.4. Equations of the Form 9.2.5. Other Equations Involving Arbitrary Parameters . . . . . . . . . . . . . . . . . . . . 9.3. Equations Involving Other Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3.1. Equations with Hyperbolic Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . 9.3.2. Equations with Logarithmic Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . 9.3.3. Equations with Trigonometric Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . 9.4. Equations Involving Arbitrary Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 9.4.1. Equations of the Form ∂∂xw2 + ∂∂yw2 = F (x, y, w) . . . . . . . . . . . . . . . . . . . . ( ) 2 2 ∂w 9.4.2. Equations of the Form a ∂∂xw2 + b ∂∂yw2 = F x, y, w, ∂w .......... ∂x , ∂y 9.4.3. Heat Mass Equations of the Form [ and ∂w ] Transfer [ ] ∂ ∂ ∂w f (x) + g(y) = h(w) .............................. ∂x ∂x ∂y ∂y[ ] ∂ [ ] ∂ ∂w 9.4.4. Equations of the Form ∂x f (x, y, w) ∂x + ∂y g(x, y, w) ∂w ∂y = h(x, y, w) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.4.5. Other Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

644 645 646 648 654 662 662 664 665 668 671 675 675 677 680 682 682 690 697 699 707

10. Second-Order Elliptic Equations with Three or More Space Variables 713 10.1. Equations with Three Space Variables Involving Power-Law Nonlinearities . 713 10.1.1. Equations of] the Form [ [ ] ∂[ ] ∂ ∂w ∂ ∂w ∂w p . . . . . . . . . . . . . . 713 f (x) ∂x ∂x + ∂y g(y) ∂y + ∂z h(z) ∂z = aw

xii

C ONTENTS

10.1.2. Equations of] the Form [ [ ] ∂[ ] ∂ ∂w ∂ ∂w ∂w f (w) ∂x ∂x + ∂y g(w) ∂y + ∂z g(w) ∂z = 0 . . . . . . . . . . . . . . . . 716 10.2. Equations with Three Space Variables Involving Exponential Nonlinearities . 722 10.2.1. Equations of] the Form [ [ ] ∂[ ] ∂ ∂w ∂ ∂w ∂w λw . . . . . . . . . . . . . 722 f (x) ∂x ∂x + ∂y g(y) ∂y + ∂z h(z) ∂z = ae 10.2.2. Equations the ( λ wof ) Form ( λ w ∂w ) ( λ w ∂w ) ∂ ∂w ∂ ∂ βw . . . . . . 725 1 2 2 a1 ∂x e ∂x + a2 ∂y e ∂y + a3 ∂y e ∂y = be 10.3. Three-Dimensional Equations Involving Arbitrary Functions . . . . . . . . . . . . . . 10.3.1. Heat Equations [ and Mass ] Transfer [ ] ∂ [of the Form ] ∂ ∂w ∂ ∂w ∂w f (x) + f (y) ∂x 1 ∂x ∂y 2 ∂y + ∂z f3 (z) ∂z = g(w) . . . . . . . . . . . 10.3.2. Heat and Mass Transfer Equations with Complicating Factors . . . . . 10.3.3. Other Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4. Equations with n Independent Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4.1. Equations of the [ ] Form ∂ [ ] ∂w ∂w ∂ f (x ) 1 1 ∂x1 ∂x1 + · · · + ∂xn fn (xn ) ∂xn = g(x1 , . . . , xn , w) . . . . . 10.4.2. Other Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11. Second-Order Equations Involving Mixed Derivatives and Some Other Equations 11.1. Equations Linear in the Mixed Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.1. Calogero Equation and Related Equations . . . . . . . . . . . . . . . . . . . . . . 11.1.2. Khokhlov–Zabolotskaya and Related Equations . . . . . . . . . . . . . . . . . 11.1.3. Equation of Unsteady Transonic Gas Flows . . . . . . . . . . . . . . . . . . . . . ) ( ∂2w ∂w ∂ 2 w ∂w ∂w ..... 11.1.4. Equations of the Form ∂w ∂y ∂x∂y − ∂x ∂y 2 = F x, y, ∂x , ∂y 11.1.5. Other Equations with Two Independent Variables . . . . . . . . . . . . . . . . 11.1.6. Other Equations with Three and More Independent Variables . . . . . 11.2. Equations Quadratic in the Highest Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 11.2.1. Equations of the Form ∂∂xw2 ∂∂yw2 = F (x, y) . . . . . . . . . . . . . . . . . . . . . . ( ∂ 2 w )2 ∂ 2 w ∂ 2 w − 2 ∂y2 = F (x, y) . . . . . . . . . 11.2.2. Monge–Amp`ere Equation ∂x∂y ) ( ∂ 2 w )2 ∂ 2 w ∂x ( 2 ∂w 11.2.3. Equations of the Form ∂x∂y − ∂x2 ∂∂yw2 = F x, y, w, ∂w .. ∂x , ∂y ( ∂ 2 w )2 ∂2w ∂2w 11.2.4. Equations of the Form ∂x∂y = f (x, y) ∂x2 ∂y2 + g(x, y) . . . . . . . 11.2.5. Other Equations with Two Independent Variables . . . . . . . . . . . . . . . . 11.2.6. Pleba´nski Heavenly Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3. Bellman Type Equations and Related Equations . . . . . . . . . . . . . . . . . . . . . . . . . 11.3.1. Equations with Quadratic Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . 11.3.2. Equations with Power-Law Nonlinearities . . . . . . . . . . . . . . . . . . . . . . 12. Second-Order Equations of General Form 12.1. Equations Involving the First Derivative in t . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( ∂w ∂ 2 w ) 12.1.1. Equations of the Form ∂w ∂t = F (w, ∂x , ∂x2 ). . . . . . . . . . . . . . . . . . . ∂w ∂ 2 w 12.1.2. Equations of the Form ∂w ∂t = F (t, w, ∂x , ∂x2 ) . . . . . . . . . . . . . . . . . . ∂w ∂ 2 w 12.1.3. Equations of the Form ∂w ∂t = F (x, w, ∂x , ∂x2 ). . . . . . . . . . . . . . . . . ∂w ∂ 2 w 12.1.4. Equations of the Form ∂w ............... 2 ∂t( = F x, t, w, ∂x , ∂x) ∂w ∂w ∂ 2 w 12.1.5. Equations of the Form F x, t, w, ∂t , ∂x , ∂x2 = 0 . . . . . . . . . . . . . 12.1.6. Equations with Three Independent Variables . . . . . . . . . . . . . . . . . . . .

730 730 734 737 739 739 742 745 745 745 749 756 760 762 770 772 772 774 787 794 798 802 805 805 808 811 811 811 820 825 830 836 838

C ONTENTS

xiii

12.2. Equations Involving Two or More Second Derivatives . . . . . . . . . . . . . . . . . . . . ( ∂w ∂ 2 w ) 2 12.2.1. Equations of the Form ∂∂tw ................... 2 = F w, ∂x , ∂x2 ( ) ∂2w ∂w ∂w ∂ 2 w 12.2.2. Equations of the Form ∂t2 = F x, t, w, ∂x , ∂t , ∂x2 . . . . . . . . . . . 12.2.3. Equations Linear in the Mixed Derivative . . . . . . . . . . . . . . . . . . . . . . . 12.2.4. Equations with Two Independent Variables, Nonlinear in Two or More Highest Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.2.5. Equations with n Independent Variables . . . . . . . . . . . . . . . . . . . . . . . .

839 839 843 847

13. Third-Order Equations 13.1. Equations Involving the First Derivative in t . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∂3w ∂w 13.1.1. Korteweg–de Vries Equation ∂w ∂t + a ∂x3 + bw ∂x = 0 . . . . . . . . . . . . 13.1.2. Cylindrical, Spherical, and Modified Korteweg–de Vries Equations ∂3w ∂w 13.1.3. Generalized Korteweg–de Vries Equation ∂w ∂t +a ∂x3 +f (w) ∂x = 0 13.1.4. Equations Reducible to the Korteweg–de Vries Equation . . . . . . . . . ( ∂w ) ∂3w 13.1.5. Equations of the Form ∂w + a + F w, =0 .............. 3 ∂t ∂x ( ∂x ∂w ) ∂w ∂3w 13.1.6. Equations of the Form ∂t + a ∂x3 + F x, t, w, ∂x = 0 . . . . . . . . . . ( ) ∂w ∂ 2 w ∂ 3 w 13.1.7. Equations of the Form ∂w = F x, w, , ............. , 2 3 ∂t ∂x ∂x ∂x 13.2. Equations Involving the Second Derivative in t . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2.1. Equations with Quadratic Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . 13.2.2. Other Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.3. Hydrodynamic Boundary Layer Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.3.1. Steady Hydrodynamic Boundary Layer Equations for a Newtonian Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.3.2. Steady Boundary Layer Equations for Non-Newtonian Fluids . . . . . 13.3.3. Unsteady Boundary Layer Equations for a Newtonian Fluid . . . . . . . 13.3.4. Unsteady Boundary Layer Equations for Non-Newtonian Fluids . . . 13.3.5. Related Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.4. Equations of Motion of Ideal Fluid (Euler Equations) . . . . . . . . . . . . . . . . . . . . 13.4.1. Stationary Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.4.2. Nonstationary Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.5. Other Third-Order Nonlinear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.5.1. Equations Involving Second-Order Mixed Derivatives . . . . . . . . . . . . 13.5.2. Equations Involving Third-Order Mixed Derivatives . . . . . . . . . . . . . 13.5.3. Other Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

857 857 857 866 871 875 879 882 884 896 896 900 903

14. Fourth-Order Equations 14.1. Equations Involving the First Derivative in t . . . . . . . . . . . . . . . . . . . . . . . . . . . . ) ( ∂4w ∂w 14.1.1. Equations of the Form ∂w ............. ∂t = a ∂x4 + F x, t, w, ∂x 14.1.2. Other Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.2. Equations Involving the Second Derivative in t . . . . . . . . . . . . . . . . . . . . . . . . . . 14.2.1. Boussinesq Equation and Its Modifications . . . . . . . . . . . . . . . . . . . . . 14.2.2. Other Equations with Quadratic Nonlinearities . . . . . . . . . . . . . . . . . . 14.2.3. Other Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.3. Equations Involving Mixed Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.3.1. Kadomtsev–Petviashvili Equation and Related Equations . . . . . . . . . 14.3.2. Stationary Hydrodynamic Equations (Navier–Stokes Equations) . . . 14.3.3. Nonstationary Hydrodynamic Equations (Navier–Stokes Equations) 14.3.4. Other Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

977 977 977 982 987 987 993 998 1000 1000 1003 1013 1028

849 853

903 911 917 930 935 938 938 942 949 949 958 973

xiv

C ONTENTS

15. Equations of Higher Orders

1031

15.1. Equations Involving the First Derivative in t and Linear in the Highest Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.1.1. Fifth-Order Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.1.2. Some Equations with Sixth- to Ninth-Order . . . . . . . . . . . . . . . . . . . . . ∂nw 15.1.3. Equations of the Form ∂w ∂t = a ∂xn + f (x, t, w) . . . . . . . . . . . . . . . . . . ∂nw ∂w 15.1.4. Equations of the Form ∂w ∂t = a ∂xn + f (w) ∂x . . . . . . . . . . . . . . . . . . . n ∂ w t, w) ∂w 15.1.5. Equations of the Form ∂w g(x, t, w) . . . . ∂t = a ∂xn + f (x, ∂x + ( ) n ∂w ∂ w ∂w 15.1.6. Equations of the Form ∂t = a ∂xn + F x, t, w, ∂x . . . . . . . . . . . . . ( ) ∂w ∂nw ∂ n−1 w 15.1.7. Equations of the Form ∂w = a + F x, t, w, , . . . , .. n n−1 ∂t ∂x ∂x ∂x

1031 1031 1039 1043 1044 1047 1051

∂w ∂t

n = aw ∂∂xw n

+ f (x, t, w) ∂w ∂x

15.1.8. Equations of the Form + g(x, t, w) . . 15.1.9. Other Equations Involving Arbitrary Parameters and/or Arbitrary Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.1.10. Nonlinear Equations Involving Arbitrary Linear Differential Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.1.11. Equations of the Burgers and the Korteweg–de Vries Hierarchies and Related Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1057 1059 1062 1065 1067

15.2. General Form Equations Involving the First Derivative in t . . . . . . . . . . . . . . . . ( ∂w ) ∂nw 15.2.1. Equations of the Form ∂w ∂t = F (w, ∂x , . . . , ∂xn ). . . . . . . . . . . . . . . ∂w ∂nw 15.2.2. Equations of the Form ∂w ∂t = F (t, w, ∂x , . . . , ∂xn ) . . . . . . . . . . . . . . ∂w ∂nw 15.2.3. Equations of the Form ∂w ∂t = F (x, w, ∂x , . . . , ∂xn ). . . . . . . . . . . . . ∂w ∂nw 15.2.4. Equations of the Form ∂w ........... ∂t = F x, t, w, ∂x , . . . , ∂xn

1070 1070 1077 1079 1084

15.3. Equations Involving the Second Derivative in t . . . . . . . . . . . . . . . . . . . . . . . . . . 2 ∂nw 15.3.1. Equations of the Form ∂∂tw 2 = a ∂xn + f (x, t, w) . . . . . . . . . . . . . . . . . ) ( 2 ∂nw ∂w ............ 15.3.2. Equations of the Form ∂∂tw 2 = a ∂xn + F x, t, w, ∂x ( n−1 ) ∂2w ∂nw ∂w 15.3.3. Equations of the Form ∂t2 = a ∂xn + F x, t, w, ∂x , . . . , ∂∂xn−1w .

1088 1088

∂2w ∂t2

1089 1094

∂nw ∂xn

15.3.4. Equations of the Form + f (x, t, w) ∂w = aw ∂x + g(x, t, w) . 1098 15.3.5. Other Equations Involving Arbitrary Functions . . . . . . . . . . . . . . . . . . 1099 15.3.6. Equations Involving Arbitrary Differential Operators . . . . . . . . . . . . . 1101 15.4. Other Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1103 15.4.1. Equations Involving Mixed Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . 1103 n ∂mw . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1110 15.4.2. Equations Involving ∂∂xw n and ∂y m 16. Systems of Two First-Order Partial Differential Equations

1115

∂w 16.1. Systems of the Form ∂u ∂x = F (u, w), ∂t = G(u, w) . . . . . . . . . . . . . . . . . . . . . . 1115 16.1.1. Systems Involving Arbitrary Parameters . . . . . . . . . . . . . . . . . . . . . . . . 1115 16.1.2. Systems Involving Arbitrary Functions . . . . . . . . . . . . . . . . . . . . . . . . . 1117

16.2. Other Systems of Two Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1122 16.2.1. Gas Dynamic Type Systems Linearizable with the Hodograph Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1122 16.2.2. Other Systems of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1130

xv

C ONTENTS

17. Systems of Two Parabolic Equations

1133

∂2u ∂x2

∂2w ∂x2

17.1. Systems of the Form ∂u + F (u, w), ∂w + G(u, w) . . . . . . . . ∂t = a ∂t = b 17.1.1. Arbitrary Functions Depend on a Linear Combination of the Unknowns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.1.2. Arbitrary Functions Depend on the Ratio of the Unknowns . . . . . . . 17.1.3. Arbitrary Functions Depend on the Product of Powers of the Unknowns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.1.4. Arbitrary Functions Depend on Sum or Difference of Squares of the Unknowns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.1.5. Arbitrary Functions Depend on the Unknowns in a Complex Way . 17.1.6. Some Systems Depending on Arbitrary Parameters . . . . . . . . . . . . . . ( n ∂u ) a ∂ 17.2. Systems of the Form ∂u = n x ∂x x ∂x + F (u, w), ( n ∂w ) ∂t ∂w b ∂ = x + G(u, w) ........................................ ∂t xn ∂x ∂x 17.2.1. Arbitrary Functions Depend on a Linear Combination of the Unknowns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.2.2. Arbitrary Functions Depend on the Ratio of the Unknowns . . . . . . . 17.2.3. Arbitrary Functions Depend on the Product of Powers of the Unknowns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.2.4. Arbitrary Functions Depend on Sum or Difference of Squares of the Unknowns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.2.5. Arbitrary Functions Have Different Arguments . . . . . . . . . . . . . . . . . . 17.3. Other Systems of Two Parabolic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.3.1. Second-Order Equations Involving Real Functions of Real Variables 17.3.2. Second-Order Nonlinear Equations of Laser Systems . . . . . . . . . . . . 17.3.3. Systems Involving Third-Order Evolution Equations . . . . . . . . . . . . .

1156

18. Systems of Two Second-Order Klein–Gordon Type Hyperbolic Equations

1173

∂2u ∂t2

2 = a ∂∂xu2

∂2w ∂t2

2 = b ∂∂xw2

1133 1133 1137 1145 1146 1148 1150

1157 1159 1162 1163 1164 1165 1165 1170 1172

18.1. Systems of the Form + F (u, w), + G(u, w) . . . . . . . 18.1.1. Arbitrary Functions Depend on a Linear Combination of the Unknowns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.1.2. Arbitrary Functions Depend on the Ratio of the Unknowns . . . . . . . 18.1.3. Other Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( n ∂u ) 2 ∂ x ∂x + F (u, w), 18.2. Systems of the Form ∂∂t2u = xan ∂x ( n ∂w ) ∂2w b ∂ = xn ∂x x ∂x + G(u, w) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∂t2 18.2.1. Arbitrary Functions Depend on a Linear Combination of the Unknowns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.2.2. Arbitrary Functions Depend on the Ratio of the Unknowns . . . . . . . 18.2.3. Other Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1173

19. Systems of Two Elliptic Equations 19.1. Systems of the Form ∆u = F (u, w), ∆w = G(u, w) . . . . . . . . . . . . . . . . . . . . . 19.1.1. Arbitrary Functions Depend on a Linear Combination of the Unknowns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.1.2. Arbitrary Functions Depend on the Ratio of the Unknowns . . . . . . . 19.1.3. Other Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.2. Other Systems of Two Second-Order Elliptic Equations . . . . . . . . . . . . . . . . . . 19.3. Von K´arm´an Equations (Fourth-Order Elliptic Equations) . . . . . . . . . . . . . . . . .

1185 1185

1173 1175 1177 1178 1178 1181 1183

1185 1187 1189 1191 1192

xvi

C ONTENTS

20. First-Order Hydrodynamic and Other Systems Involving Three or More Equations 20.1. Equations of Motion of Ideal Fluid (Euler Equations) . . . . . . . . . . . . . . . . . . . . 20.1.1. Euler Equations in Various Coordinate Systems . . . . . . . . . . . . . . . . . 20.1.2. Two-Dimensional Euler Equations for Incompressible Ideal Fluid (Plane Flows) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.1.3. Other Solutions with Two Nonzero Components of the Fluid Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.1.4. Rotationally Symmetric Motions of Fluid . . . . . . . . . . . . . . . . . . . . . . . 20.1.5. Euler Equations for Barotropic Gas Flow . . . . . . . . . . . . . . . . . . . . . . . 20.2. Adiabatic Gas Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.2.1. Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.2.2. One-Dimensional Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.2.3. Two-Dimensional Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.2.4. Three-Dimensional Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.3. Systems Describing Fluid Flows in the Atmosphere, Seas, and Oceans . . . . . 20.3.1. Equations of Breezes and Monsoons . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.3.2. Equations of Atmospheric Circulation in the Equatorial Region . . . . 20.3.3. Equations of Dynamic Convection in the Sea . . . . . . . . . . . . . . . . . . . . 20.3.4. Equations of Flows in the Baroclinic Layer of the Ocean . . . . . . . . . 20.4. Chromatography Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.4.1. Langmuir Isotherm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.4.2. Generalized Langmuir Isotherm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.4.3. Power Isotherm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.4.4. Exponential Isotherm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.5. Other Hydrodynamic-Type Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.5.1. Hydrodynamic-Type Systems of Diagonal Form . . . . . . . . . . . . . . . . . 20.5.2. Hydrodynamic-Type Systems of Nondiagonal Form . . . . . . . . . . . . . 20.6. Ideal Plasticity with the von Mises Yield Criterion . . . . . . . . . . . . . . . . . . . . . . . 20.6.1. Two-Dimensional Equations. Plane Case . . . . . . . . . . . . . . . . . . . . . . . 20.6.2. Axisymmetric Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.6.3. Three-Dimensional Equations. Steady-State Case . . . . . . . . . . . . . . . . 20.6.4. Dynamic Case. Two-Dimensional Equations . . . . . . . . . . . . . . . . . . . . 21. Navier–Stokes and Related Equations 21.1. Navier–Stokes Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.1.1. Navier–Stokes Equations in Various Coordinate Systems . . . . . . . . . 21.1.2. General Properties of the Navier–Stokes Equations . . . . . . . . . . . . . . 21.2. Solutions with One Nonzero Component of the Fluid Velocity . . . . . . . . . . . . . 21.2.1. Unidirectional Plane Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2.2. Unidirectional Flows in Tubes of Various Cross-Sections. External Flow Around a Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2.3. One-Dimensional Rotation Fluid Flows . . . . . . . . . . . . . . . . . . . . . . . . 21.2.4. Purely Radial Fluid Motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3. Solutions with Two Nonzero Components of the Fluid Velocity . . . . . . . . . . . . 21.3.1. Two-Dimensional Solutions in the Rectangular Cartesian Coordinates (Plane Flows) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3.2. Two-Dimensional Solutions in the Cylindrical Coordinates (Plane Flows) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1197 1197 1197 1198 1199 1200 1201 1204 1204 1205 1215 1219 1223 1223 1225 1227 1229 1231 1231 1233 1234 1235 1236 1236 1236 1238 1238 1239 1240 1244 1247 1247 1247 1249 1251 1251 1253 1257 1260 1263 1263 1270

C ONTENTS

21.4.

21.5.

21.6.

21.7.

xvii

21.3.3. Axisymmetric Fluid Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1274 21.3.4. Other Fluid Flows with Two-Nonzero Velocity Components . . . . . . 1282 Solutions with Three Nonzero Fluid Velocity Components Dependent on Two Space Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1285 21.4.1. Quasi-plane Flows (with the Fluid Velocity Components Independent of z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1285 21.4.2. Cylindrical and Conical Vortex Flows. Von K´arm´an-Type Rotationally Symmetric Motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1290 21.4.3. Rotationally Symmetric Motions of General Form . . . . . . . . . . . . . . . 1297 Solutions with Three Nonzero Fluid Velocity Components Dependent on Three Space Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1302 21.5.1. Three-Dimensional Stagnation-Point Type Flows . . . . . . . . . . . . . . . . 1302 21.5.2. Solutions with Linear Dependence of the Velocity Components on Two Space Variables. Axial Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1303 21.5.3. Solutions with Linear Dependence of the Velocity Components on Two Space Variables. General Analysis . . . . . . . . . . . . . . . . . . . . . . . . 1317 21.5.4. Solutions with the Linear Dependence of the Velocity Components on One Space Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1323 21.5.5. Other Three-Dimensional Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1327 Convective Fluid Motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1329 21.6.1. Equations for Convective Fluid Motions . . . . . . . . . . . . . . . . . . . . . . . . 1329 21.6.2. Steady-State Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1329 21.6.3. Unsteady Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1331 Boundary Layer Equations (Prandtl Equations) . . . . . . . . . . . . . . . . . . . . . . . . . . 1333 21.7.1. Equations and Boundary Conditions. Stream Function . . . . . . . . . . . 1333 21.7.2. Self-Similar Solutions of Some Boundary Layer Problems . . . . . . . . 1333 21.7.3. Other Solutions of the Boundary Layer Equations . . . . . . . . . . . . . . . 1336

22. Systems of General Form 22.1. Nonlinear Systems of Two Equations Involving the First Derivatives with Respect to t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.2. Nonlinear Systems of Two Equations Involving the Second Derivatives with Respect to t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.3. Other Nonlinear Systems of Two Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.4. Nonlinear Systems of Many Equations Involving the First Derivatives with Respect to t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1337 1337 1344 1347 1348

Part II Exact Methods for Nonlinear Partial Differential Equations

1353

23. Methods for Solving First-Order Quasilinear Equations 23.1. Characteristic System. General Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23.1.1. Equations with Two Independent Variables. General Solution . . . . . 23.1.2. Quasilinear Equations with n Independent Variables . . . . . . . . . . . . . 23.2. Cauchy Problem. Existence and Uniqueness Theorem . . . . . . . . . . . . . . . . . . . . 23.2.1. Cauchy Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23.2.2. Procedure of Solving the Cauchy Problem . . . . . . . . . . . . . . . . . . . . . . 23.2.3. Existence and Uniqueness Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1355 1355 1355 1356 1357 1357 1358 1359

xviii

C ONTENTS

23.3. Qualitative Features and Discontinuous Solutions of Quasilinear Equations . 23.3.1. Model Equation of Gas Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23.3.2. Solution of the Cauchy Problem. Rarefaction Wave. Wave “Overturn” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23.3.3. Shock Waves. Jump Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23.3.4. Utilization of Integral Relations for Determining Generalized Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23.3.5. Conservation Laws. Viscosity Solutions . . . . . . . . . . . . . . . . . . . . . . . . 23.3.6. Hopf’s Formula for the Generalized Solution . . . . . . . . . . . . . . . . . . . . 23.3.7. Problem of Propagation of a Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1360 1360 1360 1362 1364 1365 1366 1367

23.4. Quasilinear Equations of General Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23.4.1. Quasilinear Equations in Conservative Form . . . . . . . . . . . . . . . . . . . . 23.4.2. Generalized Solution. Jump Condition and Stability Condition . . . . 23.4.3. Method for Constructing Stable Generalized Solutions . . . . . . . . . . .

1368 1368 1369 1370

24. Methods for Solving First-Order Nonlinear Equations

1373

24.1. Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.1.1. Complete, General, and Singular Integrals . . . . . . . . . . . . . . . . . . . . . . 24.1.2. Method of Separation of Variables. Equations of Special Form . . . . 24.1.3. Lagrange–Charpit Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.1.4. Construction of a Complete Integral with the Aid of Two First Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.1.5. Case where the Equation Does Not Depend on w Explicitly . . . . . . . 24.1.6. Hamilton–Jacobi Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1373 1373 1374 1376 1377 1378 1379

24.2. Cauchy Problem. Existence and Uniqueness Theorem . . . . . . . . . . . . . . . . . . . . 24.2.1. Statement of the Problem. Solution Procedure . . . . . . . . . . . . . . . . . . . 24.2.2. Existence and Uniqueness Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.2.3. Cauchy Problem for the Hamilton–Jacobi Equation . . . . . . . . . . . . . . 24.2.4. Examples of Solving the Cauchy Problem . . . . . . . . . . . . . . . . . . . . . .

1379 1379 1380 1380 1381

24.3. Generalized Viscosity Solutions and Their Applications . . . . . . . . . . . . . . . . . . 24.3.1. Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.3.2. Viscosity Solutions Based on the Use of a Parabolic Equation . . . . . 24.3.3. Viscosity Solutions Based on Test Functions and Differential Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.3.4. Local Structure of Generalized Viscosity Solutions . . . . . . . . . . . . . . 24.3.5. Generalized Classical Method of Characteristics . . . . . . . . . . . . . . . . . 24.3.6. Examples of Viscosity (Nonsmooth) Solutions . . . . . . . . . . . . . . . . . .

1382 1382 1382 1383 1383 1385 1386

25. Classification of Second-Order Nonlinear Equations

1389

25.1. Semilinear Equations in Two Independent Variables . . . . . . . . . . . . . . . . . . . . . 25.1.1. Types of Equations. Characteristic Equation . . . . . . . . . . . . . . . . . . . . 25.1.2. Canonical Form of Parabolic Equations (Case b2 − ac = 0) . . . . . . . . 25.1.3. Canonical Form of Hyperbolic Equations (Case b2 − ac > 0) . . . . . . 25.1.4. Canonical Form of Elliptic Equations (Case b2 − ac < 0) . . . . . . . . . .

1389 1389 1390 1390 1392

25.2. Nonlinear Equations in Two Independent Variables . . . . . . . . . . . . . . . . . . . . . . 1392 25.2.1. Nonlinear Equations of General Form . . . . . . . . . . . . . . . . . . . . . . . . . . 1392 25.2.2. Quasilinear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1393

C ONTENTS

26. Transformations of Equations of Mathematical Physics 26.1. Point Transformations: Overview and Examples . . . . . . . . . . . . . . . . . . . . . . . . . 26.1.1. General Form of Point Transformations . . . . . . . . . . . . . . . . . . . . . . . . 26.1.2. Linear Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.1.3. Simple Nonlinear Point Transformations . . . . . . . . . . . . . . . . . . . . . . . 26.2. Hodograph Transformations (Special Point Transformations) . . . . . . . . . . . . . . 26.2.1. One PDE: One of the Independent Variables Is Taken to Be the Dependent One . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.2.2. One PDE: Method of Conversion to an Equivalent System of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.2.3. System of Two PDEs: One of the Independent Variables Is Taken to Be the Dependent One . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.2.4. System of Two PDEs: Both of the Independent Variables Are Taken to Be the Dependent Ones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.3. Contact Transformations. Legendre and Euler Transformations . . . . . . . . . . . . 26.3.1. Preliminary Remarks. Contact Transformations for Ordinary Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.3.2. General Form of Contact Transformations for Partial Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.3.3. Legendre Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.3.4. Euler Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.3.5. Legendre Transformation with Many Variables . . . . . . . . . . . . . . . . . . 26.4. Differential Substitutions. Von Mises Transformation . . . . . . . . . . . . . . . . . . . . 26.4.1. Differential Substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.4.2. Von Mises Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.5. B¨acklund Transformations. RF Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.5.1. B¨acklund Transformations for Second-Order Equations . . . . . . . . . . 26.5.2. RF Pairs and Their Use for Constructing B¨acklund Transformations 26.6. Some Other Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.6.1. Crocco Transformation. Order Reduction of Hydrodynamic Type Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.6.2. Transformations Based on Conservation Laws . . . . . . . . . . . . . . . . . . 27. Traveling-Wave Solutions and Self-Similar Solutions 27.1. Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.2. Traveling-Wave Solutions. Invariance of Equations under Translations . . . . . 27.2.1. General Form of Traveling-Wave Solutions . . . . . . . . . . . . . . . . . . . . . 27.2.2. Invariance of Solutions and Equations under Translation Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.2.3. Functional Equation Describing Traveling-Wave Solutions . . . . . . . . 27.3. Self-Similar Solutions. Invariance of Equations Under Scaling Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.3.1. General Form of Self-Similar Solutions. Similarity Method . . . . . . . 27.3.2. Examples of Self-Similar Solutions to Mathematical Physics Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.3.3. More General Approach Based on Solving a Functional Equation. Some Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.3.4. Generalized Self-Similar Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xix 1395 1395 1395 1396 1396 1397 1397 1398 1402 1402 1403 1403 1405 1406 1407 1408 1409 1409 1410 1413 1413 1415 1422 1422 1425 1429 1429 1429 1429 1430 1431 1431 1431 1432 1434 1436

xx

C ONTENTS

28. Elementary Theory of Using Invariants for Solving Equations 28.1. Introduction. Symmetries. General Scheme of Using Invariants for Solving Mathematical Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.1.1. Symmetries. Transformations Preserving the Form of Equations. Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.1.2. General Scheme of Using Invariants for Solving Mathematical Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.2. Algebraic Equations and Systems of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 28.2.1. Algebraic Equations with Even Powers . . . . . . . . . . . . . . . . . . . . . . . . . 28.2.2. Reciprocal Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.2.3. Systems of Algebraic Equations Symmetric with Respect to Permutation of Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.3. Ordinary Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.3.1. Transformations Preserving the Form of Equations. Invariants . . . . . 28.3.2. Order Reduction Procedure for Equations with n ≥ 2 (Reduction to Solvable Form with n = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.3.3. Simple Transformations. Invariant Determination Procedure . . . . . . 28.3.4. Analysis of Some Ordinary Differential Equations. Useful Remarks 28.4. Partial Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.4.1. Transformations Preserving the Form of Equations. Invariants . . . . . 28.4.2. Procedure for Constructing Exact Solutions . . . . . . . . . . . . . . . . . . . . . 28.4.3. Examples of Constructing Invariant Solutions to Nonlinear Partial Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.4.4. Simple Inverse Problems (Determination of the Form of Equations from Their Properties) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.5. General Conclusions and Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29. Method of Generalized Separation of Variables 29.1. Exact Solutions with Simple Separation of Variables . . . . . . . . . . . . . . . . . . . . . 29.1.1. Multiplicative and Additive Separable Solutions . . . . . . . . . . . . . . . . . 29.1.2. Simple Separation of Variables in Nonlinear Partial Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.1.3. Complex Separation of Variables in Nonlinear Partial Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.2. Structure of Generalized Separable Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.2.1. General Form of Solutions. Classes of Nonlinear Equations Considered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.2.2. General Form of Functional Differential Equations . . . . . . . . . . . . . . 29.3. Simplified Scheme for Constructing Generalized Separable Solutions . . . . . . 29.3.1. Description of the Simplified Scheme for Constructing Solutions Based on Presetting One System of Coordinate Functions . . . . . . . . . 29.3.2. Examples of Finding Exact Solutions of Second- and Third-Order Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.4. Solution of Functional Differential Equations by Differentiation . . . . . . . . . . . 29.4.1. Description of the Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.4.2. Examples of Constructing Exact Generalized Separable Solutions . 29.5. Solution of Functional-Differential Equations by Splitting . . . . . . . . . . . . . . . . 29.5.1. Preliminary Remarks. Description of the Method . . . . . . . . . . . . . . . . 29.5.2. Solutions of Simple Functional Equations and Their Application . .

1439 1439 1439 1440 1441 1441 1442 1444 1445 1445 1446 1446 1447 1450 1450 1450 1451 1455 1457 1459 1459 1459 1459 1462 1464 1464 1464 1465 1465 1465 1467 1467 1467 1471 1471 1472

C ONTENTS

29.6. Titov–Galaktionov Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.6.1. Method Description. Linear Subspaces Invariant under a Nonlinear Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.6.2. Some Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.6.3. Finding Linear Subspaces Invariant Under a Given Nonlinear Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.6.4. Generalizations to Pseudo-Differential Equations . . . . . . . . . . . . . . . . 30. Method of Functional Separation of Variables

xxi 1477 1477 1479 1480 1483 1487

30.1. Structure of Functional Separable Solutions. Solution by Reduction to Equations with Quadratic Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1487 30.1.1. Structure of Functional Separable Solutions . . . . . . . . . . . . . . . . . . . . . 1487 30.1.2. Solution by Reduction to Equations with Quadratic (or Power) Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1487 30.2. Special Functional Separable Solutions. Generalized Traveling-Wave Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1487 30.2.1. Special Functional Separable and Generalized Traveling-Wave Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1487 30.2.2. General Scheme for Constructing Generalized Traveling-Wave Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1489 30.3. Differentiation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1492 30.3.1. Basic Ideas of the Method. Reduction to a Standard Equation . . . . . 1492 30.3.2. Examples of Constructing Functional Separable Solutions . . . . . . . . 1492 30.4. Splitting Method. Solutions of Some Nonlinear Functional Equations and Their Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30.4.1. Splitting Method. Reduction to a Standard Functional Equation . . . 30.4.2. Three-Argument Functional Equations of Special Form . . . . . . . . . . 30.4.3. Functional Equation f (t) + g(x) = Q(z), with z = φ(x) + ψ(t) . . . . 30.4.4. Functional Equation f (t) + g(x) + h(x)Q(z) + R(z) = 0, with z = φ(x) + ψ(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30.4.5. Functional Equation f (t) + g(x)Q(z) + h(x)R(z) = 0, with z = φ(x) + ψ(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30.4.6. Equation f1 (x) + f2 (y) + g1 (x)P (z) + g2 (y)Q(z) + R(z) = 0, z = φ(x) + ψ(y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1501

31. Direct Method of Symmetry Reductions of Nonlinear Equations

1503

31.1. Clarkson–Kruskal Direct Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.1.1. Simplified Scheme. Examples of Constructing Exact Solutions . . . . 31.1.2. Description of the Method: A Special Form for Symmetry Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.1.3. Description of the Method: the General Form for Symmetry Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1503 1503

1496 1496 1497 1498 1498 1500

1505 1506

31.2. Some Modifications and Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1507 31.2.1. Symmetry Reductions Based on the Generalized Separation of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1507 31.2.2. Similarity Reductions in Equations with Three or More Independent Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1510

xxii

C ONTENTS

32. Classical Method of Symmetry Reductions 32.1. One-Parameter Transformations and Their Local Properties . . . . . . . . . . . . . . . 32.1.1. One-Parameter Transformations. Infinitesimal Operator . . . . . . . . . . 32.1.2. Invariant of an Infinitesimal Operator. Transformations in the Plane 32.1.3. Formulas for Derivatives. Coordinates of the First and Second Prolongations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32.2. Symmetries of Nonlinear Second-Order Equations. Invariance Condition . . . 32.2.1. Invariance Condition. Splitting in Derivatives . . . . . . . . . . . . . . . . . . . 32.2.2. Examples of Finding Symmetries of Nonlinear Equations . . . . . . . . . 32.3. Using Symmetries of Equations for Finding Exact Solutions. Invariant Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32.3.1. Using Symmetries of Equations for Constructing One-Parameter Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32.3.2. Procedure for Constructing Invariant Solutions . . . . . . . . . . . . . . . . . . 32.3.3. Examples of Constructing Invariant Solutions to Nonlinear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32.3.4. Solutions Induced by Linear Combinations of Admissible Operators 32.4. Some Generalizations. Higher-Order Equations . . . . . . . . . . . . . . . . . . . . . . . . . 32.4.1. One-Parameter Lie Groups of Point Transformations. Group Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32.4.2. Group Invariants. Local Transformations of Derivatives . . . . . . . . . . 32.4.3. Invariant Condition. Splitting Procedure. Invariant Solutions . . . . . . 32.5. Symmetries of Systems of Equations of Mathematical Physics . . . . . . . . . . . . 32.5.1. Basic Relations Used in Symmetry Analysis of Systems of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32.5.2. Symmetries of Equations of Steady Hydrodynamic Boundary Layer 33. Nonclassical Method of Symmetry Reductions 33.1. General Description of the Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33.1.1. Description of the Method. Invariant Surface Condition . . . . . . . . . . 33.1.2. Scheme for Constructing Exact Solutions by the Nonclassical Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33.2. Examples of Constructing Exact Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33.2.1. Newell–Whitehead Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33.2.2. Nonlinear Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34. Method of Differential Constraints 34.1. Preliminary Remarks. Method of Differential Constraints for Ordinary Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34.1.1. Description of the Method. First-Order Differential Constraints . . . 34.1.2. Differential Constraints of Arbitrary Order. General Consistency Method for Two Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34.1.3. Some Generalizations. The Case of Several Differential Constraints 34.2. Description of the Method for Partial Differential Equations . . . . . . . . . . . . . . 34.2.1. Preliminary Remarks. A Simple Example . . . . . . . . . . . . . . . . . . . . . . 34.2.2. General Description of the Method of Differential Constraints . . . . . 34.3. First-Order Differential Constraints for PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . 34.3.1. Second-Order Evolution Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34.3.2. Second-Order Hyperbolic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 34.3.3. Second-Order Equations of General Form . . . . . . . . . . . . . . . . . . . . . .

1513 1513 1513 1514 1515 1516 1516 1516 1520 1520 1520 1522 1524 1526 1526 1526 1527 1527 1527 1528 1533 1533 1533 1533 1534 1534 1536 1539 1539 1539 1542 1543 1545 1545 1546 1547 1547 1551 1553

C ONTENTS

34.4. Second-Order Differential Constraints for PDEs. Some Generalized . . . . . . . 34.4.1. Second-Order Differential Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 34.4.2. Higher-Order Differential Constraints. Determining Equations . . . . 34.4.3. Usage of Several Differential Constraints. Systems of Nonlinear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34.5. Connection Between the Method of Differential Constraints and Other Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34.5.1. Generalized/Functional Separation of Variables vs. Differential Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34.5.2. Direct Method of Symmetry Reductions and Differential Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34.5.3. Nonclassical Method of Symmetry Reductions and Differential Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xxiii 1553 1553 1555 1557 1561 1561 1562 1562

35. Painlev´e Test for Nonlinear Equations of Mathematical Physics 1565 35.1. Movable Singularities of Solutions of Ordinary Differential Equations . . . . . . 1565 35.1.1. Examples of Solutions Having Movable Singularities . . . . . . . . . . . . 1565 35.1.2. Classification Results for Nonlinear First- and Second-Order Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1565 35.1.3. Painlev´e Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1566 35.1.4. Painlev´e Test for Ordinary Differential Equations . . . . . . . . . . . . . . . . 1566 35.1.5. Remarks on the Painlev´e Test. Fuchs Indices. Examples . . . . . . . . . . 1567 35.1.6. The Painlev´e Test for Systems of Ordinary Differential Equations . . 1569 35.2. Solutions of Partial Differential Equations with a Movable Pole. Method Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1569 35.2.1. Simple Scheme for Studying Nonlinear Partial Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1570 35.2.2. General Scheme for Analysis of Nonlinear Partial Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1570 35.2.3. Basic Steps of the Painlev´e Test for Nonlinear Equations . . . . . . . . . 1570 35.2.4. Some Remarks. Truncated Expansions . . . . . . . . . . . . . . . . . . . . . . . . . 1571 35.3. Performing the Painlev´e Test and Truncated Expansions for Studying Some Nonlinear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1572 35.3.1. Equations Passing the Painlev´e Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1572 35.3.2. Checking Whether Nonlinear Systems of Equations of Mathematical Physics Pass the Painlev´e Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1576 35.3.3. Construction of Solutions of Nonlinear Equations That Fail the Painlev´e Test, Using Truncated Expansions . . . . . . . . . . . . . . . . . . . . . 1577 36. Methods of the Inverse Scattering Problem (Soliton Theory) 36.1. Method Based on Using Lax Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36.1.1. Method Description. Consistency Condition. Lax Pairs . . . . . . . . . . . 36.1.2. Examples of Lax Pairs for Nonlinear Equations of Mathematical Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36.2. Method Based on a Compatibility Condition for Systems of Linear Equations 36.2.1. General Scheme. Compatibility Condition. Systems of Two Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36.2.2. Solution of the Determining Equations in the Form of Polynomials in λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1579 1579 1579 1580 1581 1581 1582

xxiv

C ONTENTS

36.3. Method Based on Linear Integral Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36.3.1. Description of the Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36.3.2. Specific Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36.4. Solution of the Cauchy Problem by the Inverse Scattering Problem Method . 36.4.1. Preliminary Remarks. Direct and Inverse Scattering Problems . . . . . 36.4.2. Solution of the Cauchy Problem for Nonlinear Equations by the Inverse Scattering Problem Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36.4.3. N -Soliton Solution of the Korteweg–de Vries Equation . . . . . . . . . . 37. Conservation Laws 37.1. Basic Definitions and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37.1.1. General Form of Conservation Laws. Integrals of Motion . . . . . . . . . 37.1.2. Conservation Laws for Some Nonlinear Equations of Mathematical Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37.2. Equations Admitting Variational Form. Noetherian Symmetries . . . . . . . . . . . 37.2.1. Lagrangian. Euler–Lagrange Equation. Noetherian Symmetries . . . 37.2.2. Examples of Constructing Conservation Laws Using Noetherian Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38. Nonlinear Systems of Partial Differential Equations 38.1. Overdetermined Systems of Two Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38.1.1. Overdetermined Systems of First-Order Equations in One Unknown 38.1.2. Other Overdetermined Systems of Equations in One Unknown . . . . 38.2. Pfaffian Equations and Their Solutions. Connection with Overdetermined Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38.2.1. Pfaffian Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38.2.2. Condition for Integrability of the Pfaffian Equation by a Single Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38.2.3. Pfaffian Equations Not Satisfying the Integrability Condition . . . . . . 38.3. Systems of First-Order Equations Describing Convective Mass Transfer with Volume Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38.3.1. Traveling-Wave Solutions and Some Other Invariant Solutions . . . . 38.3.2. Systems Reducible to an Ordinary Differential Equation . . . . . . . . . . 38.3.3. Some Nonlinear Problems of Suspension Transport in Porous Media 38.3.4. Some Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38.4. First-Order Hyperbolic Systems of Quasilinear Equations. Systems of Conservation Laws of Gas Dynamic Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38.4.1. Systems of Two Quasilinear Equations. Systems in the Form of Conservation Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38.4.2. Self-Similar Continuous Solutions. Hyperbolic Systems . . . . . . . . . . 38.4.3. Simple Riemann Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38.4.4. Linearization of Systems of Gas Dynamic Type by the Hodograph Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38.4.5. Cauchy and Riemann Problems. Qualitative Features of Solutions . 38.4.6. Reduction of Systems to the Canonical Form. Riemann Invariants . 38.4.7. Hyperbolic n × n Systems of Conservation Laws. Exact Solutions . 38.4.8. Shock Waves. Rankine–Hugoniot Jump Conditions . . . . . . . . . . . . . . 38.4.9. Shock Waves. Evolutionary Conditions. Lax Condition . . . . . . . . . . . 38.4.10. Solutions for the Riemann Problem. Solutions Describing Shock Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1584 1584 1585 1587 1587 1589 1591 1593 1593 1593 1593 1595 1595 1596 1599 1599 1599 1600 1600 1600 1601 1602 1602 1602 1603 1604 1606 1607 1607 1607 1609 1610 1611 1611 1614 1615 1616 1618

C ONTENTS

xxv

38.5. Systems of Second-Order Equations of Reaction-Diffusion Type . . . . . . . . . . 1620 38.5.1. Traveling-Wave Solutions and Some Other Invariant Solutions . . . . 1620 38.5.2. Generalized Separable Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1620

Part III Symbolic and Numerical Solutions of Nonlinear PDEs with Maple, Mathematica, and MATLAB 39. Nonlinear Partial Differential Equations with Maple 39.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39.2. Brief Introduction to Maple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39.2.1. Maple Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39.3. Analytical Solutions and Their Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 39.3.1. Constructing Analytical Solutions in Terms of Predefined Functions 39.3.2. Constructing Solutions via Transformations . . . . . . . . . . . . . . . . . . . . . 39.3.3. Constructing Traveling-Wave Solutions . . . . . . . . . . . . . . . . . . . . . . . . 39.3.4. Ansatz Methods (Tanh-Coth Method, Sine-Cosine Method, and Exp-Function Method) for Constructing Traveling-Wave Solutions . 39.3.5. Constructing Self-Similar Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39.3.6. Constructing Solutions along Characteristics . . . . . . . . . . . . . . . . . . . . 39.3.7. Constructing Separable Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39.4. Analytical Solutions of Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39.4.1. Constructing Traveling-Wave Solutions . . . . . . . . . . . . . . . . . . . . . . . . 39.4.2. Constructing Generalized Separable Solutions . . . . . . . . . . . . . . . . . . . 39.5. Constructing Exact Solutions Using Symbolic Computation. What Can Go Wrong? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39.5.1. Constructing New Exact Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39.5.2. Removing Redundant Exact Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 39.6. Some Errors That People Commonly Do When Constructing Exact Solutions with the Use of Symbolic Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39.6.1. General Description of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39.6.2. Examples in Which “New Solutions” Are Obtained . . . . . . . . . . . . . . 39.7. Numerical Solutions and Their Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 39.7.1. Constructing Numerical Solutions in Terms of Predefined Functions 39.7.2. Constructing Finite Difference Approximations . . . . . . . . . . . . . . . . . 39.8. Analytical-Numerical Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39.8.1. Analytical Derivation of Numerical Methods . . . . . . . . . . . . . . . . . . . . 39.8.2. Constructing Numerical Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39.8.3. Comparison of Asymptotic and Numerical Solutions . . . . . . . . . . . . . 40. Nonlinear Partial Differential Equations with Mathematica 40.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40.2. Brief Introduction to Mathematica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40.2.1. Mathematica Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40.3. Analytical Solutions and Their Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 40.3.1. Constructing Solutions Using Predefined Functions . . . . . . . . . . . . . . 40.3.2. Constructing Solutions via Transformations . . . . . . . . . . . . . . . . . . . . . 40.3.3. Constructing Traveling-Wave Solutions . . . . . . . . . . . . . . . . . . . . . . . . 40.3.4. Ansatz Methods (Tanh-Coth Method, Sine-Cosine Method, and Exp-Function Method) for Constructing Traveling-Wave Solutions .

1623 1625 1625 1625 1627 1629 1629 1635 1637 1641 1645 1647 1651 1659 1659 1661 1662 1662 1665 1668 1668 1669 1672 1672 1677 1680 1680 1683 1684 1687 1687 1687 1689 1691 1692 1694 1697 1700

xxvi

C ONTENTS

40.3.5. Constructing Self-Similar Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40.3.6. Constructing Solutions Along Characteristics . . . . . . . . . . . . . . . . . . . 40.3.7. Constructing Separable Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40.4. Analytical Solutions of Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40.4.1. Constructing Traveling-Wave Solutions . . . . . . . . . . . . . . . . . . . . . . . . 40.4.2. Constructing Generalized Separable Solutions . . . . . . . . . . . . . . . . . . . 40.5. Numerical Solutions and Their Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 40.5.1. Constructing Numerical Solutions in Terms of Predefined Functions 40.5.2. Constructing Finite-Difference Approximations . . . . . . . . . . . . . . . . . 40.6. Analytical-Numerical Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40.6.1. Analytical Derivation of Numerical Methods . . . . . . . . . . . . . . . . . . . . 40.6.2. Constructing Numerical Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40.6.3. Comparison of Asymptotic and Numerical Solutions . . . . . . . . . . . . .

1705 1706 1710 1719 1719 1721 1722 1722 1725 1728 1729 1731 1733

41. Nonlinear Partial Differential Equations with MATLAB 41.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.2. Brief Introduction to MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.2.1. MATLAB Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.3. Numerical Solutions Via Predefined Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 41.3.1. Scalar Nonlinear PDEs in One Space Dimension . . . . . . . . . . . . . . . . 41.3.2. Systems of Nonlinear PDEs in One Space Dimension . . . . . . . . . . . . 41.3.3. Nonlinear Elliptic PDEs in Two Space Dimensions . . . . . . . . . . . . . . 41.3.4. Systems of Nonlinear Elliptic PDEs in Two Space Dimensions . . . . 41.3.5. Nonlinear Elliptic PDEs. Geometrical Models . . . . . . . . . . . . . . . . . . 41.4. Solving Cauchy Problems. Method of Characteristics . . . . . . . . . . . . . . . . . . . . 41.5. Constructing Finite-Difference Approximations . . . . . . . . . . . . . . . . . . . . . . . . .

1735 1735 1735 1738 1741 1742 1745 1748 1752 1754 1756 1760

Part Supplements. Painlev´e Transcendents. Functional Equations

1767

42. Painlev´e Transcendents 42.1. Preliminary Remarks. Singular Points of Solutions . . . . . . . . . . . . . . . . . . . . . . 42.2. First Painlev´e Transcendent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.3. Second Painlev´e Transcendent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.4. Third Painlev´e Transcendent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.5. Fourth Painlev´e Transcendent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.6. Fifth Painlev´e Transcendent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.7. Sixth Painlev´e Transcendent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.8. Examples of Solutions to Nonlinear Equations in Terms of Painlev´e Transcendents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1769 1769 1770 1771 1772 1775 1776 1777

43. Functional Equations 43.1. Method of Differentiation in a Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43.1.1. Classes of Equations. Description of the Method . . . . . . . . . . . . . . . . 43.1.2. Examples of Solutions of Some Specific Functional Equations . . . . 43.2. Method of Differentiation in Independent Variables . . . . . . . . . . . . . . . . . . . . . . 43.2.1. Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43.2.2. Examples of Solutions of Some Specific Functional Equations . . . .

1783 1783 1783 1784 1785 1785 1785

1778

C ONTENTS

xxvii

43.3. Method of Argument Elimination by Test Functions . . . . . . . . . . . . . . . . . . . . . 43.3.1. Classes of Equations. Description of the Method . . . . . . . . . . . . . . . . 43.3.2. Examples of Solutions of Specific Functional Equations . . . . . . . . . . 43.4. Nonlinear Functional Equations Reducible to Bilinear Equations . . . . . . . . . . 43.4.1. Bilinear Functional Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43.4.2. Functional-Differential Equations Reducible to a Bilinear Equation 43.4.3. Nonlinear Functional Equations Containing the Complex Argument

1786 1786 1787 1789 1789 1790 1790

Bibliography

1795

Index

1841

C ONTENTS

1795

BIBLIOGRAPHY Abbot, T. N. J. and Walters, K., Rheometrical flow systems. Part 2. Theory for the orthogonal rheometer, including an exact solution of the Navier–Stokes equations, Fluid Mech., Vol. 40, pp. 205–213, 1970. Abel, M. L. and Braselton, J. P., Maple by Example, 3rd ed., AP Professional, Boston, MA, 2005. Ablowitz, M. J. and Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge Univ. Press, Cambridge, 1991. Ablowitz, M. J., Kaup, D. J., Newell, A. C., and Segur, H., The inverse scattering transform—Fourier analysis for nonlinear problems, Stud. Appl. Math., Vol. 53, pp. 249– 315, 1974. Ablowitz, M. J., Ramany, A., and Segur, H., A connection between nonlinear evolution equations and ordinary differential equations of P-type, J. Math. Phys., Vol. 21, pp. 715– 721, 1980. Ablowitz, M. J. and Segur, H., Solitons and the Inverse Scattering Transform, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1981. Ablowitz, M. J. and Zeppetella, A., Explicit solutions of Fisher’s equation for a special wave speed, Bull. Math. Biology, Vol. 41, pp. 835–840, 1979. Abramenko, A. A., Lagno, V. I., and Samoilenko, A. M., Group classification of nonlinear evolutionary equations. I. Invariance under semisimple groups of local transformations [in Russian], Diff. Uravneniya, Vol. 38, No. 3, pp. 365–372, 2002. Abramenko, A. A., Lagno, V. I., and Samoilenko, A. M., Group classification of nonlinear evolutionary equations. II. Invariance under solvable groups of local transformations [in Russian], Diff. Uravneniya, Vol. 38, No. 4, pp. 482–489, 2002. Abramowitz, M. and Stegun, I. A. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, National Bureau of Standards Applied Mathematics, Washington, 1964. Acz´el, J., Functional Equations: History, Applications and Theory, Kluwer Academic, Dordrecht, 2002. Acz´el, J., Lectures on Functional Equations and Their Applications, Dover Publications, New York, 2006. Acz´el, J. and Dhombres, J., Functional Equations in Several Variables, Cambridge University Press, Cambridge, 1989. Adler, V., Shabat, A. B., and Yamilov, R. I., Symmetry approach to the integrability problems, Theor. & Math. Phys., Vol. 125, No. 3, pp. 1603–1661, 2000. Agrawal, H. L., A new exact solution of the equations of viscous motion with axial symmetry, Quart. J. Mech. Appl. Math., Vol. 10, pp. 42–44, 1957.

1796

C ONTENTS

Akhatov, I. Sh., Gazizov, R. K., and Ibragimov, N. H., Nonlocal symmetries. Heuristic approach [in Russian], In: Itogi Nauki i Tekhniki, Ser. Sovremennye Problemy Matematiki, Noveishie Dostizheniya, Vol. 34, VINITI, Moscow, 1989 (English translation in J. Soviet Math., Vol. 55(1), p. 1401, 1991). Akhmediev, N. N. and Ankiewicz, A., Solitons. Nonlinear Pulses and Beams, Chapman & Hall, London, 1997. Akritas, A. G., Elements of Computer Algebra with Applications, Wiley, New York, 1989. Akulenko, L. D., Georgievskii, D. V., and Kumakshev, S. A., Solutions of the Jeffery– Hamel problem regularly extendable in the Reynolds number, Fluid Dynamics, Vol. 39, No. 1, pp. 12–28, 2004. Akulenko, L. D. and Kumakshev, S. A., Multimode bifurcation of the flow of a viscous fluid in a plane diffuser, Doklady Physics, Vol. 49, No. 12, pp. 620–624, 2004. Akulenko, L. D., Kumakshev, S. A., and Nesterov, S. V., Effective numerical–analytical solution of isoperimetric variational problems of mechanics by an accelerated convergence method, J. Appl. Math. Mech. (PMM), Vol. 66, No. 5, pp. 693–708, 2002. Amerov, T. K., On conditional invariance of nonlinear heat equation, In: Theoretical and Algebraic Analysis of Equations of Mathematical Physics, Inst. of Mathematics, Kiev, pp. 12–14, 1990. Ames, W. F., Nonlinear Partial Differential Equations in Engineering, Vol. 1, Academic Press, New York, 1967. Ames, W. F., Nonlinear Partial Differential Equations in Engineering, Vol. 2, Academic Press, New York, 1972. Ames, W. F., Lohner, J. R., and Adams E., Group properties of utt = [f (u)ux ]x , Int. J. Nonlinear Mech., Vol. 16, No. 5–6, p. 439, 1981. Anderson, R. L. and Ibragimov, N. H., Lie–B¨acklund Transformations in Applications, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1979. Andreev, V. K., Stability of Unsteady Motions of a Fluid with a Free Boundary [in Russian], Nauka, Novosibirsk, 1992. Andreev, V. K., Kaptsov, O. V., Pukhnachov, V. V., and Rodionov, A. A., Applications of Group-Theoretical Methods in Hydrodynamics, Kluwer, Dordrecht, 1998. Andreyanov, B. P., Vanishing viscosity method and an explicit solution of the Riemann problem with the scalar conservation law, Moscow Univ. Math. Bulletin, No. 1, pp. 3– 8, 1999. Annin, B. D., One exact solution of an axisymmetric problem of ideal plasticity, Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki [in Russian], Vol. 2, p. 171, 1973. Annin, B. D., Modern Models of Plastic Bodies [in Russian], Novosibirsk State University, Novosibirsk, 1975. Annin, B. D., Bytev, V. O., and Senashov, S. I., Group Properties of Equations of Elasticity and Plasticity [in Russian], Nauka, Novosibirsk, 1985. Aoki, H., Higher-order calculation of finite periodic standing waves by means of the computer, J. Phys. Soc. Jpn., Vol. 49, pp. 1598–1606, 1980.

C ONTENTS

1797

Appell, P., Trait´e de M´ecanique Rationnelle, T. 1: Statique. Dinamyque du Point (Ed. 6), Gauthier-Villars, Paris, 1953. Aristov, S. N., An exact solution to the point-source problem, Doklady Physics, Vol. 40, No. 7, pp. 346–348, 1995. Aristov, S. N., Three-dimensional conical viscous incompressible fluid flows, Fluid Dynamics, Vol. 33, No. 6, pp. 929–932, 1998. Aristov, S. N., Exact periodic and localized solutions of the equation ht = ∆ ln h, J. Appl. Mech. & Tech. Phys., Vol. 40, No. 1, pp. 16–19, 1999. Aristov, S. N., A stationary cylindrical vortex in a viscous fluid, Doklady Physics, Vol. 46, No. 4, pp. 251–253, 2001. Aristov, S. N. and Gitman, I. M., Viscous flow between two moving parallel disks: exact solutions and stability analysis, J. Fluid Mech., Vol. 464, pp. 209–215, 2002. Aristov, S. N. and Knyazev, D. V., New exact solution of the problem of rotationally symmetric Couette–Poiseuille flow, J. Appl. Mech. & Tech. Phys., Vol. 48, No. 5, pp. 680–685, 2007. Aristov, S. N. and Knyazev, D. V., Localized helically symmetric flows of an ideal fluid, J. Appl. Mech. & Tech. Phys., Vol. 51, No. 6, pp. 815–818, 2010. Aristov, S. N., Knyazev, D. V., and Polyanin, A. D., Exact solutions of the Navier–Stokes equations with the linear dependence of velocity components of two space variables, Theor. Foundations of Chemical Engineering, Vol. 43, No. 5, pp. 642–662, 2009. Aristov, S. N. and Polyanin, A. D., Exact solutions of unsteady three-dimensional Navier– Stokes equations, Doklady Physics, Vol. 54, No. 7, pp. 316–321, 2009. Aristov, S. N. and Polyanin, A. D., New classes of exact solutions and some transformations of the Navier–Stokes equations, Russian J. of Math. Physics, Vol. 17, No. 1, pp. 1–18, 2010. Aristov, S. N. and Pukhnachev, V. V., On the equations of axisymmetric motion of a viscous incompressible fluid, Doklady Physics, Vol. 49, No. 2, pp. 112–115, 2004. Arnold, V. I., Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1980. Arnold, V. I., Arnold’s Problems [in Russian], Fazis, Moscow, 2000 [English Edition, Springer, 2005]. Arrigo, D., Broadbridge, P., and Hill, J. M., Nonclassical symmetry solutions and the methods of Bluman–Cole and Clarkson–Kruskal, J. Math. Phys., Vol. 34, pp. 4692– 4703, 1993. Ashwell, D. G., Quart. J. Mech. Appl. Math., Vol. 10, p. 169, 1957. Astafiev, V. I., Radayev, Yu. N., and Stepanova, L. V., Nonlinear Fracture Mechanics [in Russian], Samarsky University Publ., Samara, 2001. Babich, V. M., Kapilevich, M. B., Mikhlin, S. G., et al., Linear Equations of Mathematical Physics [in Russian], Nauka, Moscow, 1964. Bahder, T. B., Mathematica for Scientists and Engineers, Addison-Wesley, Redwood City, CA, 1995.

1798

C ONTENTS

Baidulov, V. G., Nonlinear dynamics of internal waves within the framework of a onedimensional model, Doklady Physics, Vol. 55, No. 6, pp. 302–307, 2010. Baikov, V. A., Approximate group analysis of nonlinear models of continuum mechanics, Ph.D. thesis [in Russian], Keldysh Institute of Applied Mathematics, Moscow, 1990. Baikov, V. A., Gazizov, R. K., and Ibragimov, N. H., Perturbation methods in group analysis [in Russian], in: Contemporary Problems of Mathematics, Vol. 34 (Itogi Nauki i Tekhniki, VINITI AN USSR), Moscow, pp. 85–147, 1989. Bakirova, M. I., Dimova, S. N., Dorodnitsyn, V. A., Kurdyumov, S. P., Samarskii, A. A., and Svirshchevskii, S. R., Invariant solutions of heat equation describing the directed propagation of combustion and spiral waves in nonlinear medium [in Russian], Dokl. Acad. Nauk USSR, Vol. 299, No. 2, pp. 346–350, 1988. Barannyk, T., Symmetry and exact solutions for systems of nonlinear reaction-diffusion equations, Proc. of Inst. of Mathematics of NAS of Ukraine, Vol. 43, Part 1, pp. 80–85, 2002. Barannyk, T. A. and Nikitin, A. G., Solitary wave solutions for heat equations, Proc. of Inst. of Mathematics of NAS of Ukraine, Vol. 50, Part 1, pp. 34–39, 2004. Barbashev, B. M. and Chernikov, N. A., Solution and quantization of a nonlinear twodimensional Born–Infeld type model [in Russian], Zhurn. Eksper. i Teor. Fiziki, Vol. 50, No. 5, pp. 1296–1308, 1966. Bardi, M. and Dolcetta, I. C., Optimal Control and Viscosity Solutions of Hamilton– Jacobi–Bellman Equations, Birkh¨auser, Boston, 1998. Barenblatt, G. I., On nonsteady motions of gas and fluid in porous medium, Appl. Math. and Mech. (PMM), Vol. 16, No. 1, pp. 67–78, 1952. Barenblatt, G. I., Dimensional Analysis, Gordon & Breach, New York, 1989. Barenblatt, G. I. and Chernyi, G. G., On moment relations on surface of discontinuity in dissipative media, J. Appl. Math. Mech. (PMM), Vol. 27, No. 5, pp. 1205–1218, 1963. Barenblatt, G. I., Entov, V. M., and Ryzhik, V. M., Theory of Fluid Flows Through Natural Rocks, Kluwer, Dordrecht, 1991. Barenblatt, G. I. and Zel’dovich, Ya. B., On dipole-type solutions in problems of nonstationary filtration of gas under polytropic regime [in Russian], Prikl. Math. Mech. (PMM), Vol. 21, pp. 718–720, 1957. Barenblatt, G. I. and Zel’dovich, Ya. B., Self-similar solutions as intermediate asymptotics, Annual Rev. of Fluid Mech., Vol. 4, pp. 285–312, 1972. Barron, E. N. and Jensen, R., Generalized viscosity solutions for Hamilton–Jacobi equations with time-measurable Hamiltonians, J. Different. Equations, Vol. 68, No. 1, pp. 10–21, 1987. Batchelor, G. K., Note on class of solutions of the Navier–Stokes equations representing steady rotationally-symmetric flow, Quart. J. Mech. Appl. Math., Vol. 4, pp. 29–41, 1951. Batchelor, G. K., An Introduction of Fluid Dynamics, Cambridge Univ. Press, Cambridge, 1970.

C ONTENTS

1799

Baumann, G., Symmetry Analysis of Differential Equations with Mathematica, SpringerVerlag, New York, 2000. Beals, R., Sattinger, D. H., and Szmigielski, J., Inverse scattering solutions of the Hunter– Saxton equation, Applicable Analysis, Vol. 78, No. 3–4, pp. 255–269, 2001. Becker, E., Laminar film flow on a cylindrical surface, J. Fluid Mech., Vol. 74, pp. 297– 315, 1976. Bedrikovetsky, P. G., Mathematical Theory of Oil and Gas Recovery, Kluwer, Dordrecht, 1993. Bedrikovetsky P. Systems of First-Order Equations Describing Convective Mass Transfer with Volume Reaction, In: Handbook of Mathematics for Engineers and Scientists (by Polyanin A. D., Manzhirov A. V.), pp. 779–780. Boca Raton–London: Chapman & Hall/CRC Press, 2007. Bedrikovetsky, P. G. and Chumak, M.L., Exact solutions for two-phase multicomponent flow in porous media [in Russian], Doklady AN USSR, Vol. 322, No. 4, pp. 668–673, 1992a. Bedrikovetsky, P. G. and Chumak, M.L., Riemann problem for two-phase four and more component displacement (ideal mixtures), Proc. 3rd European Conference on the Mathematics in Oil Recovery, Delft, Holland, pp. 139–148, 1992b. Bekir, A., Application of the G′ /G-expansion method for nonlinear evolution equations, Phys. Lett. A, Vol. 372, pp. 3400–3406, 2008. Bellamy-Knights, P. G., Unsteady multicellular viscous vortices, J. Fluid Mech., Vol. 50, pp. 1–16, 1971. Bellman, R., Dynamic Programming, Princeton Univ. Press, Pricenton, NJ, 1957. Belokolos, E. D., General formulae for solutions of initial and boundary value problems for sine-Gordon equation, Theor. & Math. Phys., 1995, Vol. 103, No. 3, pp. 613–620. Belokolos, E. D., Bobenko, A. I., Enol’skii, V. Z., Its, A. R., and Matveev, V. B., AlgebroGeometric Approach to Nonlinear Integrable Equations, Springer, Berlin, 1994. Belotserkovskii, O. M. and Oparin, A. M., Numerical Experiment in Turbulence [in Russian], Nauka, Moscow, 2000. Benjamin, T. B., Bona, J. L., and Mahony, J. J., Model equation for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London, Vol. 272A, pp. 47–78, 1972. Benton, E. R. and Platzman, G. W., A table of solutions of the one-dimensional Burgers equation, Quart. Appl. Math., Vol. 30, pp. 195–212, 1972. Berezkin, E. N., Lectures on Theoretical Mechanics [in Russian], Izd-vo Moskovskogo Universiteta, Moscow, 1968. Berker, R., Int´egration des e´ quations du mouvement d’un fluide visqueux incompressible, In: Encyclopedia of Physics, Vol. VIII/2 (Ed. S. Fl¨ugge), pp. 1–384, Springer-Verlag, Berlin, 1963. Berker, R., A new solution of the Navier–Stokes equations for the motion of a fluid contained between parallel plates rotating about the same axis, Arch. Mech. Stosow, Vol. 31, No. 2, pp. 265–280, 1979.

1800

C ONTENTS

Berker, R., An exact solution of the Navier-Stokes equation: the vortex with curvilinear axis, Int. J. Eng. Sci., Vol. 20, No. 2, pp. 217–230, 1981. Berker, R., An exact solution of the Navier–Stokes equation: the vortex with curvilinear axis, Int. J. Eng. Sci., Vol. 20, No. 2, pp. 217–230, 1982. Berman, A. S., Laminar flow in channels with porous walls, J. Appl. Physics, Vol. 24, No. 9, pp. 1232–1235, 1953. Berman, A. S., Effects of porous boundaries on the flow of fluids in systems with various geometries, Proc. 2nd Int. Conf. on Peaceful Uses of Atomic Energy, Vol. 4, Geneva: UN, pp. 353–358, 1958. Berman, V. S., Group properties of a hyperbolic system of two differential equations encountered in the theory of mass transfer, Fluid Dynamics, Vol. 16, No. 3, pp. 367– 373, 1981. Berman, V. S. and Danilov, Yu. A., On group properties of the generalized Landau– Ginzburg solution [in Russian], Doklady AN USSR, Vol. 258, No. 1, pp. 67–70, 1981. Berman, V. S., Galin, L. A., and Churmaev, O. M., Analysis of a simple model of a bubble-liquid reactor, Fluid Dynamics, Vol. 14, No. 5, pp. 740–747, 1979. Bertozzi, A. L. and Pugh, M., The lubrication approximations for thin viscous films: regularity and long time behaviour of weak solutions, Commun. Pure Appl. Math., Vol. 49, pp. 85–123, 1996. Bertsch, M., Kersner, R., and Peletier, L. A., Positivity versus localization in degenerate diffusion equations, Nonlinear Analys., Theory, Meth. and Appl., Vol. 9, No. 9, pp. 987– 1008, 1985. Bespalov, V. I. and Pasmannik, G. A., Nonlinear Optics and Adaptive Laser Systems [in Russian], Nauka, Moscow, 1986. Beutler, R., Positon solutions of the sine-Gordon equation, J. Math. Phys., Vol. 34, pp. 3098–3109, 1993. Bickley, W., The plane jet, Phil. Mag., Ser. 7, Vol. 23, pp. 727–731, 1939. Bikbaev, R. F., Shock waves in the modified Korteweg–de Vries–Burgers equation, J. Nonlinear Sci., Vol. 5, pp. 1–10, 1995. Bird, R. B. and Curtiss, C. F., Tangential Newtonian flow in annuli. 1. Unsteady state velocity profiles, Chem. Eng. Sci., Vol. 11, No. 2, pp. 108–113, 1959. Birkhoff, G., Hydrodynamics, Princeton University Press, Princeton, NJ, 1950. Blasius, H., Crenzschichten in Flussigkeiten mit Kleiner Reibung, Zeitschr. f¨ur Math. und Phys., Bd. 56, Ht. 1, S. 1–37, 1908. Bluman, G. W. and Cole, J. D., The general similarity solution of the heat equation, J. Math. Mech., Vol. 18, pp. 1025–1042, 1969. Bluman, G. W. and Cole, J. D., Similarity Methods for Differential Equations, SpringerVerlag, New York, 1974. Bluman, G. W. and Kumei, S., On the remarkable nonlinear diffusion equation [a(u + b)−2 ux]x − ut = 0, J. Math. Phys., Vol. 21, No. 5, pp. 1019–1023, 1980.

C ONTENTS

1801

Bluman, G. W. and Kumei, S., Symmetries and Differential Equations, Springer-Verlag, New York, 1989. Blyth, M. G. and Hall, P., Oscillatory flow near a stagnation point, SIAM J. Appl. Math., Vol. 63, pp. 1604–1614, 2003. Blyth, M. G., Hall, P., and Parageorgiu, D. T., Chaotic flows in pulsating cylindrical tubes: a class of exact Navier–Stokes solutions, J. Fluid Mech., Vol. 481, pp. 187–213, 2003. B¨odewadt, U. T., Die Drehstromung uber festem Grunde, ZAMM, Vol. 20, pp. 241–253, 1940. Bodonyi, R. J. and Stewartson, K., The unsteady laminar boundary layer on a rotating disk in a counter-rotating fluid, J. Fluid Mech., Vol. 79, pp. 669–688, 1977. Bogdanov, L. V. and Zakharov, V. E., The Boussinesq equation revisited, Phys. D., Vol. 165, pp. 137–162, 2002. Bogoyavlenskij, O. I., Exact solutions to the Navier–Stokes equations, Comptes Rendus Math. Acad. Sci. Soc. R. Canada, Vol. 24, No. 4, pp. 138–143, 2002. Bogoyavlenskij, O. I., Exact solutions to the Navier–Stokes equations equations and viscous MHD equations, Phys. Letters A, Vol. 307, No. 5–6, pp. 281–286, 2003. Boisvert, R. E., Ames, W. F., and Srivastava, U. N., Group properties and new solutions of Navier–Stokes equations, J. Eng. Math.,, Vol. 17, pp. 203–221, 1983. Boldea, C.-R., A generalization for peakon’s solitary wave and Camassa–Holm equation, General Math., Vol. 5, No. 1–4, pp. 33–42, 1995. Boltyanskii, V. G. and Vilenkin, N. Ya., Symmetry in Algebra, 2nd ed. [in Russian], Nauka, Moscow, 2002. Bona, J. L. and Schonbek, M. E., Travelling-wave solutions to the Korteweg–de Vries– Burgers equation, Proc. Roy. Soc. Edinburgh, Sect. A, Vol. 101, pp. 207–226, 1985. Born, M. and Infeld, L., Foundations of a new field theory, Proc. Roy. Soc. London, Ser. A, Vol. 144, No. 5, pp. 425–451, 1934. Boussinesq, J., Sur l’influence des frottements dans les mouvements reguli`eres des fluides, J. Math. Pure Appl., Vol. 33, pp. 377–438, 1868. Boussinesq, J., Th´eorie g´en´erale des mouvements qui sont propag´es dans un canal rectangulaire horizontal, Comptes Rendus Acad. Sci., Paris, Vol. 73, pp. 256–260, 1971. Boussinesq, J., Th´eorie des ondes et des remous qui se propagent le long d’une canal rectangulaire horizontal, et communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl., Ser. 2, Vol. 17, pp. 55–108, 1872. Boussinesq, J., Recherches th´eorique sur l’´ecoulement des nappes d’eau infiltr´ees dans le sol et sur le d´ebit des sources, J. Math. Pures Appl., Vol. 10, No. 1, pp. 5–78, 1904. Bowen, W. R. and Williams, P. M., Finite difference solution of the 2-dimensional Poisson–Boltzmann equation for spheres in confined geometries, Colloids and Surfaces A: Physicochem. and Eng. Aspects, Vol. 204, pp. 103–115, 2002.

1802

C ONTENTS

Brady, J. F. and Acrivos, A., Steady flow in a channel or tube with an accelerating surface velocity. An exact solution to the Navier–Stokes equations with reverse flow, J. Fluid Mech., Vol. 112, pp. 127–150, 1981. Brady, J. F. and Durlofsky, L., On rotating disk flow, J. Fluid Mech., Vol. 175, pp. 363– 394, 1987. Bratus’, A. S. and Volosov, K. A., Exact solutions of the Hamilton–Jacobi–Bellman equation for problems of optimal correction with an integral constraint on the total control resource [in Russian], Doklady RAN, Vol. 385, No. 3, pp. 319–322, 2002. Brennen, C. E., Fundamentals of Multiphase Flow, Cambridge Univ. Press, 2005 Bressan, A., Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem, Oxford University Press, 2000. Bressan, A. and Constantin, A., Global solutions of the Hunter–Saxton equation, SIAM J. Math. Anal., Vol. 37, No. 3, 996–1026, 2005. Bressan, A. and Constantin, A., Global conservative solutions of the Camassa–Holm equation, Arch. Ration. Mech. Anal., Vol. 183, No. 2, pp. 215–239, 2007 a. Bressan, A. and Constantin, A., Global dissipative solutions of the Camassa–Holm equation, Anal. Appl., Vol.5, pp. 1–27, 2007 b. Bretherton, F. P., The motion of long bubbles in tubes, J. Fluid Mech., Vol. 10, No. 2, pp. 166–168, 1962. Bridgman, P. W., Dimensional Analysis, Yale Univ. Press, New Haven, 1931. Broman, G. I. and Rudenko, O. V., Submerged Landau jet: exact solutions, their meaning and application, Physics-Uspekhi, Vol. 53, No. 1, pp. 91–98, 2010. Bryant, P. J. and Stiassnie M., Different forms for nonlinear standing waves in deep water, J. Fluid Mech., Vol. 272, pp. 135–156, 1994. Buchnev, A. A., A Lie group admitted by the ideal incompressible fluid equations [in Russian], In: Dinamika Sploshnoi Sredy, No. 7, Inst. gidrodinamiki AN USSR, Novosibirsk, pp. 212–214, 1971. Buckley, S. E. and Leverett, M. C., Mechanisms of oil displacement in sands, Trans. AIME, Vol. 142, pp. 107–116, 1942. Bullough, R. K., Solitons, In: Interaction of Radiation and Condensed Matter, Vol. 1, IAEA–SMR–20/51 (International Atomic Energy Agency, Vienna), pp. 381–469, 1977. Bullough, R. K., Solitons, Phys. Bull., February, pp. 78–82, 1978. Bullough, R. K. and Caudrey, P. J. (Eds.), Solitons, Springer-Verlag, Berlin, 1980. Burde, G. I., On the motion of fluid near a stretching circular cylinder, J. Appl. Math. Mech. (PMM), Vol. 53, pp. 271–273, 1989. Burde, G. I., The construction of special explicit solutions of the boundary-layer equations. Steady flows, Quart. J. Mech. Appl. Math., Vol. 47, No. 2, pp. 247–260, 1994. Burde, G. I., The construction of special explicit solutions of the boundary-layer equations. Unsteady flows, Quart. J. Mech. Appl. Math., Vol. 48, No. 4, pp. 611–633, 1995. Burde, G. I., New similarity reductions of the steady-state boundary-layer equations, J. Phys. A: Math. Gen., Vol. 29, No. 8, pp. 1665–1683, 1996.

C ONTENTS

1803

Burde, G. I., Potential symmetries of the nonlinear wave equation utt = (uux )x and related exact and approximate solutions, J. Phys. A., Vol. 34, pp. 5355–5371, 2001. Burgan, J. R., Munier, A., Feix, M. R., and Fijalkow, E., Homology and the nonlinear heat diffusion equation, SIAM J. Appl. Math., Vol. 44, No. 1, pp. 11–18, 1984. Burgers, J. M., A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech., Vol. 1, pp. 171–199, 1948. Burt, P. B., Exact, multiple soliton solutions of the double sine-Gordon equation, Proc. Roy. Soc. London, Ser. A, Vol. 359, pp. 479–495, 1978. Bytev, V. O., Nonsteady motion of a rotating ring of viscous incompressible fluid with free boundary, J. Appl. Mech. & Tech. Phys., No. 3, p. 83, 1970. Bytev, V. O., Group properties of the Navier–Stokes equations [in Russian], Numerical Methods in Continuum Mechanics (Novosibirsk), Vol. 3, No. 3, pp. 13–17, 1972. Bytev, V. O., Invariant solutions of the Navier–Stokes equations, J. Appl. Mech. & Tech. Phys., No. 6, p. 56, 1972. Calmet, J. and van Hulzen, J. A., Computer Algebra Systems. Computer Algebra: Symbolic and Algebraic Computations, Springer, New York, 2nd ed., 1983. Calogero, F., A solvable nonlinear wave equation, Stud. Appl. Math., Vol. 70, No. 3, pp. 189–199, 1984. Calogero, F., Universality and integrability of the nonlinear evolution PDE’s describing N-wave interactions, J. Math. Phys., Vol. 30, No. 1, pp. 28–40, 1989. Calogero, F. and Degasperis, A., Nonlinear evolution equations solvable by the inverse spectral transform. I, Nuovo Cimento B, Vol. 32, pp. 201–242, 1976. Calogero, F. and Degasperis, A., Spectral Transform and Solitons: Tolls to Solve and Investigate Nonlinear Evolution Equations, North-Holland Publishing Company, Amsterdam, 1982. Camassa, R. and Holm, D. D., An integrable shallow water equation with peaked solitons, Phys. Rev. Letter, Vol. 71, No. 11, pp. 1661–1664, 1993. Camassa, R., Holm, D. D., and Hyman, J. M., A new integrable shallow water equation, Adv. Appl. Mech., Vol. 31, pp. 1–33, 1994. Camassa, R. and Zenchuk, A. I., On the initial value problem for a completely integrable shallow water equation, Phys. Letters A, Vol. 281, pp. 26–33, 2001. Cantwell, B. J., Similarity transformations for the two-dimensional, unsteady, stream function equation, J. Fluid Mech., Vol. 85, No. 2, pp. 257–271, 1978. Cantwell, B. J., Introduction to Symmetry Analysis, Cambridge Univ. Press, Cambridge, 2002. Cariello, F. and Tabor, M., Painlev´e expansions for nonintegrable evolution equations, Physica D, Vol. 39, No. 1, pp. 77–94, 1989. Carnie, S. L., Chan, D. Y. C., and Stankovich, J., Computation of forces between spherical colloidal particles: nonlinear Poisson–Boltzmann theory, J. Colloid Interface Sci., Vol. 165, pp. 116–128, 1994.

1804

C ONTENTS

Carslaw, H. S. and Jaeger, J. C., Conduction of Heat in Solids, Clarendon Press, Oxford, 1984. Castillo, E. and Ruiz-Cobo, M. R., Functional Equations and Modelling in Science and Engineering, Marcel Dekker, New York, 1992. Castillo, E. and Ruiz-Cobo, R., Functional Equations in Applied Sciences, Elsevier, New York, 2005. Cavalcante, J. A. and Tenenblat, K., Conservation laws for nonlinear evolution equations, J. Math. Physics, Vol. 29, No. 4, pp. 1044–1049, 1988. Chadan, K., Colton, D., Paivarinta, L., and Rundell, W., An Introduction to Inverse Scattering and Inverse Spectral Problems, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1997. Chaplygin, S. A., Gas jets, Uchenye Zapiski Imper. Univ., Otdel. Fiz.-Mat., Vol. 21, pp. 1–121, 1904; GITTL, Moscow–Leningrad, 1949; Tech. Memos. Nat. Adv. Comm. Aeronaut., No. 1063, 112 pp., 1944. Char, B. W., Geddes, K. O., Gonnet, G. H., Monagan, M. B., and Watt, S. M., Maple Reference Manual, Waterloo Maple Publishing, Waterloo, Ontario, Canada, 1990. Cheb-Terrab, E. S. and von Bulow, K., A computational approach for the analytical solving of partial differential equations, Computer Physics Communications, Vol. 90, pp. 102–116, 1995. ¨ Cheng, E. H. W., Ozisik, M. N., and Williams III, J. C., Nonsteady three-dimensional stagnation-point flow, J. Appl. Mech., Vol. 38, pp. 282–287, 1971. Cherniha, R. M., Conditional symmetries for systems of PDEs: new definitions and their application for reaction–diffusion systems, J. Phys. A: Math. Theor., Vol. 43 (405207), p. 13, 2010. Cherniha, R. M. and Davydovych, V., Conditional symmetries and exact solutions of the diffuse Lotka–Volterra system, arXiv: 1012.5747v1 [math-ph], 2010. Cherniha, R. M. and Dutka, V. A., Diffusive Lotka–Volterra system: Lie symmetries and exact and numerical solutions, Ukrainian Math. J., Vol. 56, No. 10, pp. 1665–1675, 2004. Cherniha, R. M. and King, J. R., Lie symmetries of nonlinear multidimensional reactiondiffusion systems: I, J. Phys. A: Math. Gen., Vol. 33, pp. 267–282, 7839–7841, 2000. Cherniha, R. M. and King, J. R., Lie symmetries of nonlinear multidimensional reactiondiffusion systems: II, J. Phys. A: Math. Gen., Vol. 36, pp. 405–425, 2003. Cherniha, R. M. and Myroniuk, L., New exact solutions of a nonlinear cross-diffusion system J. Phys. A: Math. Theor., Vol. 41 (395204), 2008. Chernousko, F. L., Self-similar solutions of the Bellman equation for optimal correction of random disturbances, Appl. Math. and Mech. (PMM), Vol. 35, No. 2, pp. 291–300, 1971. Chernousko, F. L. and Kolmanovskii, V. B., Optimal Control with Random Disturbances [in Russian], Nauka, Moscow, 1978. Chernyi, G. G., Gas Dynamics [in Russian], Nauka, Moscow, 1988.

C ONTENTS

1805

Chipot, M. (Ed.), Handbook of Differential Equations. Stationary Partial Differential Equations, Vols 4 and 5, Elsevier, Amsterdam, 2007 and 2008. Chipot, M. and Quittner, P. (Eds.), Handbook of Differential Equations. Stationary Partial Differential Equations, Vols 1–3, Elsevier, Amsterdam, 2004–2006. Chou, T., Symmetries and a hierarchy of the general KdV equation, J. Phys. A, Vol. 20, pp. 359–366, 1987. Chowdhury, A. R., Painlev´e Analysis and Its Applications, Chapman & Hall/CRC Press, Boca Raton, 2000. Chun, C., Soliton and periodic solutions for the fifth-order KdV equation with the Expfunction method, Physics Letters A, Vol. 372, No. 16, pp. 2760–2766, 2008. Cicogna, G., “Weak” symmetries and adopted variables for differential equations, Int. J. Geometric Meth. Modern Phys., Vol. 1, No. 1–2, pp. 23–31, 2004. Citti, G., Pascucci, A., and Polidoro S., On the regularity of solutions to a nonlinear ultraparabolic equation arising in mathematical finance, Differential & Integral Equations, Vol. 14, No. 6, pp. 701–738, 2001. Clarkson, P. A., Painlev´e analysis of the damped, driven nonlinear Schr¨odinger equation, Proc. Roy. Soc. Edinburgh, Vol. 109A, No. 1, pp. 109–126, 1988. Clarkson, P. A., Nonclassical symmetry reductions for the Boussinesq equation, Chaos, Solitons and Fractals, Vol. 5, pp. 2261–2301, 1995. Clarkson, P. A., Fokas, A. S., and Ablowitz, M. J., Hodograph transformations on linearizable partial differential equations, SIAM J. Appl. Math., Vol. 49, pp. 1188–1209, 1989. Clarkson, P. A. and Hood, S., Nonclassical symmetry reductions and exact solutions of the Zabolotskaya–Khokhlov equation, Eur. J. Appl. Math., Vol. 3, pp. 381–415, 1992. Clarkson, P. A. and Kruskal, M. D., New similarity reductions of the Boussinesq equation, J. Math. Phys., Vol. 30, No. 10, pp. 2201–2213, 1989. Clarkson, P. A., Ludlow, D. K., and Priestley, T. J., The classical, direct and nonclassical methods for symmetry reductions of nonlinear partial differential equations, Methods and Applications of Analysis, Vol. 4, No. 2, pp. 173–195, 1997. Clarkson, P. A. and Mansfield, E. L., Symmetry reductions and exact solutions of a class of nonlinear heat equations, Physica D, Vol. 70, No. 3, pp. 250–288, 1994. Clarkson, P. A., McLeod, J. B., Olver, P. J., and Ramani, R., Integrability of Klein– Gordon equations, SIAM J. Math. Anal., Vol. 17, pp. 798–802, 1986. Clarkson, P. A. and Priestley, T. J., On a shallow water wave system, Stud. Appl. Math., Vol. 101, pp. 389–432, 1998. Clarkson, P. A. and Winternitz, P., Nonclassical symmetry reductions for the Kadomtsev– Petviashvili equation, Physica D, Vol. 49, pp. 257–272, 1991. Cochran, W. G., The flow due to a rotating disc, Proc. Cambridge Philos. Soc., Vol. 30, pp. 365–375, 1934. Coclite, G. M. and Karlsen, K. H., On the well-posedness of the Degasperis–Procesi equation, J. Funct. Anal., Vol. 233, No. 1, pp. 60–91, 2006.

1806

C ONTENTS

Cohen, B. J., Krommes, J. A., Tang, W. M., and Rosenbluth, M. N., Nonlinear saturation of the dissipative trapped-ion mode by mode coupling, Nuclear Fusion, Vol. 16, No. 6, pp. 971–992, 1976. Cole, J. D., On a quasi-linear parabolic equation occurring in aerodynamics, Quart. Appl. Math., Vol. 9, No. 3, pp. 225–236, 1951. Cole, J. D. and Cook, L. P., Transonic Aerodynamics, North-Holland, Amsterdam, 1986. Concus, P., Standing capillary-gravity waves of finite amplitude, J. Fluid Mech., Vol. 14, pp. 568–576, 1962. Constantin, A. and Escher, J., Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., Vol. 181, No. 2, pp. 229–243, 1998. Constantin, A., Gerdjikov, V. S., and Ivanov, R. I., Inverse scattering transform for the Camassa–Holm equation, Inverse Problems, Vol. 22, No. 6, pp. 2197–2207, 2006. Conte, R., Invariant Painlev´e analysis for partial differential equations, Phys. Lett., Ser. A, Vol. 140, No. 7–8, pp. 383–390, 1989. Conte, R. (Ed.), The Painlev´e Property. One Century Later, Springer-Verlag, New York, 1999. Conte, R., Exact solutions of nonlinear partial differential equations by singularity analysis, Lect. Notes Phys., Vol. 632, pp. 1–83, 2003. Conte, R. and Musette, M., Painlev´e analysis and B¨acklund transformation in the Kuramoto–Sivashinsky equation, J. Phys. A, Vol. 22, pp. 169–177, 1989. Conte, R. and Musette, M., Linearity inside nonlinearity: Exact solutions to the complex Ginzburg–Landau equation, Physica D, Vol. 69, No. 1, pp. 1–17, 1993. Conte, R. and Musette, M., The Painlev´e Handbook, Springer, 2008. Corless, R. M., Essential Maple, Springer, Berlin, 1995. ` Couette, M., Etudes sur le frottement des liquides, Ann. Chim. Phys., Vol. 21, No. 6, pp. 433–510, 1890. Courant, R., Partial Differential Equations, InterScience, New York, 1962. Courant, R. and Friedrichs, R., Supersonic Flow and Shock Waves, Springer-Verlag, New York, 1985. Courant, R. and Hilbert, D., Methods of Mathematical Physics, Vol. 2, Wiley–Interscience Publ., New York, 1989. Cox, S. M., Nonaxisymmetric flow between an air table and a floating disk, Phys. Fluids, Vol. 14, pp. 1540–1543, 2002. ¨ Crabtree, F. L., Kuchemann, D., and Sowerby, L., In: Laminar Boundary Layers (Ed. L. Rosenhead), Oxford University Press, Oxford, 1963. Craik, A., The stability of unbounded two- and three-dimensional flows subject to body forces: some exact solutions, J. Fluid Mech., Vol. 198, pp. 275–292, 1989. Crandall, M. G., Evans, L. C., and Lions, P.-L., Some properties of viscosity solutions of Hamilton–Jacobi equations, Trans. Amer. Math. Soc., Vol. 283, No. 2, pp. 487–502, 1984.

C ONTENTS

1807

Crandall, M. G., Ishii, H., and Lions, P.-L., User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., Vol. 27, No. 1, pp. 1–67, 1992. Crandall, M. G. and Lions, P.-L., Viscosity solutions of Hamilton–Jacobi equations, Trans. Amer. Math. Soc., Vol. 277, No. 1, pp. 1–42, 1983. Crane, L. J., Flow past a stretching plate, Z. Angew. Math. Phys. (ZAMP), Vol. 21, pp. 645– 647, 1970. Crank, J., The Mathematics of Diffusion, Clarendon Press, Oxford, 1975. Crank, J. and Nicolson, P., A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type, Proc. Camb. Philos. Soc., Vol. 43, pp. 50–67, 1947. Crudeli, U., Sui moti di un liquido viscoso (omogeno) simmetrici rispetto ad un asse, Atti Reale Accad. Naz. dei Lincei. Rendiconti, Ser. 6, Vol. 5, No. 7, pp. 500–504, 1927 a. Crudeli, U., Una nuova categoria di moti stazionary dei liquidi (pesanty) viscosi entro tubi cilindrici (rotondi) verticali, Atti Reale Accad. Naz. dei Lincei. Rendiconti, Ser. 6, Vol. 5, No. 10, pp. 783–789, 1927 b. Crudeli, U., Sopra una categoria di moti stazionary dei liquidi (pesanty) viscosi entro tubi cilindrici (rotondi) verticali, Atti Reale Accad. Naz. dei Lincei. Rendiconti, Ser. 6, Vol. 6, No. 10, pp. 397–401, 1927 c. Cunning, G. M., Davis, A. M. J., and Weidman, P. D., Radial stagnation flow on a rotating circular cylinder with uniform transpiration, J. Eng. Math., Vol. 33, pp. 113– 128, 1998. Czerwik, S., Functional Equations and Inequalities in Several Variables, World Scientific Publ., Singapore, 2002. Dafermos, C. M., Hyperbolic Systems of Conservation Laws, In: Systems of Non-Linear Partial Differential Equations, (Eds. D. Reidel and J. S. Ball), Kluwer, Dordrecht, pp. 24-70, 1983. Dafermos, C. M., Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag, Berlin, 2000. Dafermos, C. M. and Feireisl, E. (Eds.), Handbook of Differential Equations. Evolutionary Equations, Vols 1–3, Elsevier, Amsterdam, 2004–2006. Dafermos, C. M. and Pokorny M. (Eds.), Handbook of Differential Equations. Evolutionary Equations, Vols 4 and 5, Elsevier, Amsterdam, 2008 and 2009. Danberg, J. E. and Fansler, K. S., A nonsimilar moving-wall boundary-layer problem, Q. Appl. Math., Vol. 33, pp. 305–309, 1976. Danilov, V. G. and Subochev, P. Yu., Wave solutions of semilinear parabolic equations, Theor. & Math. Phys., Vol. 89, No. 1, pp. 1029–1045, 1991. Danilov, V. G., Maslov V. P., and Volosov, K. A., Mathematical Modelling of Heat and Mass Transfer Processes, Kluwer, Dordrecht, 1995. Dankwerts, P. V., Gas–Liquid Reactions, McGraw-Hill, New York, 1970.

1808

C ONTENTS

Daroczy, Z. and Pales, Z. (Eds.), Functional Equations—Results and Advances, Kluwer Academic, Dordrecht, 2002. Dauenhauer, E. C. and Majdalani, J., Exact self-similarity solution of the Navier–Stokes equations for a porous channel with orthogonally moving walls, Phys. Fluids, Vol. 15, pp. 1485–1495, 2003. Dauxois, T. and Peyrard, M., Physics of Solitons, Cambridge University Press, Cambridge, 2006. Davenport, J. H., Siret, Y. and Tournier, E., Computer Algebra Systems and Algorithms for Algebraic Computation, Academic Press, London, 1993. Davey, A., Boundary-layer flow at a saddle point of attachment, J. Fluid Mech., Vol. 10, pp. 593–610, 1961. Davey, A. and Schofield, D., Three-dimensional flow near a two-dimensional stagnation point, J. Fluid Mech., Vol. 28, pp. 149–151, 1967. Debler, W. R. and Montgomery, R. D., Flow over an oscillating plate with suction or with an intermediate film: two exact solutions of the Navier–Stokes equations, J. Appl. Math., Vol. 38, pp. 262–265, 1971. Debnath, L., Nonlinear Partial Differential Equations for Scientists and Engineers, Birkh¨auser, Boston, MA, 2nd ed., 2005. Degasperis, A., Holm, D. D., and Hone, A. N. W., A new integrable equation with peakon solutions, Theor. Math. Phys., Vol. 33, No. 2, pp. 1463–1474, 2002. Degasperis, A. and Procesi, M., Asymptotic integrability, In: Symmetry and Perturbation Theory (Eds. A. Degasperis and G. Gaeta), World Scientific, NJ, pp. 23–37, 1999. Dehghan, M. and Shokri, A., Numerical solution of the nonlinear Klein–Gordon equation using radial basis functions, J. Comp. Appl. Math., Vol. 230, No. 2, pp. 400–410, 2009. Devi, C. D. S., Takhar, H. S., and Nath, G., Unsteady, three-dimensional, boundary-layer flow due to a stretching surface, Int. J. Heat Mass Transfer, Vol. 29, pp. 1996–1999, 1986. Dey, B., Compacton solutions for a class of two parameter generalized odd-order Korteweg–de Vries equations, Phys. Rev. E, Vol. 57, pp. 4733-4738, 1998. Dickey, L. A., Soliton Equations and Hamilton Systems, World Scientific, Singapore, 1991. Dobrokhotov, S. Yu. and Tirozzi, B., Localized solutions of one-dimensional non-linear √ shallow-water equations with velocity c = x, Rus. Math. Surveys, Vol. 65, No. 1, pp. 177–179, 2010. Dobryshman, E. M., On some singularities of fields of pressure and wind in equatorial region. Report on the conference on common atmospheric circulation, Moscow, 1964. Dodd, R. K. and Bullough, R. K., Polynomial conserved densities for the sine-Gordon equations, Proc. Roy. Soc. London, Ser. A, Vol. 352, pp. 481–503, 1977. Dodd, R. K., Eilbeck, J. C., Gibbon, J. D., and Morris, H. C., Solitons and Nonlinear Wave Equations, Academic Press, London, 1982. Dolidze, D. E., On some cases of rotation of a viscous incompressible fluid, Izvestiya AN SSSR. Otdelenie tekhn. nauk [in Russian], No. 2, pp. 197–208, 1937.

C ONTENTS

1809

Dommelen, L. L. van and Shen, S. F., The spontaneous generation of the singularity in a separating laminar boundary layer, J. Comput. Phys., Vol. 38, pp. 125–140, 1980. Dorfman, I. Ya., The Krichever–Novikov equation and local symplectic structures, Sov. Math. Dokl., Vol. 38, pp. 340–343, 1989. Dorfman, I. Ya., Dirac Structures and Integrability of Nonlinear Evolution Equations, Wiley, Chichester, 1993. Dorodnitsyn, V. A., Group Properties and Invariant Solutions of Nonlinear Heat Equations with a Source or Sink [in Russian], Preprint No. 74, Keldysh Institute of Applied Mathematics, Academy of Sciences, USSR, Moscow, 1979. Dorodnitsyn, V. A., On invariant solutions of the nonlinear heat equation with a source [in Russian], Zhurn. vychisl. matem. i matem. fiziki, Vol. 22, No. 6, pp. 1393–1400, 1982. Dorodnitsyn, V. A. and Elenin, G. G. Symmetry in Solutions of Equations of Mathematical Physics [in Russian], Znanie (No. 4), Moscow, 1984. Dorodnitsyn, V. A., Knyazeva, I. V., and Svirshchevskii, S. R., Group properties of the heat equation with a source in two and three dimensions [in Russian], Diff. Uravneniya, Vol. 19, No. 7, pp. 1215–1223, 1983. Dorodnitsyn, V. A. and Svirshchevskii, S. R., On Lie–B¨acklund Groups Admitted by the Heat Equation with a Source [in Russian], Preprint No. 101, Keldysh Institute of Applied Mathematics, Academy of Sciences, USSR, Moscow, 1983. Dorrepaal, J. M., An exact solution of the Navier–Stokes equation which describes nonorthogonal stagnation point flow in two dimensions, J. Fluid Mech., Vol. 163, pp. 141– 147, 1986. Doyle, Ph. W., Separation of variables for scalar evolution equations in one space dimension, J. Phys. A: Math. Gen., Vol. 29, pp. 7581–7595, 1996. Doyle, Ph. W. and Vassiliou, P. J., Separation of variables for the 1-dimensional non-linear diffusion equation, Int. J. Non-Linear Mech., Vol. 33, No. 2, pp. 315–326, 1998. Drazin, P. G. and Johnson, R. S., Solitons: An Introduction, Cambridge Univ. Press, Cambridge, 1989 and 1996. Drazin, P. G. and Riley, N., The Navier–Stokes Equations: A Classification of Flows and Exact Solutions, Cambridge Univ. Press, Cambridge, 2006. Dresner, L., Similarity Solutions of Nonlinear Partial Differential Equations, Pitman, Boston, 1983. Dryuma, V. S., On an analytic solution of the two-dimensional Korteweg–de Vries equation [in Russian], Pis’ma v ZhETF, Vol. 19, No. 7, pp. 753–757, 1974. Dryuma, V. S., On initial values problem in theory of the second order ODE’s, pp. 109– 116, In: Proc. Workshop on Nonlinearity, Integrability, and All That: Twenty Years after NEEDS’79, (Eds. M. Boiti, L. Martina, F. Pempinelli, B. Prinari, and G. Soliani), World Scientific, Singapore, 2000. Dryuma, V. S., On solutions of Heavenly equations and their generalizations, arXiv:gr-qc/ 0611001v1, 2006. Dryuma, V. S., On spaces related to the Navier–Stokes equations, Buletinul Academiei de Stiinte a Republicii Moldova. Matematica, Vol. 64, No. 3, pp. 107–110, 2010.

1810

C ONTENTS

Dubinskii, Yu. A., Analytic Pseudo-Differential Operators and Their Applications, Kluwer, Dordrecht, 1991. Dubrovin, B. A., Geometry of 2D Topological Field Theories, Lect. Notes in Math., Vol. 1620, pp. 120–348, Springer-Verlag, Berlin, 1996. Dubrovin, B. A. and Novikov, S. P., Hamiltonian formalism of hydrodynamic-type systems. The averaging method for field-theoretic systems, Doklady AN SSSR, Vol. 270, No. 4, pp. 781–785, 1983. Dubrovin, B. A. and Novikov, S. P., Hydrodynamics of weakly deformed soliton grids. Differential geometry and Hamiltonian theory, Uspekhi mat. nauk, Vol. 44, No. 6, pp. 29–98, 1989. Duffy, B. R. and Parkes, E. J., Travelling solitary wave solutions to a seventh-order generalized KdV equation, Phys. Lett. A, Vol. 214, 271–272, 1996. Edwards, M. P., Classical symmetry reductions of nonlinear diffusion-convection equations, Phys. Letters A, Vol. 190, pp. 149–154, 1994. Eglit, E. E. and Hodges, D. H. (Eds.), Continuum Mechanics via Problems and Exercises, Vol. 1, World Scientific, Singapore, 1996. Ekman, V. W., On the influence of the Earth’s rotation on ocean currents, Arkiv. Mat. Astron. Fys., Vol. 2, pp. 1–52, 1905. Emech, Y. P. and Taranov, V. B., Group properties and invariant solutions of electric field equations at nonlinear Ohm law [in Russian], Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 28–36, 1972. ¨ Enneper, A., Uber asymptotische Linien, Nachr. K¨onigl. Gesellsch. d. Wissenschaften G¨ottingen, p. 493–511, 1870. Erbas¸, B. and Yusufoˇglu, E., Exp-function method for constructing exact solutions of Sharma–Tasso–Olver equation. Chaos, Solitons & Fractals, Vol. 41, No. 5, pp. 2326– 2330, 2009. Ershov, L. V., Ivlev, D. D., and Romanov, A. V., On generalization of Prandtl solution for compression of plastic layer, In: Modern Problems of Aviation and Mechanics [in Russian], Moscow, p. 137, 1982. Escher, J., Liu, Y., and Yin, Z., Global weak solutions and blow-up structure for the Degasperis–Procesi equation, J. Funct. Anal., Vol. 241, No. 2, pp. 457–485, 2006. Escher, J., Liu, Y., and Yin, Z., Shock waves and blow-up phenomena for the periodic Degasperis–Procesi equation, Indiana Univ. Math. J., Vol. 56, No. 1, pp. 87–117, 2007. Est´evez, P. G., Non-classical symmetry and the singular manifold: the Burgers and the Burgers–Huxley equation, J. Phys. A: Math. Gen., Vol. 27, pp. 2113–2127, 1994. Est´evez, P. G. and Gordoa, P. R., Painleve analysis of the generalized Burgers–Huxley equation, J. Phys. A: Math. Gen., Vol. 23, p. 4831, 1990. Est´evez, P. G., Qu, C. Z., and Zhang, S. L., Separation of variables of a generalized porous medium equation with nonlinear source, J. Math. Anal. Appl., Vol. 275, pp. 44– 59, 2002.

C ONTENTS

1811

Euler, N., Gandarias, M. L., Euler, M., and Lindblom, O., Auto-hodograph transformations for a hierarchy of nonlinear evolution equations, J. Math. Anal. Appl., Vol. 257, No. 1, pp. 21–28, 2001. Faber, T. E., Fluid Dynamics for Physicists, Cambridge Univ. Press, Cambridge, 1995. Faddeev, L. D. (Ed.), Mathematical Physics: Encyclopedia [in Russian], Bol’shaya Rossiiskaya Entsiklopediya, Moscow, 1998. Faddeev, L. D. and Takhtajan, L. A., Hamiltonian Methods in the Theory of Solitons, Springer-Verlag, Berlin, 1987. Falkner, V. M. and Skan, S. W., Some approximate solutions of the boundary layer equations, Phil. Mag., Vol. 12, pp. 865–896, 1931. Fal’kovich, A. I., Group invariant solutions of atmospheric circulation model for the equatorial region, Izvestiya Akad. Nauk USSR, Fizika atmosfery i okeana, Vol. 4, p. 579, 1968. Farlow, S. J., Partial Differential Equations for Scientists and Engineers, John Wiley & Sons, New York, 1982. Feng, Z., Exact solutions to the Burgers–Korteweg–de Vries equation, J. Phys. Soc. Japan, Vol. 71, pp. 1–4, 2002. Feng, Z., On traveling wave solutions to modified Burgers–Korteweg–de Vries equation, Phys. Lett. A, Vol. 318, pp. 522–525, 2003. Feng, Z., An exact solution to the Korteweg–de Vries–Burgers equation, Appl. Math. Lett., Vol. 18, 733–737, 2005. Feng, Z., On travelling wave solutions of the Burgers–Korteweg–de Vries equation, Nonlinearity, Vol. 20, 343–356, 2007. Ferapontov, E. V. and Pavlov, M. V., Hydrodynamic reductions of the heavenly equation, arXiv:nlin/0301048v1 [nlin.SI], 2003. Ferapontov, E. V. and Tsarev, S. P., Equations of hydrodynamic type, arising in gas chromatography. Riemann invariants and exact solutions, Mat. Model., Vol. 3, No. 2, pp. 82–91, 1991. Filenberger, G., Solitons. Mathematical Method for Physicists, Springer-Verlag, Berlin, 1981. Filippov, Yu. G., Application of the group invariant method for the solution of the problem on determining nonhomogeneous ocean flows, Meteorologia i Hidrologia, Vol. 9, p. 53, 1968. Fisher, R. A., The wave of advance of advantageous genes, Annals of Eugenics, 1937, Vol. 7, pp. 355–369. Fleming, W. H. and Soner, H. M., Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York, 1993. Fokas, A. S. and Anderson, R. L., Group theoretical nature of B¨acklund transformations, Lett. Math. Phys., Vol. 3, p. 117, 1979. Fokas, A. S. and Fuchssteiner, B., B¨acklund transformations for hereditary symmetries, Nonlinear Anal., Vol. 5, pp. 423–432, 1981.

1812

C ONTENTS

Fokas, A. S. and Yortsos, Y. C., On the exactly solvable equation st = [(βs + γ)−2 sx ]x + α(βs + γ)−2 sx occurring in two-phase flow in porous media, SIAM J. Appl. Math., Vol. 42, pp. 318–332, 1982. Forsyth, A. R., Theory of Differential Equations, Part IV, Vol. VI, Partial Differential Equations, Cambridge Univ. Press, Cambridge, 1906. Reprinted: New York, Dover Publ., 1959. Foursov, M. F. and Vorob’ev, E. M., Solutions of the nonlinear wave equation utt = (uux )x invariant under conditional symmetries, J. Phys. A, Vol. 29, pp. 6363–6373, 1996. Frank-Kamenetskii, D. A., Diffusion and Heat Transfer in Chemical Kinetics [in Russian], Nauka, Moscow, 1987. Fu, Z., Liu, S., and Liu, Sh., New kinds of solutions to Gardner equation, Chaos, Solitons, and Fractals, Vol. 20, pp. 301–309, 2004. Fuchssteiner, B., Some tricks from symmetry-toolbox for nonlinear equation: generalizations of the Camassa–Holm equation, Phys. D, Vol. 95, pp. 229–243, 1996. Fujita, H., The exact pattern of a concentration-dependent diffusion in a semi-infinite medium, Part II, Textile Res., Vol. 22, p. 823, 1952. Fushchich, W. I., A new method of investigating the group properties of the equations of mathematical physics, Soviet Phys. Dokl., Vol. 24, No. 6, pp. 437–439, 1979. Fushchich, W. I. and Cherniha, R. M., The Galilean relativistic principle and nonlinear partial differential equations, J. Phys. A., Vol. 18, pp. 3491–3503, 1985. Fushchich, W. I., Serov, N. I., and Ahmerov, T. K., On the conditional symmetry of the generalized KdV equation, Rep. Ukr. Acad. Sci., A 12, 1991. Fushchich, W. I., Shtelen, W. M., and Serov, N. I., Symmetry Analysis and Exact Solutions of the Equations of Mathematical Physics, Kluwer, Dordrecht, 1993. Fushchich, W. I., Shtelen, W. M., and Slavutsky, S. L., Reduction and exact solutions of the Navier–Stokes equations, J. Phys. A: Math. Gen., Vol. 24, pp. 971–984, 1991. Gaeta, G., Nonlinear Symmetries and Nonlinear Equations, Kluwer, Dordrecht, 1994. Gagnon, L. and Winternitz P., Lie symmetries of a generalized nonlinear Schr¨odinger equation. I. The symmetry group and its subgroups, J. Phys. A, Vol. 24, p. 1493, 1988. Gagnon, L. and Winternitz P., Lie symmetries of a generalized nonlinear Schr¨odinger equation. II. Exact solutions, J. Phys. A, Vol. 22, p. 469, 1989. Gagnon, L. and Winternitz, P., Symmetry classes of variable coefficient nonlinear Schr¨odinger equations, J. Phys. A, Vol. 26, pp. 7061–7076, 1993. Galaktionov, V. A., On new exact blow-up solutions for nonlinear heat conduction equations with source and applications, Differential and Integral Equations, Vol. 3, No. 5, pp. 863–874, 1990. Galaktionov, V. A., Quasilinear heat equations with first-order sign-invariants and new explicit solutions, Nonlinear Analys., Theory, Meth. and Applications, Vol. 23, pp. 1595– 1621, 1994.

C ONTENTS

1813

Galaktionov, V. A., Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities, Proc. Roy. Soc. Edinburgh, Sect. A, Vol. 125, No. 2, pp. 225–246, 1995. Galaktionov, V. A., Ordered invariant sets for nonlinear evolution equations of KdV-type, Comput. Math. & Math. Phys., Vol. 39, No. 9, pp. 1499–1505, 1999. Galaktionov, V. A., Dorodnitsyn, V. A., Elenin, G. G., Kurdyumov, S. P., and Samarskii, A. A., Quasilinear heat conduction equation with source: blow-up, localization, symmetry, exact solutions, asymptotics, structures, In: Modern Mathematical Problems. New Achievements [in Russian], Vol. 28, pp. 95–206, Moscow, VINITI AN USSR, 1986 (English translation: Plenum Press, New York, 1987). Galaktionov, V. A. and Posashkov, S. A., On new exact solutions of parabolic equations with quadratic nonlinearities, Zh. Vych. Matem. i Mat. Fiziki [in Russian], Vol. 29, No. 4, pp. 497–506, 1989. Galaktionov, V. A. and Posashkov, S. A., Exact solutions and invariant subspace for nonlinear gradient-diffusion equations, Zh. Vych. Matem. i Mat. Fiziki [in Russian], Vol. 34, No. 3, pp. 374–383, 1994. Galaktionov, V. A., Posashkov, S. A., and Svirshchevskii, S. R., On invariant sets and explicit solutions of nonlinear evolution equations with quadratic nonlinearities, Differential and Integral Equations, Vol. 8, No. 8, pp. 1997–2024, 1995. Galaktionov, V. A., Posashkov, S. A., and Svirshchevskii, S. R., Generalized separation of variables for differential equations with polynomial right-hand sides, Dif. Uravneniya [in Russian], Vol. 31, No. 2, pp. 253–261, 1995. Galaktionov, V. A. and Svirshchevskii, S. R., Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics, Chapman & Hall/CRC Press, Boca Raton, 2006. Galaktionov, V. A. and Vazques, J. L., Blow-up for a class of solutions with free boundaries for the Navier–Stokes equations, Adv. Diff. Eq., Vol. 4, pp. 297–321, 1999. Ganji, Z. Z., Ganji, D. D., and Bararnia, H., Approximate general and explicit solutions of nonlinear BBMB equations by Exp-function method, Applied Mathematical Modeling, Vol. 33, No. 4, pp. 1836–1841, 2009. Ganzha, E.√I., An analogue of the Moutard transformation for the Goursat equation θxy = 2 λθx θy , Theor. & Math. Phys., Vol. 122, No. 1, pp. 35–45, 2000. Gardner, C. S., Greene, J. M., Kruskal, M. D., and Miura, R. M., Method for solving the Korteweg–de Vries equation, Phys. Rev. Lett., Vol. 19, No. 19, pp. 1095–1097, 1967. Gardner, C. S., Greene, J. M., Kruskal, M. D., and Miura, R. M., Korteweg–de Vries equation and generalizations. VI: Methods for exact solution, Comm. Pure Appl. Math., Vol. 27, pp. 97–133, 1974. Geddes, K. O., Czapor, S. R., and Labahn, G., Algorithms for Computer Algebra, Kluwer Academic Publishers, Boston, MA, 1992. Gelfand, I. M., Some problems of the theory of quasi-linear equations, Uspekhi Matem. Nauk, Vol. 14, No. 2, pp. 87–158, 1959 [Amer. Math. Soc. Translation, Series 2, pp. 295–381, 1963].

1814

C ONTENTS

Gelfand, I. M. and Levitan B. M., On the determination of a differential equation from its spectral function, Izv. Akad. Nauk USSR, Ser. Math., Vol. 15, No. 4, pp. 309–360, 1951 [Amer. Math. Soc. Translations, Vol. 1, pp. 253–304, 1956]. Geng, X. and Cao, C., Explicit solutions of the 2 + 1-dimensional breaking soliton equation, Chaos, Solitons and Fractals, Vol. 22, pp. 683–691, 2004. Gennes, P. G., Wetting: statics and dynamics, Rev. Mod. Phys., Vol. 57, pp. 827–863, 1985. Gennes, P. G. and Prost, J., The Physics of Liquid Crystals, 2nd ed., Oxford University Press, 1994. Gesztesy, F. and Weikard, R., Elliptic algebro-geometric solutions of the KdV and AKNS hierarchies–an analytic approach, Bull. AMS, Vol. 35, No. 4, pp. 271–317, 1998. Getz, C. and Helmstedt, J., Graphics with Mathematica: Fractals, Julia Sets, Patterns and Natural Forms, Elsevier Science & Technology Book, Amsterdam, Boston, 2004. Gibbon, J. D., Fokas, A. S., and Doering, C. R., Dynamically stretched vortices as solutions of the 3D Navier–Stokes equations, Physica D, Vol. 132, pp. 497–510, 1999. Gibbons, J. and Tsarev, S. P., Conformal maps and reduction of the Benney equations, Phys. Letters A, Vol. 258, No. 4–6, pp. 263–271, 1999. Gilbarg, G. and Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001. Glassey, R. T., Hunter, J. K., and Zheng, Y., Singularities and oscillations in a nonlinear variational wave equation, In: Singularities and Oscillations (Eds. J. Ranch and M. Taylor), Springer-Verlag, New York, 1997. Godlewski, E. and Raviart, P.-A., Numerical Approximations of Hyperbolic Systems of Conservation Laws, Springer-Verlag, New York, 1996. Godr´eche, C. and Manneville, P. (Eds.), Hydrodynamics and Nonlinear Instabilities, Cambridge Univ. Press, 1998. Goldshtik, M. A., A paradoxial solution of the Navier–Stokes equations [in Russian], Prik. Mat. Mekh., Vol. 24, pp. 610–621, 1960. Goldshtik, M. A., Viscous flow paradoxes, Annual Rev. of Fluid Mech., Vol. 22, pp. 441– 472, 1990. Goldshtik, M. A. and Shtern, V. N., Hydrodynamic Stability and Turbulence [in Russian], Nauka, Novosibirsk, 1977. Goldshtik, M. A. and Shtern, V. N., Loss of symmetry in viscous flow from a linear source, Fluid Dyn., Vol. 24, pp. 151–199, 1989. Goldshtik, M. A. and Shtern, V. N., Collapse in conical viscous flows, J. Fluid Mech., Vol. 218, pp. 483–508, 1990. Golovko, V., Kersten, P., Krasil’shchik, I., and Verbovetsky, A., On integrability of the Camassa–Holm equation and its invariants: a geometrical approach, Acta Appl. Math., Vol. 101, No. 1–3, pp. 59–83, 2008. Golubev, V. V., Lectures on Analytic Theory of Differential Equations [in Russian], GITTL, Moscow, 1950.

C ONTENTS

1815

G´omes, C. A., Special forms of the fifth-order KdV equation with new periodic and soliton solutions, Appl. Math. & Comput., Vol. 189, No. 2, pp. 1066–1077, 2007. Gorodtsov, V. A., Heat transfer and turbulent diffusion in one-dimensional hydrodynamics without pressure, Appl. Math. and Mech. (PMM), Vol. 62, No. 6, pp. 1021–1028, 1998. Gorodtsov, V. A., The effect of a local increase in impurity concentration in onedimensional hydrodynamics, Appl. Math. and Mech. (PMM), Vol. 64, No. 4, pp. 593– 600, 2000. G¨ortler, H., Verdr¨angungswirkung der laminaren Grenzschichten und Druck widerstand, Ing. Arch., Vol. 14, pp. 286–305, 1944. Goursat, M. E., Lecons sur l’int´egration des e´ quations aux d´eriv´ees partielles du second order a deux variables ind´ependantes, T. 1 , Librairie scientifique A. Hermann, Paris, 1896. Goursat, M. E., Lecons sur l’int´egration des e´ quations aux d´eriv´ees partielles du second order a deux variables ind´ependantes, T. 2 , Librairie scientifique A. Hermann, Paris, 1898. Goursat, E., A Course of Mathematical Analysis. Vol 3. Part 1 [Russian translation], Gostekhizdat, Moscow, 1933. Grad, H. and Rubin, H., Hydromagnetic equilibria and force-free fields, Proceedings of the 2nd UN Conf. on the Peaceful Uses of Atomic Energy, Geneva, Vol. 31, p. 190, 1958. Graetz, L., Z. Math. Physik, Bd. 25, S. 316, 375, 1880. Grauel, A., Sinh-Gordon equation, Painlev´e property and B¨acklund transformation, Physica A, Vol. 132, pp. 557–568, 1985. Grauel, A. and Steeb, W.-H., Similarity solutions of the Euler equations and the Navier– Stokes equations in two space dimensions, Int. J. Theor. Phys.,, Vol. 24, pp. 255–265, 1985. Gray, J. W., Mastering Mathematica: Programming Methods and Applications, Academic Press, San Diego, 1994. Gray, T. and Glynn, J., Exploring Mathematics with Mathematica: Dialogs Concerning Computers and Mathematics, Addison-Wesley, Reading, MA, 1991. Grebenev, V. N. and Oberlack, M., A geometric interpretation of the second-order structure function arising in turbulence, Math. Phys. Anal. Geom., Vol. 12, pp. 1–18, 2009. Green, E., Evans, B., and Johnson, J., Exploring Calculus with Mathematica, Wiley, New York, 1994. Greenhill, A. G., London Math. Soc. Proc., Vol. 13, p. 43, 1881. Greenspan, H. P., On the motion of a small viscous droplet that wets a surface, J. Fluid Mech., Vol. 84, pp. 125–143, 1978. Griffiths, G. W. and Schiesser, W. E., Traveling Wave Analysis of Partial Differential Equations: Numerical and Analytical Methods with Matlab and Maple, Academic Press, 2011.

1816

C ONTENTS

Gromak, V. I., Painlev´e Differential Equations in the Complex Plane, Walter de Gruyter, Berlin, 2002. Gromak, V. I. and Lukashevich, N. A., Analytical Properties of Solutions of Painlev´e Equations [in Russian], Universitetskoe, Minsk, 1990. Gromak, V. I. and Zinchenko A. S., To the theory of higher-order Pailev´e equations, Diff. uravneniya, Vol. 40, No. 5, pp. 582–589, 2004. Grosch, C. E. and Salwen, H., Oscillating stagnation point flow, Proc. Roy. Soc. London, Ser. A, Vol. 384, pp. 175–190, 1982. Grosheva, M. V. and Efimov, G. B., On Systems of Symbolic Computations [in Russian], In: Applied Program Packages. Analytic Transformations, pp. 30–38. Nauka, Moscow, 1988. Grundland, A. M. and Infeld, E., A family of non-linear Klein-Gordon equations and their solutions, J. Math. Phys., Vol. 33, pp. 2498–2503, 1992. Guderley, K. G., The Theory of Transonic Flow, Pergamon, Oxford, 1962. ˜ Guil, F. and Manas, M., Loop algebras and the Krichever–Novikov equation, Phys. Lett. A, Vol. 153, pp. 90–94, 1991. Gupalo, Yu. P., Polyanin, A. D., and Ryazantsev, Yu. S., Mass and Heat Transfer of Reacting Particles with the Flow [in Russian], Nauka, Moscow, 1985. Guti´erres, C. E., The Monge–Amp´ere Equation, Birkh¨auser, Boston, 2001. Gutman, L. N., On structure of breezes, Dokl. TIP, Vol. 1, No. 3, 1947. Haantjes, A., On Xn−1 -forming sets of eigenvectors, Indagationes Mathematicae, Vol. 17, No. 2, pp. 158–162, 1955. ¨ Hagen, G., Uber die Bewegung des Wasser in engen zylindrischen R¨ohren, Pogg. Ann., Vol. 46, pp. 423–442, 1839. Hall, P., Balakurmar, P. and Papageorgiu, D., On a class of unsteady three-dimensional Navier–Stokes solutions relevant to rotating disk flows: threshold amplitudes and finitetime singularities, J. Fluid Mech., Vol. 238, pp. 297–323, 1992. Hamdi, S., Enright, W. H., Schiesser, W. E., and Gottlieb, J. J., Exact solutions of the generalized equal width wave equation, Math. & Comp. in Simulation, 2003. Hamel, G., Spiralf¨ormige Bewegungen z¨aher Fl¨ssigkeiten, Jahresbericht der Deutschen Math.-Ver., Vol. 25, pp. 34–60, 1916. Translated as NACA Tech. Memo., No. 1342 (1953). Hamza, E. A. and MacDonald, D. A., A similar flow between two rotating disks, Quart. Appl. Math., Vol. 41, pp. 495–511, 1984. Hannah, D. M., Forced flow against a rotating disc, Rep. Mem. Aero. Res. Council, London No. 2772, 1947. Hanyga, A., Mathematical Theory of Nonlinear Elasticity, PWN, Warszawa, 1985. Happel, J. and Brenner, H., Low Reynolds Number Hydrodynamics, Prentice-Hall, Englewood Cliffs, 1965. Harries, D., Solving the Poisson–Boltzmann equation for two parallel cylinders, Langmuir, Vol. 14, pp. 3149–3152, 1998.

C ONTENTS

1817

Harris, S. E., Conservation laws for a nonlinear wave equation, Nonlinearity, Vol. 9, pp. 187–208, 1996. Hartree, D. R., On an equation occurring in Falkner and Skan’s approximate treatment of the equations of the boundary layer, Proc. Cambr. Phil. Soc., Vol. 33, pp. 223–239, 1937. Hasimoto, H., Note on Rayleigh’s problem for a circular cylinder with uniform suction and related unsteady flow problem, J. Phys. Soc. Jpn., Vol. 11, pp. 611–612, 1956. Hasimoto, H., Boundary layer growth on a flat plate with suction or injection, J. Phys. Soc. Jpn., Vol. 12, pp. 68–72, 1957. Hatton, L., Stagnation point flow in a vortex core, Tellus, Vol. 27, pp. 269–280, 1975. He, J. H. and Abdou, M. A., New periodic solutions for nonlinear evolution equation using Exp-method, Chaos Solitons & Fractals, Vol. 34, pp. 1421–1429, 2007. He, J. H. and Wu, X. H., Exp-function method for nonlinear wave equations, Chaos Solitons & Fractals, Vol. 30, No. 3, pp. 700–708, 2006. Heck, A., Introduction to Maple, Springer, New York, 3rd ed., 2003. Heredero, R. H., Shabat, A. B., and Sokolov, V. V., A new class of linearizable equations, J. Phys. A: Math. Gen., Vol. 36, pp. L605–L614, 2003. Hereman, W., Review of symbolic software for the computation of Lie symmetries of differential equations, Euromath Bull., Vol. 1, pp. 45–82, 1994. Hereman, W. and Nuseir, A., Symbolic software to construct exact solutions of nonlinear partial differential equations, Math. Comp. Simulation, Vol. 43, pp. 361–378, 1980. Hereman, W. and Zhaung, W., Symbolic software for solution theory, Acta Appl. Math. Phys. Lett. A, Vol. 76, pp. 13–27, 1997. Hewitt, R. E., Duck, P. W., and Foster, M. R., Steady boundary-layer solutions for a swirling stratified fluid in a rotating cone, J. Fluid Mech., Vol. 384, pp. 339–374, 1999. Hewitt, R. E., Duck, P. W., and Stow, S. R., Continua of states in boundary-layer flows, J. Fluid Mech., Vol. 468, pp. 121–152, 2002. Hiemenz, K., Die Grenzschicht an einem in den gleichf¨ormigen Fl¨ussigkeitsstrom eingetauchten geraden Kreiszylinder, Dinglers Polytech. J., Vol. 326, pp. 321–324, 344–348, 357–362, 372–374, 407–410, 1911. Hietarinta, J., A search for bilinear equations passing Hirota’s three-soliton condition. I. KdV-type bilinear equations, J. Math. Phys., Vol. 28, No. 8, pp. 1732–1742, 1987 a. Hietarinta, J., A search for bilinear equations passing Hirota’s three-soliton condition. II. mKdV-type bilinear equations, J. Math. Phys., Vol. 28, No. 9, pp. 2094–2101, 1987 b. Hietarinta, J., A search for bilinear equations passing Hirota’s three-soliton condition. III. Sine–Gordon-type bilinear equations, J. Math. Phys., Vol. 28, No. 11, pp. 2586–2592, 1987 c. Higham, N. J., Functions of Matrices. Theory and Computation, SIAM, Philadelphia, 2008. Hill, J. M., Solution of Differential Equations by Means of One-Parameter Groups, Pitman, Marshfield, Mass., 1982.

1818

C ONTENTS

Hill, J. M., Differential Equations and Groups Methods for Scientists and Engineers, CRC Press, Boca Raton, 1992. Hill, M. J. M., On a spherical vortex, Philos. Trans. Roy. Soc. London, Ser. A, Vol. 185, pp. 213–245, 1894. Hill, R., A variational principle of maximal plastic work in classical plasticity, Quart. J. Mech. & Appl. Math., Vol. 1, pp. 18–28, 1948. Hinch, E. J. and Lemaitre, J., The effect of viscosity on the height of disks floating above an air table, J. Fluid Mech., Vol. 273, pp. 313–322, 1994. Hirota, R., Exact solution of the Korteweg–de Vries equation for multiple collisions of solutions, Phys. Rev. Lett., Vol. 27, p. 1192, 1971. Hirota, R., Exact solution of the Korteweg–de Vries equation for multiple collisions of solutions, J. Phys. Soc. Japan, Vol. 33, No. 3, p. 1455, 1972. Hirota, R., Exact envelope-soliton solutions of a nonlinear wave equation, J. Math. Phys., Vol. 14, pp. 805–809, 1973. Hirota, R., Exact N-soliton solution of the wave equation of long waves in shallow water and in nonlinear lattice, J. Math. Phys., Vol. 14, pp. 810–814, 1973. Hirota, R., Direct methods in soliton theory, pp. 157–176, In: Solitons (Eds. R. K. Bullough and P. J. Caudrey), Springer-Verlag, Berlin, 1980. Hirota, R., Soliton solutions of a coupled Korteweg–de Vries equation, Phys. Letters A, Vol. 85, No. 8/9, pp. 407–408, 1981. Hirota, R., The Direct Method in Soliton Theory, Cambridge University Press, Cambridge, 2004. Hirota, R. and Satsuma, J., Nonlinear evolution equations generated from the B¨acklund transformation for the Boussinesq equation, Progr. Theor. Phys., Vol. 57, pp. 797–807, 1977. Hocking, L. M., An example of boundary layer formation, AIAA J., Vol. 1, pp. 1222–1223, 1963. Hoenselaers, C., Solutions of the hyperbolic sine–Gordon equations, Int. J. Theor. Phys., Vol. 46, 1096–1099, 2007. Hoffman, A. L., A single fluid model for shock formation in MHD shock tubes, J. Plasma Phys., Vol. 1, pp. 193–207, 1967. Holodniok, M., Kubicek M., and Hlavacek V., Computation of the flow between two rotating coaxial disk: multiplicity of steady-state solutions, J. Fluid Mech., Vol. 108, pp. 227–240, 1981. Homann, F., Der Einfluss grosser Z¨ahigkeit bei der Str¨omung um den Zylinder und um die Kugel, Z. Angew. Math. Mech. (ZAMM), Vol. 16, pp. 153–164, 1936. Hopf, E., Generalized solutions of nonlinear equations of first order, J. Math. Mech., Vol. 14, pp. 951–973, 1965. Hopf, E., The partial differential equation ut + uux = µuxx , Comm. Pure and Appl. Math., Vol. 3, pp. 201–230, 1950.

C ONTENTS

1819

Howarth, L., On calculation of the steady flow in the boundary layer near the surface of a cylinder in a stream, Rep. ARC, p. 1632, 1934. Howarth, L., The boundary layer in three-dimensional flow. Part II: The flow near a stagnation point, Philos. Mag., Vol. 42, No. 7, pp. 127–140, 1951. Hui, W. H., Exact solutions of the unsteady two-dimensional Navier–Stokes equations, Z. Angew. Math. Phys., Vol. 38, pp. 689–702, 1987. Hunter, J. K. and Saxton, R., Dynamics of director fields, SIAM J. Appl. Math., Vol. 51, No. 6, pp. 1498–1521, 1991. Hunter, J. K. and Zheng, Y., On a completely integrable nonlinear hyperbolic variational equation, Physica D, Vol. 79, No. 2–4, pp. 361–386, 1994. Hunter, J. K. and Zheng, Y., On a nonlinear hyperbolic variational equation. I. Global existence of weak solutions, Arch. Rational Mech. Anal., Vol. 129, No. 4, pp. 305–353, 1995 a. Hunter, J. K. and Zheng, Y., On a nonlinear hyperbolic variational equation. II. The zeroviscosity and dispersion limits, Arch. Rational Mech. Anal., Vol. 129, No. 4, pp. 355– 383, 1995 b. Hydon, P. E., Symmetry Methods for Differential Equations: A Beginner’s Guide, Cambridge Univ. Press, Cambridge, 2000. Ibragimov, N. H., Classification of invariant solutions of equations of two-dimensional gas motion. Zh. Prikl. Mekh. Tekh. Fiz., Vol. 4, p. 19, 1966. Ibragimov, N. H., Group Properties of Some Differential Equations [in Russian], Nauka (Siberian Branch), Novosibirsk, 1967. Ibragimov, N. H., Transformation Groups Applied in Mathematical Physics, D. Reidel Publ., Dordrecht, 1985. Ibragimov, N. H., Elementary Lie Group Analysis and Ordinary Differential Equations, John Wiley, Chichester, 1999. Ibragimov, N. H. (Ed.), CRC Handbook of Lie Group Analysis of Differential Equations, Vol. 1, Symmetries, Exact Solutions and Conservation Laws, CRC Press, Boca Raton, 1994. Ibragimov, N. H. (Ed.), CRC Handbook of Lie Group Analysis of Differential Equations, Vol. 2, Applications in Engineering and Physical Sciences, CRC Press, Boca Raton, 1995. Ignatovich, N. V., Invariant-irreducible, partially invariant solutions of steady-state boundary layer equations [in Russian], Mat. Zametki, Vol. 53, No. 1, pp. 140–143, 1993. Il’ushin, A. A., Continuous Mechanics [in Russian], Moscow Univ., Moscow, 1978. Infeld, E. and Rowlands, G., Nonlinear Waves, Solitons and Chaos, Cambridge University Press, Cambridge, 2000. Irmay, S. and Zuzovsky, M., Exact solutions of the Navier–Stokes equations in two-way flows, Isr. J. Technol., Vol. 8, pp. 307–315, 1970. Ishii, H., Representation of solutions of Hamilton–Jacobi equations, Nonlinear Anal. Theory, Meth. and Appl., Vol. 12, No. 2, pp. 121–146, 1988.

1820

C ONTENTS

Ito, M., An extension of nonlinear evolution equations of the KdV (mKdV) type of higher orders, J. Phys. Soc. Japan, Vol. 49, pp. 771–778, 1980. Its, A. R. and Novokshenov, V. Yu., The Isomonodromic Deformation Method in the Theory of Painlev´e Equations, Springer-Verlag, Berlin, 1986. Ivanov, R., On the integrability of a class of nonlinear dispersive wave equations, J. Nonlin. Math. Phys., Vol. 12, No. 4, pp. 462–468, 2005. Ivanov, R., Water waves and integrability, Phil. Trans. Roy. Soc. A, Vol. 365 (1858), pp. 2267–2280, 2007. Ivanova, N. M., Exact solutions of diffusion-convection equations, Dynamics of PDEs, Vol. 5, No. 2, pp. 139–171, 2008. Ivanova, N. M. and Sophocleous, C., On the group classification of variable coefficient nonlinear diffusion–convection equations, J. Comp. and Appl. Math., Vol. 197, pp. 322– 344, 2006. Ivlev, D. D., A class of solutions for general equations of ideal plasticity, Izvestiya AN S.S.S.R., Otdelenie Tekhnich. Nauk [in Russian], Vol. 11, p. 107, 1958. Ivlev, D. D., Theory of Ideal Plasticity [in Russian], Nauka, Moscow, 1966. Jacobs, D., McKinney, B., and Shearer, M., Travelling wave solutions of the modified Korteweg–de Vries–Burgers equation, J. Dif. Equations, Vol. 116, pp. 448–467, 1995. Janke, E., Emde, F., and L¨osch, F., Tafeln H¨oherer Funktionen, Teubner Verlogsgesellschaft, Stuttgart, 1960. Jarai, A., Regularity Properties of Functional Equations in Several Variables, SpringerVerlag, New York, 2005. Jeffrey, A., Quasilinear Hyperbolic Systems and Shock Waves, Pitman, London, 1976. Jeffrey, A. and Xu, S., Exact solutions to the Korteweg–de Vries–Burgers equation, Wave Motion, Vol. 11, pp. 559–564, 1989. Jeffery, G. B., The two-dimensional steady motion of a viscous fluid, Phil. Mag. Ser. 6, Vol. 9, pp. 455–465, 1915. Jimbo, M., Kruskal, M. D., and Miwa, T., Painlev´e test for the self-dual Yang–Mills equation, Phys. Lett., Ser. A, Vol. 92, No. 2, pp. 59–60, 1982. John, F., Partial Differential Equations, Springer-Verlag, New York, 1982. Johnson, R. S., On the inverse scattering transform, the cylindrical Korteweg–de Vries equation and similarity solutions, Phys. Lett., Ser. A, Vol. 72, No. 2, p. 197, 1979. Johnson, R. S., Camassa–Holm, Korteweg–de Vries and related models for water waves, J. Fluid Mech., Vol. 455, pp. 63–82, 2002. Johnson, R. S., The classical problem of water waves: a reservoir of integrable and nearlyintegrable equations, J. Nonlinear Math. Phys., Vol. 10 (Suppl. 1), pp. 72–92, 2003. Kadomtsev, B. B. and Petviashvili, V. I., On the stability of solitary waves in a weak dispersion medium [in Russian], Doklady AN USSR, Vol. 192, No. 4, pp. 753–756, 1970. Kaliappan, P., An exact solution for travelling waves of ut = Duxx + u − uk , Physica D, Vol. 11, pp. 368–374, 1984.

C ONTENTS

1821

Kambe, T., A class of exact solutions of two-dimensional viscous flow, J. Phys. Soc. Jpn., Vol. 52, pp. 834–841, 1983. Kamke, E., Differentialgleichungen: L¨osungsmethoden und L¨osungen, II, Partielle Differentialgleichungen Erster Ordnung f¨ur eine gesuchte Funktion, Akad. Verlagsgesellschaft Geest & Portig, Leipzig, 1965. Kamke, E., Differentialgleichungen: L¨osungsmethoden und L¨osungen, I, Gew¨ohnliche Differentialgleichungen, B. G. Teubner, Leipzig, 1977. Kaptsov, O. V., Steady-state vortex structures in ideal fluid, Zhur. eksperim. i teor. fiziki, Vol. 98, No. 2, pp. 532–541, 1990. Kaptsov, O. V., Invariant sets of evolution equations, Nonlin. Anal., Vol. 19, pp. 753–761, 1992. Kaptsov, O. V., Determining equations and differential constraints, Nonlinear Math. Phys., Vol. 2, No. 3-4, pp. 283–291, 1995. Kaptsov, O. V., Construction of exact solutions of systems of diffusion equations, Mat. Model., Vol. 7, pp. 107–115, 1995 b. Kaptsov, O. V., Linear determining equations for differential constraints, Sbornik: Mathematics, Vol. 189, pp. 1839–1854, 1998. Kaptsov, O. V., Construction of exact solutions to the Boussinesq equation [in Russian], Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 39, No. 3, pp. 74–78, 1998. Kaptsov, O. V., Integration Methods for Partial Differential Equations [in Russian], Fizmatlit, Moscow, 2009. Kaptsov, O. V. and Shan’ko, Yu. V., Multiparameter solutions of the Tzitz´eica equation [in Russian], Diff. Uravneniya, Vol. 35, No. 12, pp. 1660–1668, 1999. Kaptsov, O. V. and Verevkin, I. V., Differential constraints and exact solutions of nonlinear diffusion equations, J. Phys. A: Math. Gen.,, Vol. 36, 1401–1414, 2003. Kara, A. N. and Mahomed, F. M., A basis of conservation laws for partial differential equations, Nonlinear Math. Phys., Vol. 9, pp. 60–72, 2002. ¨ der mathematischen Wissenschaften, Vol. 4, p. 349, 1910. von K´arm´an, T., Encyklopdie ¨ von K´arm´an, T., Uber laminare und turbulente Reibung, Z. Angew. Math. Mech. (ZAMM), Vol. 1, pp. 233–252, 1921. von K´arm´an, T. and Howarth, L., On the statistical theory of isotropic turbulence, Proc. Roy. Soc., Vol. A164, pp. 192–215, 1938. Katkov, V. L., Group invariant solutions for equations of breezes and monsoons, Meteorologia i hidrologia, Vol. 10, p. 11, 1964. Katkov, V. L., Exact solutions of certain convection problems, Prikladn. Matematika i Mekhanika (PMM), 32, No. 3, p. 489, 1968. Kaup, D., A higher-order water wave equation and the method for solving it, Prog. Theor. Phys., Vol. 54, pp. 396–408, 1975. Kawahara, T., Oscillatory solitary waves in dispersive media, J. Phys. Soc. Japan, Vol. 33, No. 1, pp. 260–264, 1972.

1822

C ONTENTS

Kawahara, T. and Tanaka, M., Interactions of traveling fronts: an exact solution of a nonlinear diffusion equations, Moscow Univ. Math. Bull., Vol. 33, p. 311, 1983. Keller, H. B. and Szeto, R. K. H., Calculation of flows between rotating disks. In Computing Methods in Applied Sciences and Engineering (Eds. R. Glowinski and J. L. Lions), North Holland, Amsterdam, pp. 51–61, 1980. Kelly, R. E., The flow of a viscous fluid past a wall of infinite extent with time-dependent suction, Quart. J. Mech. Appl. Math., Vol. 18, pp. 287–298, 1965. Kersner, R., On the behaviour of temperature fronts in media with non-linear heat conductivity under absorption, Acta Math. Academy of Sciences, Hung., Vol. 32, pp. 35– 41, 1978 a. Kersner, R., Some properties of generalized solutions of quasilinear degenerate parabolic equations, Acta Math. Academy of Sciences, Hung., Vol. 32, No. 3–4, pp. 301–330, 1978 b. Kevorkian, J., and Cole, J. D., Perturbation Methods in Applied Mathematics, SpringerVerlag, New York, 1981. Khabirov, S. V., Lie pseudogroups of transformations on the plane and their differential invariants [in Russian], In: Modelling in Mechanics, SO AN USSR, Novosibirsk, Vol. 4 (21), No. 6, pp. 151–160, 1990 a. Khabirov, S. V., Nonisentropic one-dimensional gas motions obtained with the help of the contact group of the nonhomogeneous Monge–Amp`ere equation [in Russian], Mat. Sbornik, Vol. 181, No. 12, pp. 1607–1622, 1990 b. Khabirov, S. V., Application of contact transformations of the nonhomogeneous Monge– Amp`ere equation in one-dimensional gas dynamics [in Russian], Dokl. Acad. Nauk USSR, Vol. 310, No. 2, p. 333–336, 1990 c. King, J. R., Mathematical analysis of a model for substitutional diffusion, Proc. Roy. Soc. London, Ser. A, Vol. 430, pp. 377–404, 1990 a. King, J. R., Some non-local transformations between nonlinear diffusion equations, J. Phys. A: Math. Gen., Vol. 23, pp. 5441–5464, 1990 b. King, J. R., Exact similarity solutions to some nonlinear diffusion equations, J. Phys. A: Math. Gen., Vol. 23, pp. 3681–3697, 1990 c. ( −4/3 ∂u ) ∂ = ∂x u King, J. R., Exact results for the nonlinear diffusion equations ∂u ∂t ∂x and ( −2/3 ∂u ) ∂u ∂ ∂t = ∂x u ∂x , J. Phys. A: Math. Gen., Vol. 24, pp. 5721–5745, 1991. King, J. R., Local transformations between some nonlinear diffusion equations, J. Aust. Math. Soc. B, Vol. 33, pp. 321–349, 1992. King, J. R., Some non-self-similar solutions to a nonlinear diffusion equations, J. Phys. A: Math. Gen., Vol. 25, pp. 4861–4868, 1992. King, J. R., Exact multidimensional solutions to some nonlinear diffusion equations, Quart. J. Mech. Appl. Math., Vol. 46, No. 3, pp. 419–436, 1993. Kiryakov, P. P., Senashov, S. I., and Yakhno, A. N., Application of Symmetries and Conservation Laws to the Solution of Differential Equations, Izd-vo SO RAN, Novosibirsk, 2001.

C ONTENTS

1823

Kivshar, Y., Compactons in discrete lattices, Nonlinear Coherent. Struct. Phys. Biol., Vol. 329, pp. 255–258, 1994. Klimov, D. M., Baydulov, V. G., and Gorodtsov, V. A., The Kovalevskaya–Painlev´e test of the shallow water equations with the use of the Maple package, Doklady Mathematics, Vol. 63, No. 1, pp. 118–122, 2001. Klimov, D. M. and Zhuravlev, V. Ph., Group-Theoretic Methods in Mechanics and Applied Mathematics, Taylor & Francis, London, 2002. Kochin, N. E., Kibel’, I. A., and Roze, N. V., Theoretical Fluid Mechanics [in Russian], Fizmatgiz, Moscow, 1963. English translation: Interscience Publishers, New York, 1964. Kodama, Y., A method for solving the dispersionless KP hierarchy and its exact solutions, Phys. Lett. A, Vol. 129, No. 4, pp. 223–226, 1988. Kodama, Y. and Gibbons, J., A method for solving the dispersionless KP hierarchy and its exact solutions, II, Phys. Lett. A, Vol. 135, No. 3, pp. 167–170, 1989. Kolmogorov, A. N., Petrovskii, I. G., and Piskunov, I. S., Investigation of the diffusion equation with increasing substance amount and application to a biological problem [in Russian], Byulleten’ MGU, Sektsiya A, Vol. 1, No. 6, pp. 1–25, 1937. Konopelchenko, B. G., Nonlinear Integrable Equations, Springer, New York, 1987. Korepin, V. E., Bogoliubov, N. N., and Izergin A. G., Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge, 1993. Korn, G. A. and Korn, T. M., Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Comp., New York, 1961. Korteweg, D. J. and Vries, G., On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Phil. Mag., Vol. 39, pp. 422–443, 1895. Kosovtsov, Yu. N., The decomposition method and Maple procedure for finding first integrals of nonlinear PDEs of any order with any number of independent variables, 2007, arXiv: 0704.0072v1 [math-ph], 2007. Kosovtsov, Yu. N., The general solutions of some nonlinear second-order PDEs. I. Two independent variables, constant parameters [online], arXiv.org, 2008 a (http://arxiv.org/ abs/0801.4081v1). Kosovtsov, Yu. N., Pleba´nski first heavenly equation [online], EqArchive, 2008 b (http://eqworld. ipmnet.ru/eqarchive/view.php?id=290). Kosovtsov, Yu. N., Pleba´nski second heavenly equation [online], EqArchive, 2008 c (http://eqworld. ipmnet.ru/eqarchive/view.php?id=334). Koterov, V. N., Shmyglevskii, Yu. D., and Shcheprov, A. V., A survey of analytical studies of steady viscous incompressible flows (2000–2004), Comp. Math. & Math. Phys., Vol. 45, No. 5, pp. 867–888, 2005. Kov´asznay, L. I. J., Laminar flow behind a two-dimensional grid, Proc. Cambridge Philos. Soc., Vol. 44, pp. 58–62, 1948. Kozlov, V. F., Some exact solutions for the nonlinear equation of advection of density in Ocean, Izvestiya Akad. Nauk USSR, Fizika Atmosfery i Okeana, Vol. 2, p. 1205, 1966.

1824

C ONTENTS

Kozlov, V. V., Symmetries, Topology and Resonances in Hamiltonian Mechanics [in Russian], Izd-vo Udmurtskogo Gos. Universiteta, Izhevsk, 1995. Kreiss, H. O. and Parter, S. V., On the swirling flow between rotating coaxial disks: existence and nonuniqueness, Commun. Pure Appl. Math., Vol. 36, pp. 55–84, 1983. Kreyszig, E., Maple Computer Guide for Advanced Engineering Mathematics, Wiley, New York, 8th ed., 2000. Krichever, I. M., Analogue of D’Alembert’s formula for main field equations and the sineGordon equation, Doklady AN USSR, Vol. 253, No. 2, pp. 288–292, 1980. Krichever, I. M. and Novikov, S. P., Holomorphic bundles over Riemannian surfaces and the Kadomtsev–Petviashvili (KP) equation, Funkts. Analiz i ego Prilozh., Vol. 12, No. 4, pp. 41–52, 1978. Krichever, I. M. and Novikov, S. P., Holomorphic bundles over algebraic curves and nonlinear equations, Russ. Math. Surv., Vol. 35, pp. 53–79, 1980. Kruglikov, B., Symmetry approaches for reductions of PDEs, differential constraints and Lagrange–Charpit method, Acta Appl. Math., Vol. 101, pp. 145–161, 2008. Kruskal, M. D., Miura, R. M., Gardner, C. S., and Zabusky, N. J., Korteweg–de Vries equation and generalizations. V. Uniqueness and nonexistence of polynomial conservation laws, J. Math. Phys., Vol. 11, pp. 952–960, 1970. Kruzhkov, S. N., Generalized solutions of nonlinear first order equations with several variables [in Russian], Mat. Sbornik, Vol. 70, pp. 394–415, 1966. Kruzhkov, S. N., Generalized solutions of Hamilton–Jacobi equations of the eikonal type [in Russian], Mat. Sbornik, Vol. 27, pp. 406–446, 1975. Kucharczyk, P., Teoria Grup Liego w Zaslosowaniu do R´owman R´ozniczkowych Czastkowych, IPPT Polish Academy of Sciences, Warsaw, 1967. Kuczma, M., An Introduction to the Theory of Functional Equations and Inequalities, Polish Scientific Publishers, Warsaw, 1985. Kudryashov, N. A., Exact soliton solutions of the generalized evolution equation of wave dynamics, J. Appl. Math. and Mech., Vol. 52, No. 3, pp. 360–365, 1988. Kudryashov, N. A., Exact solutions of an N th-order equation with a Burgers–Korteweg– de Vries type nonlinearity [in Russian], Mat. Modelirovanie, Vol. 1, No. 6, pp. 57–65, 1989. Kudryashov, N. A., Exact solutions of nonlinear wave equations arising in mechanics, Appl. Math. and Mech. (PMM), Vol. 54, No. 3, pp. 450–453, 1990 a. Kudryashov, N. A., Exact solutions of the generalized Kuramoto–Sivashinsky equation, Phys. Lett. A, Vol. 147, No. 5–6, pp. 287–291, 1990 b. Kudryashov, N. A., On types of nonlinear nonintegrable solutions with exact solutions, Phys. Lett. A, Vol. 155, No. 4–5, pp. 269–275, 1991. Kudryashov, N. A., On exact solutions of families of Fisher equations, Theor. & Math. Phys., Vol. 94, No. 2, pp. 211–218, 1993. Kudryashov, N. A., Symmetry of algebraic and differential equations. Soros Educational Journal [in Russian], No. 9, pp. 104–110, 1998.

C ONTENTS

1825

Kudryashov, N. A., Nonlinear differential equations with exact solutions expressed via the Weierstrass function, Zeitschrift fur Naturforschung, Vol. 59, pp. 443–454, 2004. Kudryashov, N. A., Analytical Theory of Nonlinear Differential Equations [in Russian], Institut kompjuternyh issledovanii, Moscow–Izhevsk, 2004. Kudryashov, N. A., Simplest equation method to look for exact solutions of nonlinear differential equations, Chaos, Solitons and Fractals, Vol. 24, No. 5, pp. 1217–1231, 2005. Kudryashov, N. A., On ”new travelling wave solutions” of the KdV and the KdV–Burgers equations, Commun. Nonlinear Sci. and Numer. Simulation, Vol. 14, No. 5, pp. 1891– 1900, 2009 a. Kudryashov, N. A., Seven common errors in finding exact solutions of nonlinear differential equations, Commun. Nonlinear Sci. and Numer. Simulation, Vol. 14, No. 9–10, pp. 3507–3529, 2009 b. Kudryashov, N. A., Comment on: ”A novel approach for solving the Fisher equation using Exp-function method” [Phys. Lett. A, Vol. 372 pp. 3836–3840, 2008], Physics Letters A, Vol. 373, No. 12–13, pp. 1196–1197, 2009 c. Kudryashov, N. A., A note on new exact solutions for the Kawahara equation using Expfunction method, J. Comp. Appl. Math., Vol. 234, No. 12, pp. 3511–3512, 2010 a. Kudryashov, N. A., A note on the G’/G-expansion method, Appl. Math. Comp., Vol. 217, No. 4, pp. 1755–1758, 2010 b. Kudryashov, N. A., A new note on exact complex travelling wave solutions for (2 + 1)dimensional B-type Kadomtsev–Petviashvili equation, Appl. Math. Comp., Vol. 217, No. 5, pp. 2282–2284, 2010 c. Kudryashov, N. A., Methods of Nonlinear Mathematical Physics [in Russian], Izd. Dom Intellekt, Dolgoprudnyi, 2010 d. Kudryashov, N. A., On completely integrability systems of differential equations, Commun. Nonlinear Sci. and Numer. Simulation, Vol. 16, No. 6, pp. 2414–2420, 2011 a. Kudryashov, N. A., Redundant exact solutions of nonlinear differential equations, Commun. Nonlinear Sci. and Numer. Simulations, Vol. 16, No. 9, pp. 3451–3456, 2011 b. Kudryashov, N. A. and Loguinova, N. B., Extended simplest equation method for nonlinear differential equations, Applied Mathematics and Computation, Vol. 205, No. 1, pp. 396-402, 2008. Kudryashov, N. A. and Loguinova, N. B., Be careful with the Exp-function method, Commun. Nonlinear Sci. and Numer. Simulation, Vol. 14, No. 5, pp. 1881–1890, 2009. Kudryashov, N. A., Ryabov, P. N., and Sinelshchikov, D. I., A note on “New kinkshaped solutions and periodic wave solutions for the (2 + 1)-dimensional sine–Gordon equation,” Appl. Math. Comp., Vol. 216, No. 8, pp. 2479–2481, 2010. Kudryashov, N. A., Ryabov, P. N., and Sinelshchikov, D. I., Comment on: “Application of the (G’/G) method for the complex KdV equation” [Zhang, H., Commun. Nonlinear Sci. Numer. Simulation, Vol. 15, pp. 1700–1704, 2010], Commun. Nonlinear Sci. Numer. Simulation, Vol. 16, No. 1, pp. 596–598, 2011.

1826

C ONTENTS

Kudryashov, N. A. and Sinelshchikov, D. I., A note on “Abundant new exact solutions for the (3 + 1)-dimensional Jimbo–Miwa equation,” J. Math. Anal. Appl., Vol. 371, No. 1, pp. 393–396, 2010. Kudryashov, N. A. and Soukharev, M. B., Exact solutions of a non-linear fifth-order equation for describing waves on water, Appl. Math. and Mech. (PMM), Vol. 65, No. 5, pp. 855–865, 2001. Kudryashov, N. A. and Soukharev, M. B., Popular ansatz methods and solitary waves solutions of the Kuramoto–Sivashinsky equation, Regular and Chaotic Dynamics, Vol. 14, No. 3, pp. 407–419, 2009. Kudryashov, N. A. and Soukharev, M. B., Comment on: “Multi soliton solution, rational solution of the Boussinesq–Burgers equations,” Commun. Nonlinear Sci. and Numer. Simulation, Vol. 15, No. 7, pp. 1765–1767, 2010. Kulikovskii, A. G., Properties of shock adiabats in the neighbourhood of Jouguet points, Fluid Dynamics, Vol. 14, No. 2, pp. 317-320, 1979. Kulikovskii, A. G. and Sveshnikova, E. I., Nonlinear Waves in Elastic Media, CRC Press, Boca Raton, 1995. Kulikovskii, A. G., Pogorelov, N. V., and Semenov, A. Yu., Mathematical Aspects of Numerical Solution of Hyperbolic Systems, Chapman & Hall/CRC Press, Boca Raton, 2001. Kumar, S. N. and Panigrahi, P. K., Compacton-like solutions for KdV and other nonlinear equations, REVTEX electr. manusct., 23 April 1999. Kupershmidt, B. A., A super KdV equation: An integrable system, Phys. Letters, Vol. 102 A, pp. 212–215, 1984. Kuramoto, Y. and Tsuzuki, T., On the formation of dissipative structures in reactiondiffusion systems, Progr. Theor. Phys., Vol. 54, No. 3, pp. 687–699, 1975. Kuramoto, Y. and Tsuzuki, T., Persistent propagation of concentration waves in dissipative media from thermal equilibrium, Progr. Theor. Phys., Vol. 55, No. 2, pp. 356–369, 1976. Kuranishi, M., Lectures on Involutive Systems on Partial Differential Equations, Publ. Soc. Math., Sao Paulo, 1967. Kurenskii, M. G., Differential Equations. Book Two: Partial Differential Equations [in Russian], Izd-vo Artilleriiskoi Akad. RKKA, Leningrad, 1934. Kuznetsov, N. N., Some mathematical problems of chromatography, Vychisl. Metody i Progr. [in Russian], Moscow State Univ., Vol. 6, pp. 242–258, 1967. Lagerstrom, P. A., Laminar Flow Theory, Princeton Univ. Press, Princeton, NJ, 1996 [Originally published in Theory of Laminar Flows (Ed. F. K. Moore), Princeton Univ. Press, Princeton, NJ, 1964]. Lagerstrom, P. A. and Cole, J. D., Examples illustrating expansion procedures for the Navier–Stokes equations, J. Rat. Mech. Anal., Vol. 4, pp. 817–882, 1955. Lagno, V. I. and Stognii, V. I., Symmetric reduction of a nonlinear Kolmogorov-type equation and group classification of one of its generalizations, In: Some Topical

C ONTENTS

1827

Problems of Modern Mathematics and Mathematical Education (Ed. V. F. Zaitsev) [in Russian], Saint-Petersburg, pp. 42–44, 2010. Lai, C.-Y., Rajagopal, K. R., and Szeri, A. Z., Asymmetric flow between parallel rotating disks, J. Fluid Mech., Vol. 446, pp. 203–225, 1984. Lake, L. W., Enhanced Oil Recovery, Prentice Hall, Eaglewood Cliffs, N.J., 1989. Lamb, G. L., Analytical descriptions of ultrashort optical pulse propagation in a resonant medium, Rev. Mod. Phys., Vol. 43, pp. 99–124, 1971. Lamb, G. L., B¨acklund transformations for certain nonlinear evolution equations, J. Math. Phys., Vol. 15, pp. 2157–2165, 1974. Lamb, G. L., Elements of Soliton Theory, Wiley, New York, 1980. Lamb, H., Hydrodynamics, Dover Publ., New York, 1945. Lambossy, P., Oscillations forc´ees d’un liquide incompressible et visqueux dans un tube rigide et horizontal. Calcul de la force de frottement, Helv. Phys. Acta, Vol. 25, pp. 371– 386, 1952. Lan, H. and Wang, K., Exact solutions for some nonlinear equations, Phys. Lett., Vol. 139, No. 7–8, pp. 369–372, 1989. Lance, G. N. and Rogers, M. H., The axially symmetric flow of a viscous fluid between two infinite rotating disks, Proc. Roy. Soc. London, Ser. A, Vol. 266, pp. 109–121, 1962. Landau, L. D., Dokl. Acad. Nauk USSR, Vol. 43, p. 286, 1944. Landau, L. D. and Lifshitz, E. M., Fluid Mechanics, 3rd ed. [in Russian], Nauka, Moscow, 1986; 2nd English ed., Pergamon Press, Oxford, 1987. Lapidus, L. and Pinder, G. F., Numerical Solution of Partial Differential Equations in Science and Engineering, Wiley-Interscience, New York, 1999. Lapko, B. V., Invariant solutions of three-dimensional nonstationary gas motion, Zh. Prikl. Mekh. Tekh. Fiz., No. 1, p. 45, 1978. Larsson, S. and Thom´ee, V., Partial Differential Equations with Numerical Methods, Springer, New York, 2008. Lavrent’ev, M. A. and Shabat, B. V., Methods of the Theory of Functions of a Complex Variable [in Russian], Nauka, Moscow, 1973. Lavrent’eva, O. M., Flow of a viscous fluid in a layer on a rotating fluid, J. Appl. Mech. & Tech. Phys., No. 5, pp. 41–48, 1989. Lawrence, C. J., Kuang, Y., and Weinbaum, S., The inertial draining of a thin fluid layer between parallel plates with a constant normal force. Part 2. Boundary layer and exact numerical solutions, J. Fluid Mech., Vol. 156, pp. 479–494, 1985. Lax, P. D., Weak solutions of nonlinear hyperbolic equations and their numerical computation, Communs. Pure and Appl. Math., Vol. 7, pp. 159–193, 1954. Lax, P. D., Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math., Vol. 21, No. 5, pp. 467–490, 1968. Lax, P. D., Periodic solutions of the KdV equation, Comm. Pure Appl. Math., Vol. 28, pp. 144–188, 1975.

1828

C ONTENTS

Lax, P. D., Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves [reprint from the classical paper of 1957], Society of Industrial & Applied Mathematics, Philadelphia, 1997. Lee, H. J. and Schiesser, W. E., Ordinary and Partial Differential Equation Routines in C, C++, Fortran, Java, Maple, and MATLAB, Chapman & Hall/CRC Press, Boca Raton, 2004. Lei, H. C., Group splitting and linearization mapping of a solvable nonlinear wave equation, Int. J. Non-Linear Mechanics, Vol. 33, pp. 461–471, 1998. Lei, H. C., Study of a hodograph transformation and its applications, J. Chinese Inst. Engineers, Vol. 25, No. 6, pp. 77–714, 2002. Lei, H. C. and Chang, H. W., A list of hodograph transformations and exactly linearizable systems, Int. J. Non-Linear Mechanics, Vol. 31, pp. 117–127, 1996. Lenells, J., Traveling wave solutions of the Camassa–Holm equation, J. Dif. Equations, Vol. 217, No. 2, pp. 393–430, 2005 a. Lenells, J., Traveling wave solutions of the Degasperis–Procesi equation, J. Math. Anal. Appl., Vol. 306, No. 1, pp. 72–82, 2005 b. Lenells, J., The Hunter–Saxton equation describes the geodesic flow on a sphere, J. Geom. Phys., Vol. 57, No. 10, pp. 2049–2064, 2007. Lenskii, E. V., On the group properties of the equation of motion of a nonlinear viscoplastic medium, Vestnik MGU, Ser. 1 (Math. i Meh.), pp. 116–125, 1966. Leo, M., Leo, R. A., Soliani, G., Solombrino, L., and Martina, L., Lie–B¨acklund symmetries for the Harry Dym equation, Phys. Rev. D., Vol. 27, No. 6, pp. 1406–1408, 1983. LeVeque, R. J., Numerical Methods for Conservation Laws, Birkh¨auser, Boston, 1992. LeVeque, R. J., Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge, 2002. LeVeque, R. J., Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems, SIAM, Philadelphia, 2007. Levi, D., Petrera, M., and Scimiterna, C., The lattice Schwarzian KdV equation and its symmetries, J. Phys. A: Math. Theor., Vol. 40, pp. 12753–12761, 2007. Levi, D. and Winternitz, P., Nonclassical symmetry reduction: example of the Boussinesq equation, J. Phys. A, Vol. 22, pp. 2915–2924, 1989. Levitan, B. M., Sturm–Liouville Inverse Problems [in Russian], Nauka, Moscow, 1984. Lewin, J., Differential Games, Springer-Verlag, Berlin, 1994. Libby, P. A., Heat and mass transfer at a general three-dimensional stagnation point with large rates of injection, AIAA J., Vol. 5, pp. 507–517, 1967. Libby, P. A., Wall shear at a three-dimensional stagnation point with a moving wall, AIAA J., Vol. 14, pp. 1273–1279, 1974. Libby, P. A., Laminar flow at a three-dimensional stagnation point with large rates of injection, AIAA J., Vol. 12, pp. 408–409, 1976.

C ONTENTS

1829

Liebbrandt, G., New exact solutions of the classical sine-Gordon equation in 2 + 1 and 3 + 1 dimensions, Phys. Rev. Lett., Vol. 41, pp. 435–438, 1978. Lighthill, J., Waves in Fluids, Cambridge Univer. Press, Cambridge, 1978. Lin, C. C., Note on a class of exact solutions in magneto-hydrodynamics, Arch. Rational Mech. Anal., Vol. 1, pp. 391–395, 1958. Lin, C. C., Reissner, E., and Tsien, H. S., On two-dimensional non-steady motion of a slender body in a compressible fluid, J. Math. Phys., Vol. 27, No. 3, p. 220, 1948. Lin, S. P. and Tobak, M., Reversed flow above a plate with suction, AIAA J., Vol. 24, pp. 334–335, 1986. Lindsay, R. B., J. L. R. d’Alembert, Investigation of the curve formed by a vibrating string, In: Acoustics: Historical and Philosophical Development, Dowden, Hutchinson & Ross, Stroudsburgh, PA, 1973. Lineikin, P. S., Hydrodynamical models of nonhomogeneous ocean, Okeanologia, Vol. 3, p. 369, 1963. Lions, P.-L., Generalized Solutions of Hamilton–Jacobi Equations, Pitman, Boston, 1982. Lions, P.-L. and Souganidis, P. E., Differential games, optimal control and directional derivatives of viscosity solutions of Bellman’s and Isaacs’ solutions, SIAM J. Control and Optimization, Vol. 23, No. 4, 1985. Liouville, J., Sur l’´equation aux diff´erences partielles: ∂ 2 log λ/∂u∂v ± λ/2a2 = 0, J. Math., Vol. 18, pp. 71–72, 1853. Litvinenko, Yu. E., A similarity reduction of the Grad–Shafranov equation, Phys. Plasmas, Vol. 17, 074502, 2010 (doi:10.1063/1.3456519). Liu, T. P., The Riemann problem for general 2x2 system of conservation laws, Trans. Amer. Math. Soc., Vol. 199, pp. 89–112, 1974. Lloyd, S. P., The infinitesimal group of the Navier–Stokes equations, Acta Mech., Vol. 38, pp. 85–98, 1981. Logan, D. J., Nonlinear Partial Differential Equations, John Wiley & Sons Inc., New York, 1994. Loitsyanskiy, L. G., Mechanics of Liquids and Gases, Begell House, New York, 1996. Long, R. R., Vortex motion in a viscous fluid, J. Meteotol., Vol. 15, pp. 108–112, 1958. Long, R. R., A vortex in an infinite viscous fluid, J. Fluid Mech., Vol. 11, pp. 611–624, 1961. Lonngren, K. and Scott, A. (Eds.), Solitons in Action, Academic Press, New York, 1978. Loubet, E., About the explicit characterization of Hamiltonians of the Camassa–Holm hierarchy, J. Nonlinear Math. Phys., Vol. 12, No. 1, pp. 135–143, 2005. Ludford, C. S., Generalized Riemann invariants, Pacif. J. Math., Vol. 5, pp. 441–450, 1955. Ludlow, D. K., Clarkson, P. A., and Bassom, A. P., Nonclassical symmetry reductions of the two-dimensional incompressible Navier–Stokes equations, Studies in Applied Mathematics, Vol. 103, pp. 183–240, 1999.

1830

C ONTENTS

Ludlow, D. K., Clarkson, P. A., and Bassom, A. P., New similarity solutions of the unsteady incompressible boundary-layer equations, Quart. J. Mech. and Appl. Math., Vol. 53, pp. 175–206, 2000. Lundmark, H., Formation and dynamics of shock waves in the Degasperis–Procesi equation, J. Nonlinear Sci., Vol. 17, No. 3, pp. 169–198, 2007. Lundmark, H. and Szmigielski, J., Multi-peakon solutions of the Degasperis–Procesi equation, Inverse Problems, Vol. 19, No. 6, pp. 1241–1245, 2003. Lykov, A. V., Theory of Heat Conduction [in Russian], Vysshaya Shkola, Moscow, 1967. Lynch, S., Dynamical Systems with Applications using Maple, Birkh¨auser, Boston, MA, 2nd ed., 2009. Ma, P. K. H. and Hui, W. H., Similarity solutions of the two-dimensional unsteady boundary-layer equations J. Fluid Mech., Vol. 216, pp. 537–559, 1990. Ma, W.-X., Travelling wave solutions to a seventh order generalized KdV equation, Phys. Lett. A, Vol. 180, 221–224, 1993. Ma, W.-X. and You, Y., Solving the Korteweg–de Vries equation by its bilinear form: Wronskian solutions, Trans. Amer. Math. Soc., Vol. 357, pp. 1753–1778, 2005. Macias, A., Cervantes-Cota, J. L., and Lammerzahl, C. (Eds.), Exact Solutions and Scalar Fields in Gravity, Springer, 2001. Maeder, R. E., Programming in Mathematica, Addison-Wesley, Reading, MA, 3rd ed., 1996. Malfliet, W., Solitary wave solutions of nonlinear wave equations, Am. J. Phys., Vol. 60, No. 7, pp. 650–654, 1992. Malfliet, W. and Hereman, W., The tanh method: exact solutions of nonlinear evolution and wave equations, Phys Scripta, Vol. 54, pp. 563–568, 1996. Mamontov, E. V., To the theory of unsteady transonic flows [in Russian], Doklady AN USSR, Vol. 185, No. 3, pp. 538–540, 1969. Mansfield, E. H., Quart. J. Mech. Appl. Math., Vol. 8, p. 338, 1955. Mansfield, E. L., The nonclassical group analysis of the heat equation, J. Math. Anal. Appl., Vol. 231, pp. 526–542, 1999. Marchenko, A. V., Long waves in shallow liquid under ice cover, Appl. Math. and Mech. (PMM), Vol. 52, No. 2, pp. 180–183, 1988. Marchenko, V. A., Sturm–Liouville Operators and Applications, Birkh¨auser, Basel, 1986. Marino, K., Ankiewicz, A., and Akhmediev, N., Exact soliton solutions of the onedimensional complex Swift–Hohenberg equation, Physica D, Vol. 176, pp. 44–66, 2003. Markeev, A. P., Theoretical Mechanics [in Russian], Nauka, Moscow, 1990. Martin, M. N., The propagation of a plane shock into a quiet atmosphere, Canad. J. Math., Vol. 3, pp. 165–187, 1953. Martinez, A. L. and Shabat, A. B., Towards a theory of differential constraints of a hydrodynamic hierarchy, J. Nonlin. Math. Phys., Vol. 10, pp. 229–242, 2003.

C ONTENTS

1831

Martinson, L. K., Plane problem of convective heat transfer in a nonlinear medium, Appl. Math. and Mech. (PMM), Vol. 44, No. 1, pp. 128–131, 1980. Martinson, L. K. and Pavlov, K. B., To the question of space localization of thermal perturbations in nonlinear heat conduction theory [in Russian], Zhurn. Vychisl. Matem. i Matem. Fiziki, Vol. 12, No. 4, pp. 1048–1054, 1972. Matsuno, Y., Exact solutions for the nonlinear Klein–Gordon and Liouville equations in four-dimensional Euclidean space, J. Math. Physics, Vol. 28, No. 10, pp. 2317–2322, 1987. Matsuno, Y., The N-soliton solution of the Degasperis–Procesi equation, Inverse Problems, Vol. 21, No. 6, pp. 2085–2101, 2005. McKean, H. P., The Liouville correspondence between the Korteweg–de Vries and the Camassa–Holm hierarchies, Comm. Pure Appl. Math., Vol. 56, No. 7, 998–1015, 2003. McLeod, J. B., The existence of axially symmetric flow above a rotating disk, Proc. Roy. Soc. London, Ser. A, Vol. 324, pp. 391–414, 1971. McLeod, J. B. and Parter, S. V., On the flow between two counter-rotating infinite plane disks, Arch. Rat. Mech. Anal., Vol. 42, pp. 385–327, 1974. Meade, D. B., May, S. J. M., Cheung, C-K., and Keough, G. E., Getting Statrted with Maple, Wiley, Hoboken, NJ, 3rd ed., 2009. Meirmanov, A. M., Pukhnachov, V. V., and Shmarev, S. I., Evolution Equations and Lagrangian Coordinates, Walter de Gruyter, Berlin, 1997. Meleshko, S. V., Differential constraints and one-parameter Lie–B¨acklund groups, Sov. Math. Dokl., Vol. 28, pp. 37–41, 1983. Meleshko, S. V., A particular class of partially invariant solutions of the Navier–Stokes equations, Nonlinear Dynamics, Vol. 36. No. 1, pp. 47–68, 2004. Meleshko, S. V., Methods for Constructing Exact Solutions of Partial Differential Equations, Springer-Verlag, New York, 2005. Meleshko, S. V. and Pukhnachov, V. V., A class of partially invariant solutions of Navier– Stokes equations, J. Appl. Mech. & Tech. Phys., Vol. 40, No. 2, pp. 24–33, 1999. Melikyan, A. A., Singular characteristics of the first order PDEs, Doklady Mathematics, Vol. 54, No. 3, pp. 831–834, 1996. Melikyan, A. A., Generalized Characteristics of First Order PDE’s: Applications in Optimal Control and Differential Games, Birkh¨auser, Boston, 1998. Melor, G. L., Chapple, P. J., and Stokes, V. K., On the flow between a rotating and a stationary disk, Fluid Mech., Vol. 31, pp. 95–112, 1968. Mel’nikov, V. K., Structure of equations solvable by the inverse scattering transform for the Schr¨odinger operator, Theor. & Math. Phys., Vol. 134, No. 1, pp. 94–106, 2003. Menshikh, O. F., On group properties on nonlinear partial differential equations whose solutions are all functionally invariant, Vestnik Samarskogo Gos. Universiteta [in Russian], No. 4 (34), pp. 20–30, 2004. Men’shikov, V. M., Solutions of two-dimentional gasdynamics equations of the simple wave type, Zh. Prikl. Mekh. Tekh. Fiz., Vol. 3, p. 129, 1969.

1832

C ONTENTS

Merchant, G. I. and Davis, S. H., Modulated stagnation-point flow and steady streaming, J. Fluid Mech., Vol. 198, pp. 543–555, 1989. Meshcheryakova, E. Yu., New steady and self-similar solutions of the Euler equations, J. Appl. Mech. & Tech. Phys., Vol. 44, pp. 455–460, 2003. Mikhailov, A. V., On the integrability of the two-dimensional generalization of Tod’s chain [in Russian], Pis’ma v ZhETF, Vol. 30, No. 7, pp. 443–448, 1979. Mikhailov, A. V., Shabat, A. B., and Sokolov, V. V., The symmetry approach to classification of integrable equations, In: What is Integrability? (Ed. V. E. Zakharov), pp. 115–184, Springer-Verlag, 1991. Miller, W. (Jr.) and Rubel, L. A., Functional separation of variables for Laplace equations in two dimensions, J. Phys. A, Vol. 26, pp. 1901–1913, 1993. Millsaps, K. and Pohlhausen, K., Thermal distributions in Jeffery–Hamel flows between nonparallel plane walls, J. Aerosp. Sci., Vol. 20, pp. 187–196, 1953. Mironov, A. N., Construction of a exact solution to one quasilinear partial differential equation with three independent variables, In: Some Topical Problems of Modern Mathematics and Mathematical Education (Ed. V. F. Zaitsev) [in Russian], SaintPetersburg, pp. 66–68, 2010. Miura, R. M., Korteweg–de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation, J. Math. Phys., Vol. 9, No. 8, pp. 1202–1204, 1968. Miura, R. M., In: Nonlinear waves (Eds. S. Leibovich and A. R. Seebass), Cornell Univ. Press, Ithaca & London, 1974. Miura, R. M. (Ed.), B¨acklund Transformations, Lecture Notes in Math., Vol. 515, SpringerVerlag, Berlin, 1976. Miura, R. M., Gardner, C. S., and Kruskal, M. D., Korteweg–de Vries equation and generalizations. II. Existence of conservation laws and constants of motion, J. Math. Phys., Vol. 9, pp. 1204–1209, 1968. Miwa, T., Jimbo, M., and Date, E., Solitons. Differential Equations, Symmetries and Infinite-Dimensional Algebras, Cambridge Univ. Press, Cambridge, 2000. Moffat, H. K., The interaction of skewed vortex pairs: a model for blow-up of the Navier– Stokes equations, J. Fluid Mech., Vol. 409, pp. 51–68, 2000. Moore, R. L., Exact non-linear forced periodic solutions of the Navier–Stokes equations, Physica D, Vol. 52, pp. 179–190, 1991. Morton, K. W. and Mayers, D. F., Numerical Solution of Partial Differential Equations: An Introduction, Cambridge University Press, Cambridge, 1995. ¨ Muller, W., Zum Problem der Anlanfstr¨omung einer Flussigkeit im geraden Rohr mit Kreisring- und Kreisquerschnitt, Zs. Angew Math. Mech. (ZAMM), Bd. 16, Ht. 4, S. 227–238, 1936. Munier, A., Burgan, J. R., Gutierres, J., Fijalkow, E., and Feix M. R., Group transformations and the nonlinear heat diffusion equation, SIAM J. Appl. Math., Vol. 40, No. 2, pp. 191–207, 1981. Murphy, G. M., Ordinary Differential Equations and Their Solutions, D. Van Nostrand, New York, 1960.

C ONTENTS

1833

Murray, J. D., Mathematical Biology, Springer-Verlag, Berlin, 1993. Musette, M., Painleve analysis for nonlinear partial differential equations, pp. 1–48, In: The Painleve Property, One Century Later (Ed. R. Conte), CRM Series in Math. Phys, Springer-Verlag, Berlin, 1998. Musette, M. and Conte, R., Algorithmic method for deriving Lax pairs from the invariant Painleve analysis of nonlinear partial differential equations, J. Math. Phys., Vol. 32, No. 6, pp. 1450–1457, 1991. Musette, M. and Conte, R., The two-singular-manifold method: Modified Korteweg–de Vries and the sine-Gordon equations, Phys. A, Math. Gen., Vol. 27, No. 11, pp. 3895– 3913, 1994. Nariboli, G.A., Self-similar solutions of some nonlinear equations, Appl. Sci. Res., Vol. 22, pp. 449–461, 1970. Navier, C.-L.-M.-H., Memoire sur les lois du mouvement des fluids (1822), Mem. Acad. Sci. Inst. France, Vol. 6, No. 2, pp. 389–440, 1827. Nayfeh, A. H., Perturbation Methods, John Wiley & Sons, New York, 1973. Nechepurenko, M. I., Iterations of Real Functions and Functional Equations [in Russian], Institute of Computational Mathematics and Mathematical Geophysics, Novosibirsk, 1997. Nerney, S., Schmahl, E. J., and Musielak Z. E., Analytic solutions of the vector Burgers’ equation, Quart. Appl. Math., Vol. LIV, No. 1, pp. 63–71, 1996. Nesterov, S. V., Examples of nonlinear Klein–Gordon equations solvable in terms of elementary functions [in Russian], pp. 68–70, In: Applied Issues of Mathematics, Mosk. Energeticheskii Institut, Moscow, 1978. Newell, A. C., Solitons in Mathematics and Physics, Soc. Indus. Appl. Math. (SIAM), Arizona, 1985. Newman, W. I., Some exact solutions to a nonlinear diffusion problem in population genetics and combustion, J. Theor. Biol., Vol. 85, pp. 325–334, 1980. Neyzi, F., Nutku, Y., and Sheftel, M. B., Multi-Hamiltonian structure of Plebanski’s second heavenly equation, J. Phys. A: Math. Gen., Vol. 38, No. 39, pp. 8473–8485, 2005. Nigmatulin, R. I., Dynamics of Multiphase Media, Part I [in Russian], Nauka, Moscow, 1987. Nijenhuis, A., Xn−1 -forming sets of eigenvectors, Indagationes Mathematicae, Vol. 13, No. 2, pp. 200–212, 1951. Nikitin, A. G., Group classification of systems of non-linear reaction-diffusion equations with general diffusion matrix. II. Generalized Turing systems, J. Math. Anal. Appl., Vol. 332, No. 1, pp. 666–690, 2007 (see also http://arxiv.org/abs/math-ph/0411028). Nikitin, A. G. and Wiltshire, R. J., Systems of reaction-diffusion equations and their symmetry properties, J. Math. Phys., Vol. 42, No. 4, pp. 1667–1688, 2001. Nimmo, J. J. C. and Crighton, D. J., B¨acklund transformations for nonlinear parabolic equations: the general results. Proc. Royal Soc. London A, 1982, Vol. 384, pp. 381–401.

1834

C ONTENTS

Nishitani, T. and Tajiri, M., On similarity solutions of the Boussinesq equation, Phys. Lett. A, Vol. 89, pp. 379–380, 1982. Novikov, S. P., A periodic problem for the Korteweg–de Vries equation [in Russian], Funkts. Analiz i ego Prilozh., Vol. 8, No. 3, pp. 54–66, 1974. Novikov, S. P., Manakov, S. V., Pitaevskii, L. B., and Zakharov, V. E., Theory of Solitons. The Inverse Scattering Method, Plenum Press, New York, 1984. Nucci, M. C. and Clarkson, P. A., The nonclassical method is more general than the direct method for symmetry reductions. An example of the Fitzhugh–Nagumo equation, Phys. Lett. A, Vol. 164, pp. 49–56, 1992. Oberlack, M. and Peters, N., Closure of the two-point correlation equation as a basis for Reynolds stress models, Appl. Sci. Res., Vol. 55, pp. 533–538, 1993. O’Brien, V., Steady spheroidal vortices — more exact solutions to the Navier–Stokes, equations, Quart. Appl. Math., Vol. 19, pp. 163–168, 1961. Ockendon, H., An asymptotic solution for steady flow above an infinite rotating disk with suction, Quart. J. Mech. Appl. Math., Vol. 25, pp. 291–301, 1972. Okamura, M., Resonant standing waves on water of uniform depth, J. Phys. Soc. Jpn., Vol. 66, pp. 3801–3808, 1997. Oleinik, O. A., On Cauchy’s problem for nonlinear equations in the class of discontinuous functions [in Russian], Doklady AN USSR, Vol. 95, No. 3, pp. 451–454, 1954. Oleinik, O. A., Discontinuous solutions of nonlinear differential equations, Uspekhi Matem. Nauk, Vol. 12, No. 3, pp. 3–73, 1957 [Amer. Math. Soc. Translation, Series 2, Vol. 26, pp. 95–172, 1963]. Oleinik, O. A., On uniqueness and stability of a general solution of Cauchy’s problem of quasilinear equations [in Russian], Uspekhi Matem. Nauk, Vol. 14, No. 2, pp. 159–164, 1959. Oleinik, O. A. and Samokhin, V. N., Mathematical Models in Boundary Layer Theory, Chapman & Hall/CRC Press, Boca Raton, 1999. Olver, P. J., Euler operators and conservation laws of the BBM equation, Math. Proc. Camb. Phil. Soc., Vol. 85, pp. 143–160, 1979. Olver, P. J., Hamilton and non-Hamilton models for water waves, Lecture Notes in Physics, Springer-Verlag, New York, No. 195, pp. 273–290, 1984. Olver, P. J., Application of Lie Groups to Differential Equations, Springer-Verlag, New York, 1986 and 1993. Olver, P. J., Direct reduction and differential constraints, Proc. Roy. Soc. London, Ser. A, Vol. 444, pp. 509–523, 1994. Olver, P. J., Equivalence, Invariants, and Symmetry, Cambridge Univ. Press, Cambridge, 1995. Olver, P. J., Classical Invariant Theory, Cambridge Univ. Press, Cambridge, 1999. Olver, P. J. and Rosenau, P., The construction of special solutions to partial differential equations, Phys. Letters A, Vol. 114, pp. 107–112, 1986.

C ONTENTS

1835

Olver, P. J. and Rosenau, P., Group-invariant solutions of differential equations, SIAM J. Appl. Math., Vol. 47, No. 2, pp. 263–278, 1987. Olver P. J., and Vorob’ev E. M., Nonclassical and conditional symmetries, In: CRC Handbook of Lie Group Analysis of Differential Equations, Vol. 3 (Ed. N. H. Ibragimov), CRC Press, Boca Raton, 1996, pp. 291–328. Ono, H., Algebraic soliton of the modified Korteweg–de Vries’ equation, J. Soc. Japan, Vol. 41, pp. 1817–1818, 1976. Oron, A. and Rosenau, P., Some symmetries of nonlinear heat and wave equations, Phys. Letters A, Vol. 118, pp. 172–176, 1986. ¨ Oseen, C. W., Uber Wirbelbewegung in einer reibenden Fl¨ussigkeit, Ark. Mat. Astron. Fys., Vol. 7, pp. 14–26, 1911. Ovsiannikov, L. V., New solution of hydrodynamics equations, Doklady Acad. Nauk USSR, Vol. 111, No. 1, p. 47, 1956. Ovsiannikov, L. V., Group properties of nonlinear heat equations [in Russian], Doklady Acad. Nauk USSR, Vol. 125, No. 3, pp. 492–495, 1959. Ovsiannikov, L. V., Group Properties of Differential Equations [in Russian], Izd-vo SO AN USSR, Novosibirsk, 1962 (English translation by G. Bluman, 1967). Ovsiannikov, L. V., Lectures on Fundamentals of Gas Dynamics [in Russian], Nauka, Moscow, 1981. Ovsiannikov, L. V., Group Analysis of Differential Equations, Academic Press, New York, 1982. ¨ Oztekin, A., Seymour, B. R., and Varley, E., Pump flow solutions of the Navier–Stokes equations, Stud. Appl. Math., Vol. 107, pp. 1–41, 2001. Palais, R. S., The symmetries of solitons, Bull. AMS, Vol. 34, No. 4, pp. 339–403, 1997. Paneli, D. and Gutfinger, C., Fluid Mechanics, Cambridge Univ. Press, Cambridge, 1997. Parker, A., On the Camassa–Holm equation and a direct method of solution. I. Bilinear form and solitary waves, Proc. Roy. Soc. Lond. Ser. A, Vol. 460, pp. 2929–2957, 2004. Parker, A., On the Camassa–Holm equation and a direct method of solution. II. Soliton solutions, Proc. R. Soc. Lond. Ser. A, Vol. 461, pp. 3611–3632, 2005 a. Parker, A., On the Camassa–Holm equation and a direct method of solution. III. N-soliton solutions, Proc. Roy. Soc. Lond. Ser. A, Vol. 461, pp. 3893–3911, 2005 b. Parker, A., A factorization procedure for solving the Camassa–Holm equation, Inverse Problems, Vol. 22, No. 2, pp. 599–609, 2006. Parkes, E. J., Explicit solutions of the reduced Ostrovsky equation, Chaos, Solitons and Fractals, Vol. 31, pp. 602–610, 2007. Parkes, E. J., Observations on the tanh-coth expansion method for finding solutions to nonlinear evolution equations, Appl. Math. Comp., Vol. 217, No. 4, pp. 1749–1754, 2010. Parkes, E. J. and Duffy, B. R., An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations, Comput. Phys. Commun., Vol. 98, pp. 288–300, 1996.

1836

C ONTENTS

Pascucci A., Kolmogorov equations in physics and in finance, In: Progress in Nonlinear Differential Equations and Their Applications, Birkh¨auser, Vol. 63, pp. 313–324, 2005. Pascucci, A. and Polidoro, S., On the Cauchy problem for a non linear Kolmogorov equation, SIAM J. Math. Anal., Vol. 35, No. 3, pp. 579–595, 2003. Pattle, R. E., Diffusion from an instantaneous point source with a concentration-dependent coefficient, J. Mech. Appl. Math., Vol. 12, pp. 407–409, 1959. Paul, R. and Pillow, A. F., Conically similar viscous flows, Parts 2 and 3, Fluid Mech., Vol. 155, pp. 343–358 and 359–379, 1985. Pavlov, M. V., The Calogero equation and Liouville-type equations, Theor. & Math. Phys., Vol. 128, No. 1, pp. 927–932, 2001. Pavlov, M. V., Integrability of hydrodynamic-type Egorov systems, Theor. & Math. Phys., Vol. 150, No. 2, pp. 263–284, 2007. Pavlovskii, Yu. N., Investigation of some invariant solutions to the boundary layer equations [in Russian], Zhurn. Vychisl. Mat. i Mat. Fiziki, Vol. 1, No. 2, pp. 280–294, 1961. Pearson, C. E., Numerical solutions for the time-dependent viscous flow between two rotating coaxial disks, J. Fluid Mech., Vol. 21, pp. 623–633, 1965. Pelyukh, G. P. and Sharkovskii, O. M., Introduction to the Theory of Functional Equations [in Russian], Naukova Dumka, Kiev, 1974. Pen’kovskii, V. I., One-dimensional problem of the solution and leaching of salts at high values of the peclet number, J. Appl. Mech. & Tech. Physics, Vol 10, No. 2, pp. 327–331, 1969. Penney, W. G. and Price, A. T., Finite periodic stationary gravity waves in a perfect liquid, Part 2, Phil. Trans. R. Soc. Lond. A, Vol 224, pp. 254–284, 1952. Peregrine, D. N., Calculations of the development of an undular bore, J. Fluid Mech., Vol. 25, p. 321, 1966. Pernik, A. D., Cavitation Problems [in Russian], Sudostroenie, Leningrad, 1966. Perring, J. K. and Skyrme, T. R., A model unified field equation, Nuclear Physics, Vol. 31, pp. 550–555, 1962. Petrovskii, I. G., Lectures on the Theory of Ordinary Differential Equations [in Russian], Nauka, Moscow, 1970. Philip, J. R., General method of exact solution of the concentration-dependent diffusion equation, Australian J. Physics, Vol. 13, No. 1, pp. 13–20, 1960. Pike, R. and Sabatier, P. (Eds.), Scattering: Scattering and Inverse Scattering in Pure and Applied Science, Vols. 1 and 2, Academic Press, San Diego, 2002. Pillow, A. F. and Paul, R., Conically similar viscous flows. Part 1. Basic conservation principles and characterization of axial causes in swirl-free flow, Fluid Mech., Vol. 155, pp. 327–341, 1985. Plebanski, J. F., Some solutions of complex Einstein equations, J. Math. Phys., Vol. 16, pp. 2395–2402, 1975.

C ONTENTS

1837

Plesset, M. S. and Prosperetti, A., Bubble dynamics and cavitation, Annual Rev. of Fluid Mech., Vol. 9, pp. 145–185, 1977. Poincare, H., Sur les equations aux derives partielles de la physique mathematique, Amer. J. Math., Vol. 12, pp. 221–294, 1890. Poiseuille, J. L. M., Recherches experimenteles sur le mouvement des liquides dans les tubes de tr`es petits diam`etres, Comptes Rendus Acad. Sci., Paris, Vol. 11, pp. 961–967, pp. 1041–1048, 1840 & Vol. 12, pp. 112–115, 1841. Pokhozhaev, S. I., On an L. V. Ovsiannikov’s problem [in Russian], Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 5–10, 1989. Polubarinova–Kochina, P. Ya., Theory of Groundwater Movement [in Russian], Nauka, Moscow, 1977 [see also English translation, Princeton Univ. Press, 1962]. Polyanin, A. D., On the integration of nonlinear unsteady convective heat/mass exchange equations [in Russian], Doklady AN USSR, Vol. 251, No. 4, pp. 817–820, 1980. Polyanin, A. D., Method for solution of some non-linear boundary value problems of a nonstationary diffusion-controlled (thermal) boundary layer, Int. J. Heat Mass Transfer, Vol. 25, No. 4, pp. 471–485, 1982. Polyanin, A. D., Partial separation of variables in unsteady problems of mechanics and mathematical physics, Doklady Physics, Vol. 45, No. 12, pp. 680–684, 2000. Polyanin, A. D., Exact solutions and transformations of the equations of a stationary laminar boundary layer, Theor. Foundations of Chemical Engineering, Vol. 35, No. 4, pp. 319–328, 2001 a. Polyanin, A. D., Transformations and exact solutions containing arbitrary functions for boundary-layer equations, Doklady Physics, Vol. 46, No. 7, pp. 526–531, 2001 b. Polyanin, A. D., Exact solutions to the Navier–Stokes equations with generalized separation of variables, Doklady Physics, Vol. 46, No. 10, pp. 726–731, 2001 c. Polyanin, A. D., Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman & Hall/CRC Press, Boca Raton, 2002. Polyanin, A. D., Nonclassical (noninvariant) traveling-wave solutions and self-similar solutions, Doklady Mathematics, Vol. 70, No. 2, pp. 790–793, 2004 a. Polyanin, A. D., Exact solutions of nonlinear sets of equations of the theory of heat and mass transfer in reactive media and mathematical biology, Theor. Foundations of Chemical Engineering, Vol. 38, No. 6, pp. 622–635, 2004 b. Polyanin, A. D., Systems of Partial Differential Equations [online], EqWorld – The World of Mathematical Equations, 2004 c, http://eqworld.ipmnet.ru/en/solutions/syspde.htm. Polyanin, A. D., Exact solutions of nonlinear systems of diffusion equations for reacting media and mathematical biology, Doklady Mathematics, Vol. 71, No. 1, pp. 148–154, 2005. Polyanin, A. D., New classes of exact solutions to general nonlinear equations and systems of equations in mathematical physics, Doklady Mathematics, Vol. 421, No. 6, pp. 744– 748, 2008. Polyanin, A. D., On the nonlinear instability of the solutions of hydrodynamic-type systems, JETP Letters, Vol. 90, No. 3, pp. 217–221, 2009 a.

1838

C ONTENTS

Polyanin, A. D., Exact solutions of the nonlinear instability of the solutions of the Navier– Stokes equations: Formulas for constructing exact solutions, Theor. Foundations of Chemical Engineering, Vol. 43, No. 6, pp. 881–888, 2009 b. Polyanin, A. D., Von Mises- and Crocco-type transformations: order reduction of nonlinear equations, RF-pairs and B¨acklund transformations, Doklady Mathematics, Vol. 81, No. 1, pp. 160–165, 2010. Polyanin, A. D. and Aristov, S. N., Systems of hydrodynamic type equations: exact solutions, transformations, and nonlinear stability, Doklady Physics, Vol. 54, No. 9, pp. 429–434, 2009. Polyanin, A. D. and Dilman, V. V., Methods of Modeling Equations and Analogies in Chemical Engineering, CRC Press – Begell House, Boca Raton, 1994. Polyanin, A. D., Kutepov, A. M., Vyazmin, A. V., and Kazenin, D. A., Hydrodynamics, Mass and Heat Transfer in Chemical Engineering, Taylor & Francis, London, 2002. Polyanin, A. D. and Manzhirov, A. V., Handbook of Mathematics for Engineers and Scientists, Chapman & Hall/CRC Press, Boca Raton, 2007. Polyanin A. D., Vyazmin A. V., Zhurov A. I., and Kazenin D. A., Handbook of Exact Solutions of Heat and Mass Transfer Equations [in Russian], Faktorial, Moscow, 1998. Polyanin, A. D. and Vyazmina, E. A., New classes of exact solutions to general nonlinear heat (diffusion) equations, Doklady Mathematics, Vol. 72, No. 2, pp. 798–801, 2005. Polyanin, A. D. and Vyazmina, E. A., New classes of exact solutions to nonlinear systems of reaction-diffusion equations, Doklady Mathematics, Vol. 74, No. 1, pp. 597–602, 2006. Polyanin, A. D., Vyazmina, E. A., and Bedrikovetskii, P. G., New classes of exact solutions to nonlinear sets of equations in the theory of filtration and convective mass transfer, Theor. Foundations of Chemical Engineering, Vol. 41, No. 5, pp. 556–564, 2007. Polyanin, A. D. and Zaitsev, V. F., Equations of an unsteady-state laminar boundary layer: general transformations and exact solutions, Theor. Foundations of Chemical Engineering, Vol. 35, No. 6, pp. 529–539, 2001. Polyanin, A. D. and Zaitsev, V. F., Handbook of Nonlinear Mathematical Physics Equations [in Russian], Fizmatlit / Nauka, Moscow, 2002. Polyanin, A. D. and Zaitsev, V. F., Handbook of Exact Solutions for Ordinary Differential Equations, 2nd ed., Chapman & Hall/CRC Press, Boca Raton, 2003. Polyanin, A. D. and Zaitsev, V. F., Handbook of Nonlinear Partial Differential Equations, 1st ed., Chapman & Hall/CRC Press, Boca Raton, 2004. Polyanin, A. D., Zaitsev, V. F., and Moussiaux, A., Handbook of First Order Partial Differential Equations, Taylor & Francis, London, 2002. Polyanin, A. D., Zaitsev, V. F., and Zhurov, A. I., Methods for the Solution of Nonlinear Equations of Mathematical Physics and Mechanics [in Russian], Fizmatlit, Moscow, 2005. Polyanin, A. D. and Zhurov, A. I., Exact solutions to nonlinear equations of mechanics and mathematical physics, Doklady Physics, Vol. 43, No. 6, pp. 381–385, 1998.

C ONTENTS

1839

Polyanin, A. D. and Zhurov, A. I., The generalized and functional separation of variables in mathematical physics and mechanics, Doklady Mathematics, Vol. 65, No. 1, pp. 129– 134, 2002 a. Polyanin, A. D. and Zhurov, A. I., Methods of generalized and functional separation of variables in the hydrodynamic and heat- and mass- transfer equations, Theor. Foundations of Chemical Engineering, Vol. 36, No. 3, pp. 201–213, 2002 b. Polyanin, A. D. and Zhurov, A. I., The von Mises transformation: order reduction and construction of Backlund transformations and new integrable equations [online], EqWorld—The World of Mathematical Equations, 2009 a, http://eqworld.ipmnet.ru/en/ methods/methods-pde/mises/mises-transformation.htm; see also arXiv:0907.0586v2 [math-ph], http://arxiv.org/abs/0907.0586. Polyanin, A. D. and Zhurov, A. I., The Crocco transformation: order reduction and construction of Backlund transformations and new integrable equations [online], EqWorld—The World of Mathematical Equations, 2009 b, http://eqworld.ipmnet.ru/en/ methods/methods-pde/crocco-transformation.pdf; see also arXiv:0907.3170v1 [nlin.SI] Polyanin, A. D., Zhurov, A. I., and Vyazmin, A. V., Generalized separation of variables in nonlinear heat and mass transfer equations, J. Non-Equilibrium Thermodynamics, Vol. 25, No. 3/4, pp. 251–267, 2000. Polyanin, A. D., Zhurov, A. I., and Vyazmina, E. A., Exact solutions to nonlinear equations and systems of equations of general form in mathematical physics, AIP Conference Proceedings, Vol. 1067, pp. 64–86, 2008. Pomeau, Y., Ramani, A., and Grammaticos, B., Structural stability of the Korteweg–de Vries solitons under a singular perturbation, Physica D, Vol. 31, No. 1, 127–134, 1988. Pommaret, J. F., Systems in Partial Differential Equations and Lie Pseudogroups, Math. and its Appl., Vol. 14, New York, 1978. Pontryagin, L. S., Boltyansky, V. G., Gamkrelidze, R. V., and Mishchenko, E. F., Mathematical Theory of Optimal Processes, Wiley-Interscience, New York, 1962. Popovich, R. O. and Ivanova, N. M., New results on group classification of nonlinear diffusion.convection equations, J. Phys. A: Math. Gen., Vol. 37, pp. 7547–7565, 2004. Popovich, R. O. and Ivanova, N. M., Potential equivalence transformations for nonlinear diffusion.convection equations, J. Phys. A: Math. Gen., Vol. 38, pp. 3145–3155, 2005. Popovich, R. O., Vaneeva, O. O., and Ivanova, N. M., Potential nonclassical symmetries and solutions of fast diffusion equation, Phys. Letters A, Vol. 362, pp. 166–173, 2007. Popovich, R. O., Vaneeva, O. O., More common errors in finding exact solutions of nonlinear differential equations, Commun. Nonlinear Sci. Numer. Simul., Vol. 15, pp. 3887–3899, 2010. Prager, S., Spiral flow in a stationary porous pipe, Phys. Fluids, Vol. 7, pp. 907–908, 1964. Prager, V., Three-dimensional flow in homogeneous contract, Mekhanika [in Russian], Sbornik perevodov i obzorov inostr. lit., Vol. 3, p. 23, 1958. Prosperetti, A., A generalization of the Rayleigh–Plesset equation of bubble dynamics, Phys. Fluids, Vol. 25, No. 3, pp. 409–410, 1982.

1840

C ONTENTS

Proudman, J., Note on the motion of viscous liquids in channels, Philos. Mag.,, Vol. 28, pp. 30–36, 760, 1914. Proudman, J. and Johnson, K., Boundary-layer growth near a rear stagnation point, J. Fluid Mech., Vol. 12, pp. 161–168, 1962. Proudman, I. and Pearson, J. R. A., Expansions at small Reynolds number for the flow past a sphere and circular cylinder, J. Fluid Mech., Vol. 2, No. 3, pp. 237–262, 1957. Pucci, E. and Saccomandi, G., Contact transformation and solution by reduction of partial differential equations, J. Phys. A: Math Gen., Vol. 27, pp. 177–184, 1994. Pucci, E. and Saccomandi, G., Evolution equations, invariant surface conditions and functional separation of variables, Physica D, Vol. 139, pp. 28–47, 2000. Pukhnachov, V. V., Group properties of the Navier–Stokes equations in the plane case, J. Appl. Math. Tech. Phys., No. 1, pp. 83–90, 1960. Pukhnachov, V. V., A plane steady-state flow of a viscous incompressible fluid with rectilinear free boundaries, In: Numerical Methods in Continuum Mechanics [in Russian], Novosibirsk, Vol. 2, No. 4, pp. 67–75, 1971. Pukhnachov, V. V., Invariant solutions of the Navier–Stokes equations describing flows with free boundaries, Doklady AN SSSR [in Russian], Vol. 202, No. 2, pp. 302–305, 1972. Pukhnachov, V. V., Exact multidimensional solutions of the nonlinear diffusion equation, J. Appl. Mech. & Tech. Phys., Vol. 36, No. 2, pp. 169–176, 1995. Pukhnachov, V. V., Nonstationary viscous flows with a cylindrical free surface, In: Topics in Nonlinear Analysis. The Herbert Amann Anniversary Volume, Birkh¨auser, Basel, pp. 655–677, 1998. Pukhnachov, V. V., On the problem of viscous strip deformation with a free boundary, Comptes Rendus Acad. Sci., Paris, Vol. 328, Ser. 1, pp. 357–362, 1999. Pukhnachov, V. V., Symmetries in the Navier–Stokes Equations [in Russian], Uspekhi Mekhaniki, Vol. 4, No. 1, pp. 6–76, 2006. Putkaradze, V. and Dimon, P., Nonuniform two-dimensional flow from a source, Phys. Fluids, Vol. 12, pp. 66–70, 2000. Qin, M., Mei, F., and Fan, G., New explicit solutions of the Burgers equation, Nonlinear Dyn., Vol. 48, pp. 91–96, 2007. Quispel, J. R. W., Nijhoff, F. W., and Capel, H. W., Linearization of the Boussinesq equation and the modified Boussinesq equation, Phys. Lett. A, Vol. 91, pp. 143–145, 1982. Radayev, Yu. N., Limiting state of a neck of arbitrary shape in a rigid-plastic solid, Mechanics of Solids, Vol. 23, No. 6, pp. 62–68, 1988. Rajappa, N. R., Nonsteady plane stagnation point flow with hard blowing, Z. Angew. Math. Mech. (ZAMM), Vol. 59, pp. 471–473, 1979. Rao, A. R. and Kasiviswanathan, S. R., On exact solutions of the unsteady Navier–Stokes equations — the vortex with instantaneous curvilinear axis, Int. J. Eng. Sci., Vol. 25, pp. 337–349, 1987.

C ONTENTS

1841

Rassias, T. M., Functional Equations and Inequalities, Kluwer Academic, Dordrecht, 2000. Rayleigh, Lord, On the motion of solid bodies through viscous liquids, Philos. Mag., Vol. 21, pp. 697–711, 1911. Rayleigh, Lord, Deep water waves, progressive or stationary, to the third order of approximation, Phil. Trans. R. Soc. Lond. A, Vol. 91, pp. 345–353, 1915. Remoissenet, M., Waves Called Solitons, 3rd ed., Springer-Verlag, Heidelberg, 1999. Reyes, E. G., Geometric integrability of the Camassa–Holm equation, Lett. Math. Phys., Vol. 59, No. 2, pp. 117–131, 2002. Rhee, H., Aris, R., and Amundson, N. R., On the theory of multicomponent chromatography, Phil. Trans. Royal Soc., Ser. A., Vol. 267, pp. 419–455, 1970. Rhee, H., Aris, R., and Amundson, N. R., First Order Partial Differential Equations, Vol. I, Prentice Hall, Englewood Cliffs, 1986. Rhee, H., Aris, R., and Amundson, N. R., First Order Partial Differential Equations, Vol. II, Prentice Hall, Englewood Cliffs, 1989. Riabouchinsky, D., Quelques considerations sur les mouvements plans rotationnels d’un liquide, Comptes Rendus Acad. Sci., Paris, Vol. 179, pp. 1133–1136, 1924. Richards, D., Advanced Mathematical Methods with Maple, Cambridge University Press, Cambridge, 2002. Riley, N. and Vasantha, R., An unsteady stagnation-point flow, Quart. J. Mech. Appl. Math., Vol. 42, pp. 511–521, 1988. Robins, A. J. and Howarth, J. A., Boundary-layer development at a two-dimensional rear stagnation point, Fluid Mech., Vol. 56, pp. 161–171, 1972. Robinson, A. R. and Welander, P., Thermal circulation on a rotating sphere with application to the oceanic thermocline, J. Marine Res., Vol. 21, No. 1, p. 25, 1963. Rogers, M. H. and Lance, G. N., The rotationally symmetric flow of a viscous fluid in the presence of an infinite rotating disk, J. Fluid Mech., Vol. 7, pp. 617–631, 1960. Rogers, C. and Ames, W. F., Nonlinear Boundary Value Problems in Science and Engineering, Academic Press, New York, 1989. Rogers, C., and Ruggeri, T., A reciprocal B¨acklund transformation: application to a nonlinear hyperbolic model in heat conduction, Lett. Nuovo Cimento, Vol. 44, p. 289, 1985. Rogers, C., and Shadwick W. F., B¨acklund Transformations and Their Applications, Academic Press, New York, 1982. Romanovskii, Yu. M., Stepanova, N. V., and Chernavskii, D. S., Mathematical Biophysics [in Russian], Nauka, Moscow, 1984. Rosen, G., Dilatation covariance and exact solutions in local relativistic field theories, Phys. Rev., Vol. 183, pp. 1186–1191, 1969. Rosen, G., Method for the exact solution of a nonlinear diffusion, Phys. Rev. Letters, Vol. 49, No. 25, pp. 1844–1846, 1982.

1842

C ONTENTS

Rosenau, P., Nonlinear dispersion and compact structures, Phys. Rev. Letters, Vol. 73, No. 13, pp. 1737–1741, 1994. Rosenau, P., Compact and noncompact dispersive patterns, Phys. Letters A., Vol. 275, No. 3, pp. 193–203, 2000. Rosenau, P. and Hyman, J. M., Compactons, solitons with finite wavelength, Phys. Rev. Letters, Vol. 70, No. 5, pp. 564–567, 1993. Rosenau, P. and Levy, D., Compactons in a class of nonlinearly quintic equations, Phys. Letters A., Vol. 252, pp. 297–306, 1999. Rosenhead, L., The steady two-dimensional radial flow of viscous fluid between two inclined plane walls, Proc. Roy. Soc. London, Ser. A, Vol. 175, pp. 436–467, 1940. Ross, C. C., Differential Equations: An Introduction with Mathematica, Springer, New York, 1995. Rott, N., Unsteady viscous flow in the vicinity of a stagnation point, Quart. Appl. Math., Vol. 13, No. 4, pp. 444–451, 1956. Rott, N., On the viscous core of a line vortex, Z. Angew. Math. Phys., Vol. 9, pp. 543–553, 1958. Rosenhead, L., Laminar Boundary Layers, Dover Publ., New York, 1988. Rozendorn, E. R., Some classes of particular solutions to the equation zxx zyy + a∇z = 0 and their application to meteorological problems [in Russian], Vestnik Moskovskogo Universiteta, Ser. 1 (Mat. i Meh.), No. 2, pp. 56–58, 1984. Rozhdestvenskii, B. L. and Yanenko, N. N., Systems of Quasilinear Equations and Their Applications to Gas Dynamics, American Mathematical Society, Providence, RI, 1983. Rudenko, O. V. and Soluyan, S. I., Theoretical Foundations of Nonlinear Acoustics [in Russian], Nauka, Moscow, 1975. Rudenko, O. V. and Robsman, V. A., Equation of nonlinear waves in scattering medium [in Russian], Doklady RAN, Vol. 384, No. 6, pp. 735–759, 2002. Rudykh, G. A. and Semenov, E. I., On new exact solutions of a one-dimensional nonlinear diffusion equation with a source (sink) [in Russian], Zhurn. Vychisl. Matem. i Matem. Fiziki, Vol. 38, No. 6, pp. 971–977, 1998. Rudykh, G. A. and Semenov, E. I., Non-self-similar solutions of a many-dimensional nonlinear diffusion equation [in Russian], Mat. Zametki, Vol. 67, No. 2, pp. 250–256, 2000. Rumer, Yu. B., A problem on a submerged jet [in Russian], Appl. Math. and Mech. (PMM), Vol. 16, No. 2, pp. 255–256, 1952. Ryzhov, O. S. and Khristianovich, S. A., On nonlinear reflection of weak shock waves, J. Appl. Math. Mech., Vol. 22, pp. 826–843, 1958. Ryzhov, O. S. and Shefter, G. M., On unsteady gas flows in Laval nozzles, Soviet Physics Dokl., Vol. 4, pp. 939–942, 1958. Sabitov, I. Kh., On solutions of the equation ∆u = f (x, y)ecu in some special cases [in Russian], Mat. Sbornik, Vol. 192, No. 6, pp. 89–104, 2001.

C ONTENTS

1843

Saccomandi, G., A remarkable class of non-classical symmetries of the steady twodimensional boundary-layer equations, J. Physics A: Math. Gen., Vol. 37, pp. 7005– 7017, 2004. Safin, S. S. and Sharipov, R. A., B¨acklund autotransformation for the equation uxt = eu − e−2u , Theor. & Math. Phys., Vol. 95, No. 1, pp. 462–470, 1993. Saied, E. A. and Abd El-Rahman, R. G., On the porous medium equation with modified Fourier’s low: symmetries and integrability. Journal of the Physical Society of Japan, Vol. 68, No. 2, pp. 360–368, 1999. Sakiadis, B. C., Boundary-layer behavior on continuous solid surfaces. 2. Boundary layer on a continuous flat surface, AIChE J., Vol. 7, No. 2, pp. 221–225, 1961. Salas, A. H., Some solutions for a type of generalized Sawada–Kotera equation, Appl. Math. & Comput., Vol. 196, No. 2, pp. 812–817, 2008 a. Salas, A. H., Exact solutions for the general fifth KdV equation by the exp function method, Appl. Math. & Comput., Vol. 205, No. 1, pp. 291–297, 2008 b. Salas, A. H. and Gomes, C. A., Computing exact solutions for some fifth KdV equations with forcing term, Appl. Math. & Comput., Vol. 204, No. 1, pp. 257–260, 2008. Samarskii, A. A., Galaktionov, V. A., Kurdyumov, S. P., and Mikhailov, A. P., Blow-up in Problems for Quasilinear Parabolic Equations, Walter de Gruyter, Berlin, 1995. Samarskii, A. A. and Sobol’, I. M., Examples of a numerical investigation of temperature waves, Zh. Vychisl. Mat. i Mat. Fiz., Vol. 3, No. 4, pp. 702–719, 1963. Sattinger, D. H. and Weaver, O. L., Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics, Springer-Verlag, New York, 1986. Saucez, P., Vande Wouwer, A., Schiesser, W. E., and Zegeling, P., Method of lines study of nonlinear dispersive waves, J. Comp. & Appl. Math., 2003 (to appear). Sawada, K. and Kotera, T., A method for finding N-soliton solutions for the KdV equation and KdV-like equations, Prog. Theor. Phys., Vol. 51, pp. 1355–1367, 1974. Schamel, H., A modified Korteweg–de Vries equation for ion acoustic waves due to resonant electrons, J. Plasma Phys., Vol. 9, pp. 377–387, 1973. Schiesser, W. E., Computational Mathematics in Engineering and Applied Science: ODEs, DAEs, and PDEs, CRC Press, Boca Raton, 1994. Schiesser, W. E. and Griffiths, G. W., A Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab, Cambridge University Press, Cambridge, 2009. Schlichting, H., Boundary Layer Theory, McGraw-Hill, New York, 1981. Schofield, D. and Davey, A., Dual solutions of the boundary-layer equations at a point of attachment, J. Fluid Mech., Vol. 30, pp. 809–811, 1967. Scott, A. C., The application of B¨acklund transforms to physical problems, In: B¨acklund Transformations (Ed. R. M. Miura), pp. 80–105, Springer-Verlag, Berlin, 1975. Scott, A. C., Chu, F. Y., and McLaughlin D. W., The soliton: a new concept in applied science, Proc. IEEE, Vol. 61, pp. 1443–1483, 1973. Sedov, L. I., Mechanics of Continuous Media, Vol. 1 [in Russian], Nauka, Moscow, 1973.

1844

C ONTENTS

Sedov, L. I., Mechanics of Continuous Media, Vol. 2 [in Russian], Nauka, Moscow, 1984. Sedov, L. I., Plane Problems of Hydrodynamics and Airdynamics [in Russian], Nauka, Moscow, 1980. Sedov, L. I., Similarity and Dimensional Methods in Mechanics, CRC Press, Boca Raton, 1993. Seeger, A., Donth, H., and Kochend¨orfer, A., Theorie der Versetzungen in eindimensionalen Atomreihen. III. Versetzungen, Eigenbewegungen und ihre Wechselwirkung, Z. Phys., Vol. 134, pp. 173–193, 1953. Seeger, A. and Wesolowski, Z., Standing-wave solutions of the Enneper (sine-Gordon) equation, Int. J. Eng. Sci., Vol. 19, pp. 1535–1549, 1981. Sekerzh-Zenkovich, Y. I., On the theory of standing waves of finite amplitude, Doklady Akad. Nauk. USSR, Vol. 58, pp. 551–554, 1947. Serre, D., Systemes de Lois de Conservation, Tome I et II, Diderot, Paris, 1996. Serrin, J., The swirling vortex, Philos. Trans. Roy. Soc. London, Ser. A, Vol. 271, pp. 325– 360, 1972. Sexl, T., Uber den von E. G. Richardson entdeckten ‘Annulareffekt,’ Z. Phys., Vol. 61, pp. 349–362, 1930. Shafranov, V. D., Plasma equilibrium in a magnetic field, Reviews of Plasma Physics, Vol. 2, p. 103, 1966. Shan’ko, Yu. V., Some classes of plane steady-state flows of stratified fluids, Vichislitel’nye Tekhnologii [in Russian], Vol. 6, No. 5, pp. 106–117, 2001. Shcheprov, A. V., An example of an outer flow of a viscous compressible fluid past a sphere for an arbitrary Reynolds number, Doklady AN, Vol. 395, No. 4, pp. 485–485, 2004. Shercliff, J. A., Simple rotational flows, J. Fluid Mech., Vol. 82, No. 4, pp. 687–703, 1977. Shigesada, N., Kawasaki, K., and Teramoto, E., Spatial segregation of interacting species, J. Theor. Biol., Vol. 79, pp. 83–99, 1979. Shingareva, I. K., Investigation of Standing Surface Waves in a Fluid of Finite Depth by Computer Algebra Methods. PhD thesis [in Russian] Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow, 1995. Shingareva, I. K. and Lizarraga-Celaya, C., High-order Asymptotic Solutions to Free Standing Water Waves by Computer Algebra, In: Proc. Maple Summer Workshop, pp. 1–28, University of Waterloo, Waterloo, Ontario, Canada, 2004. Shingareva, I. K. and Lizarraga-Celaya, C., On frequency-amplitude dependences for surface and internal standing waves, J. Comp. Appl. Math., Vol. 200, pp. 459–470, 2007. Shingareva, I. K. and Lizarraga-Celaya, C., Maple and Mathematica. A Problem Solving Approach for Mathematics, 2nd ed., Springer, Wien–New York, 2009. Shingareva, I. K., Lizarraga-Celaya, C., and Ochoa Ruiz, A. D., Maple y Ondas Estacionarias. Problemas y Soluciones, Editorial Unison, Universidad de Sonora, Hermosillo, Mexico, 2006. Shkadov, V. Ya., Solitary waves in a layer of viscous liquid, Fluid Dynamics, Vol. 12, No. 1, pp. 52–55, 1977.

C ONTENTS

1845

Shmyglevskii, Yu. D., Analytical Investigation of Liquid and Gas Dynamics [in Russian], Editorial URSS, Moscow, 1999. Shmyglevskii, Yu. D., and Shcheprov, A. V., Exact representation of certain axisymmetric vortex elements in a viscous incompressible fluid, Doklady Physics, Vol. 48, No. 12, pp. 685–687, 2003. Shulman, Z. P. and Berkovskii, B. M., Boundary Layer in Non-Newtonian Fluids [in Russian], Nauka i Tehnika, Minsk, 1966. Siddiqui, A. M., Kaloni, P. N., and Chandna, O. P., Hodograph transformation methods in non-Newtonian fluids, J. Eng. Math., Vol. 19, pp. 203–216, 1985. Sidorov, A. F., Two classes of solutions of the fluid and gas mechanics equations and their connection to traveling wave theory, J. Appl. Mech. & Tech. Phys., Vol. 30, No. 2, pp. 197–203, 1989. Sidorov, A. F., Shapeev, V. P., and Yanenko, N. N., Method of Differential Constraints and its Applications in Gas Dynamics [in Russian], Nauka, Novosibirsk, 1984. Sivashinsky, G. I., Instabilities, pattern formation and turbulence in flames, Annual Rev. of Fluid Mech., Vol. 15, pp. 179–199, 1983. Skalak, F. M. and Wang, C. Y., Pulsatile flow in a tube with wall injection and suction, Appl. Sci. Res., Vol. 33, pp. 269–307, 1977. Skalak, F. M. and Wang, C. Y., On the unsteady squeezing of a viscous fluid from a tube, J. Aust. Math. Soc. B, Vol. 21, pp. 65–74, 1979. Skeel, R. D. and Berzins, M., A method for the spatial discretization of parabolic equations in one space variable, SIAM Journal on Scientific and Statistical Computing, Vol. 11, pp. 1–32, 1990. Slezkin, N. A., On an exact solution of the equations of viscous flow [in Russian], Uchenye Zapiski Mosk. Gos. Univ., Rec. Moscow State Univ., Vol. 2, No. 11, pp. 89–90, 1934. See also Appl. Math. and Mech. (PMM), Vol. 18, p. 764, 1954. Slezkin, N. A., Dynamics of Viscous Incompressible Fluid [in Russian], Gostekhizdat, Moscow, 1955. Small, C. G., Functional Equations and How to Solve Them, Springer-Verlag, Berlin, 2007. Smital, J. and Dravecky, J., On Functions and Functional Equations, Adam Hilger, Bristol-Philadelphia, 1988. Smith, S. H., Eccentric rotating flows: exact unsteady solutions of the Navier–Stokes equations, Z. Angew. Math. Phys., Vol. 38, pp. 573–579, 1987. Smoller, J., Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1994. Smyth, N. F. and Hill, J. M., High-order nonlinear diffusion, IMA J. Appl. Math., Vol. 40, pp. 73–86, 1988. Sokolov, V. V. and Zhiber, A. V., On the Darboux integrable hyperbolic equations, Phys. Lett. A, Vol. 208, pp. 303–308, 1995. Sokolovskii, V. V., Theory of Plasticity [in Russian], Vysshaja Shkola, Moscow, 1969.

1846

C ONTENTS

Soliman, A. A., Exact solutions of the KdV-Burgers equation by Exp-function method, Chaos, Solitons & Fractals, Vol. 41, No. 2, pp. 1034–1039, 2009 (doi: 10.1016/J.chaos. 2008.04.038). Sophocleous, C., Potential symmetries of nonlinear diffusion-convection equations, J. Phys. A: Math. Gen., Vol. 29, pp. 6951–6959, 1996. Sophocleous, C., Potential symmetries of inhomogeneous nonlinear diffusion equations, Bull. Austral. Math. Soc., Vol. 61, pp. 507–521, 2000. Sophocleous, C., Classification of potential symmetries of generalized inhomogeneous nonlinear diffusion equations, Physica A, Vol. 320, pp. 169–183, 2003. Sparenberg, J. F., On the stream function in low Reynolds number flow for general curvilinear coordinates, In: Mathematical Approaches in Hydrodynamics (Ed. T. Miloh), SIAM, Philadelphia, pp. 461–472, 1991. Squire, H. B., The round laminar jet, Quart. J. Mech. Appl. Math., Vol. 4, pp. 321–329, 1951. Squire, H. B., Some viscous flow problems I. Jet emerging from a hole in a plane wall, Philos. Mag., Vol. 43, pp. 942–945, 1952. Squire, H. B., Radial jets, 50 Jahre Grenzschichtforschung (Ed. H. G¨ortler and W. Tollmien), Vieweg, Braunschweig, pp. 47–54, 1955. Starov, V. M., On the spreading of the droplets of non-volatile liquids over the solid surface, Colloid J. of the USSR, Vol. 45, No. 6, pp. 1009–1015, 1983. Steeb, W.-H. and Euler, N., Nonlinear Evolution Equations and Painleve Test, World Scientific, Singapore, 1988. Stein, C. F., Quantities which define conically self-similar free-vortex solutions to the Navier–Stokes equations uniquely, Fluid Mech., Vol. 438, pp. 159–181, 2001. Stephani, H., Differential Equations: Their Solutions Using Symmetries, Cambridge Univ. Press, Cambridge, 1989. ¨ Steuerwald, R., Uber enneper’sche Fl¨achen und B¨acklund’sche Transformation, Abh. Bayer. Akad. Wiss. (Muench.), Vol. 40, pp. 1–105, 1936. Stewartson, K., On the flow between two rotating coaxial disks, Proc. Cambridge Philos. Soc., Vol. 49, pp. 333–341, 1953. Stokes, G. G., On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids, Trans. Cambridge Philos. Soc., Vol. 8, pp. 287–305, 1845. Stokes, G. G., Report on recent researches in hydrodynamics, Rep. Br. Assoc., pp. 1–20, 1846. See also Math. Phys. Papers, Vol. 1, pp. 75–12, 1880. Stokes, G. G., On the effect of the internal friction of fluid on the motion of pendulums, Trans. Cambridge Philos. Soc., Vol. 9, pp. 8–106, 1851. Storm, M. L., Heat conduction in simple metals, J. Appl. Phys., Vol. 22, p. 940, 1951. Strampp, W., B¨acklund transformations for diffusion equations, Physica D, No. 6, p. 113, 1982.

C ONTENTS

1847

Strikwerda, L., Finite Difference Schemes and Partial Differential Equations, 2nd ed., SIAM, Philadelphia, 2004. Stuart, J. T., On the effects of uniform suction on the steady flow due to a rotating disk, Quart. J. Mech. Appl. Math., Vol. 7, pp. 446–457, 1954. Stuart, J. T., A solution of the Navier–Stokes and energy equations illustrating the response of skin friction and temperature of an infinite plate thermometer to fluctuations in the stream velocity, Proc. Roy. Soc. London, Ser. A, Vol. 231, pp. 116–130, 1955. Stuart, J. T., Double boundary layers in oscillating viscous flows, J. Fluid Mech., Vol. 24, pp. 673–687, 1966 a. Stuart, J. T., A simpler corner flow with suction, Q. J. Mech. Appl. Math., Vol. 19, pp. 217– 220, 1966 b. Stuart, J. T., The viscous flow near a stagnation point when the external flow has uniform vorticity, J. Aerosp. Sci., Vol. 26, pp. 124–125, 1959. Subbotin, A. I., Minimax and Viscosity Solutions of Hamilton–Jacobi Equations [in Russian], Nauka, Moscow, 1991. Subbotin, A. I., Generalized Solutions of First Order PDEs: the Dynamical Optimization Perspective, Birkh¨auser, Boston, 1995. Sukhinin, S. V., Group properties and conservation laws of the transonic gas flow equation [in Russian], In: Dynamics of Continuous Media, No. 36, p. 130, 1978. Sulem, C. and Sulem, P.-L., The Nonlinear Schr¨odinger Equation. Self-Focusing and Wave Collapse, Springer-Verlag, New York, 1999. Sullivan, R. D., A two-cell vortex solution of the Navier–Stokes equations, J. Aerosp. Sci., Vol. 26, pp. 767–768, 1959. Suslov, G. K., Theoretical Mechanics [in Russian], Gostekhizdat, Moscow, 1946. Svinolupov, S. I., Second-order evolution equations possessing symmetries, Rus. Math. Surv., Vol. 40, pp. 263–264, 1985. Svirshchevskii, S. R., Group Properties of the Hyperbolic System of Heat Transfer [in Russian], Preprint 20, Keldysh Institute of Applied Mathematics, Academy of Sciences, USSR, Moscow, 1986. Svirshchevskii, S. R., Group Properties of the Heat Equation Accounting for the HeatFlux Relaxation [in Russian], Preprint 105, Keldysh Institute of Applied Mathematics, Academy of Sciences, USSR, Moscow, 1988. Svirshchevskii, S. R., Lie–B¨acklund symmetries of linear ODEs and generalized separation of variables in nonlinear equations, Phys. Lett. A, Vol. 199, pp. 344–348, 1995. Svirshchevskii, S. R., Invariant linear subspaces and exact solutions of nonlinear evolutions equations, Nonlinear Math. Phys., Vol. 3, No. 1–2, pp. 164–169, 1996. Szymanski, P., Quelques solutions exactes des equaions de l’hydrodynamique du fluide visqueux dans le cas d’un tube cylindrique, J. Math. Pures Appl., Vol. 11, No. 9, pp. 67– 107, 1932. Tabor, M., Integrability in Nonlinear Dynamics: An Introduction, Wiley–Interscience Publ., New York, 1989.

1848

C ONTENTS

Tadjbakhsh, I. and Keller, J. B., Standing surface waves of finite amplitude, J. Fluid Mech., Vol. 8, pp. 442–451, 1960. Tam, K. K., A note on the asymptotic solution of the flow between two oppositely rotating infinite plane disks, SIAM J. Appl. Math., Vol. 17, pp. 1305–1310, 1969. Tamada, K., Two-dimensional stagnation point flow impinging obliquely on a plane wall, J. Phys. Soc. Jap., Vol. 46, pp. 310–311, 1979. Taras’ev, A. M., On an irregular differential game, Appl. Math. and Mech. (PMM), Vol. 49, No. 4, pp. 682–684, 1985. Taylor, G. I., On the decay of vortices in a viscous fluid, Philos. Mag., Vol. 46, pp. 671– 674, 1923. Taylor, G. I., The formation of a blast wave by a very intense explosion. I. Theoretical discussion, Proc. Roy. Soc. A, Vol. 201, pp. 159–174, 1950. Taylor, M. E., Partial Differential Equations III. Nonlinear Equations, Springer-Verlag, New York, 1996. Temam, R., Navier–Stokes Equations, North-Holland Publ. Comp., Amsterdam–New York, 1979. Terrill, R. M., An exact solution for flow in a porous pipe, Z. Angew. Math. Phys. (ZAMP), Vol. 33, pp. 547–552, 1982. Terrill, R. M. and Cornish, J. P., Radial flow of a viscous, incompressible fluid between two stationary uniformly porous discs, Z. Angew. Math. Phys. (ZAMP), Vol. 24, pp. 676–688, 1973. Terrill, R. M. and Shrestha, G. M., Laminar flow through parallel and uniformly porous walls of different permeability, Z. Angew. Math. Phys. (ZAMP), Vol. 16, pp. 470–482, 1965. Terrill, R. M. and Thomas, P. W., On laminar flow through a uniformly porous pipe, Appl. Sci. Res., Vol. 21, pp. 37–67, 1969. Terrill, R. M. and Thomas, P. W., Spiral flow in a porous pipe, Phys. Fluids, Vol. 16, pp. 356–359, 1973. Thomas, J. W., Numerical Partial Differential Equations: Finite Difference Methods, Springer, New York, 1995. Thorpe, J. F., Further investigation of squeezing flow between parallel plates, Dev. Theor. Appl. Mech., Vol. 3, pp. 635–648, 1967. Tikhonov, A. N. and Samarskii, A. A., Equations of Mathematical Physics, Dover Publ., New York, 1990. Timoshenko, S. and Woinowsky-Krieger, S., Theory of Plates and Shells, 2nd ed., McGraw-Hill, New York, 1959. Ting, A. S., Cheb, H. H., and Lee, Y. C., Exact solutions of a nonlinear boundary value problem: the vortices of the two-dimensional sinh-Poisson equation, Physica D, pp. 37– 66, 1987. Titov, S. S., A method of finite-dimensional rings for solving nonlinear equations of mathematical physics [in Russian], In: Aerodynamics (Ed. T. P. Ivanova), Saratov Univ., Saratov, pp. 104–110, 1988.

C ONTENTS

1849

Titov, S. S. and Ustinov, V. A., Investigation of polynomial solutions to the equations of motion of gases through porous media with integer isentropic exponent [in Russian], In: Approximate Methods of Solution of Boundary Value Problems in Solid Mechanics, AN USSR, Ural. Otd-nie Inst. Matematiki i Mekhaniki, pp. 64–70, 1985. Toda, M., Studies of a nonlinear lattice, Phys. Rep., Vol. 8, pp. 1–125, 1975. Tomotika, S. and Tamada, K., Studies on two-dimensional transonic flows of compressible fluid, Part 1, Quart. Appl. Math., Vol. 7, p. 381, 1950. Topper, J. and Kawahara, T., Approximate equations for long nonlinear waves on a viscous fluid, J. Phys. Soc. Japan, Vol. 44, No. 2, pp. 663–666, 1978. Trkal, V., A remark on the hydrodynamics of viscous fluids [in Czech], Cas. Pst. Mat, Fys., Vol. 48, pp. 302–311, 1919. Tsarev, S. P., On Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type, Soviet Math. Doklady, Vol. 31, No. 3, pp. 488–491, 1985. Tsarev, S. P., Semi-Hamiltonian formalism for diagonal systems of hydrodynamic type and integrability of chromatography and electrophoresis equations, In: Modern Group Analysis: Lie–Baecklund Groups and Quasilinear Systems, Preprint 106, LIIAN, pp. 30–35, 1989. Tsarev, S. P., Geometry of Hamiltonian systems of hydrodynamic type. The generalised hodograph method, Mathematics in the USSR, Izvestiya, Vol. 377, No. 2, pp. 397–419, 1991. Tsarev, S. P., On Darboux integrable nonlinear partial differential equations, Proc. Steklov Institute of Mathematics, Vol. 225, pp. 372–381, 1999. Tsarev, S. P., Integrability of equations of hydrodynamic type: from the end of the 19th to the end of the 20th century, In: Integrability: the Seiberg–Witten and Whitham Equations (Eds. H. W. Braden and I. M. Krichever), Gordon & Breach, Amsterdam, pp. 251–265, 2000. Tsyfra, I., Non-local ans¨atze for nonlinear heat and wave equations, J. Phys. A: Math. Gen., Vol. 30, pp. 2251–2262, 1997. Tsyfra, I., Messina, A., Napoli, A., and Tretynyk, V., On application of non-point and discrete symmetries for reduction of the evolution-type equations, In: Proc. of the Fifth Intern. Conf. Symmetry of Nonlinear Mathematical Physics, Proc. Inst. of Mathematics, Kyiv, Vol. 50, Pt. 1, pp. 271–276, 2004. Tychynin, V. and Rasin, O., Nonlocal symmetries and generation of solutions for the inhomogeneous Burgers equation, In: Proc. of the Fifth Intern. Conf. Symmetry of Nonlinear Mathematical Physics, Proc. Inst. of Mathematics, Kyiv, Vol. 50, Pt. 1, pp. 277–281, 2004. Tychynin, V., Petrova, O., and Tertyshnyk, O., Nonlocal symmetries and generation of solutions for partial differential equations, SIGMA, Vol. 3 (019), 12 pages, 2007. Tzitzeica, G., Sur une nouvelle classe de surfaces, Comptes Rendus Acad. Sci., Paris, Vol. 150, pp. 955–956, 1910.

1850

C ONTENTS

Uchida, S., The pulsating viscous flow superposed on the steady laminar motion of incompressible fluid in a circular pipe, Z. Angew. Math. Mech. (ZAMM), Vol. 7, pp. 403–421, 1956. Uchida, S. and Aoki, H., Unsteady flows in a semi-infinite contracting or expanding pipe, J. Fluid Mech., Vol. 82, pp. 371–387, 1977. Vakhnenko, V. O. and Parkes, E. J., Periodic and solitary-wave solutions of the Degasperis–Procesi equation, Chaos, Solitons and Fractals, Vol. 20, No. 5, pp. 1059–1073, 2004. Van Dyke, M. D., Perturbation Methods in Fluid Mechanics, Parabolic Press, Stanford, CA, 1975. Vekua, I. N., Remarks on the properties of solutions to equation ∆u = −Ke2u [in Russian], Sib. Matem. Zhurn., Vol. 1, No. 3, pp. 331–342, 1960. Vereshchagina, L. I., Group fibering of the spatial unsteady boundary layer equations [in Russian], Vestnik LGU, Vol. 13, No. 3, pp. 82–86, 1973. Vinogradov, A. M., Local symmetries and conservation laws, Acta Appl. Math., Vol. 2, No. 7, pp. 21–78, 1984. Vinogradov, A. M. and Krasil’shchik, I. S. (Eds.), Symmetries and Conservation Laws of Mathematical Physics Equations [in Russian], Faktorial, Moscow, 1997. Vinogradov, A. M., Krasil’shchik, I. S., and Lychagin, V. V., Geometry of Jet Spaces and Nonlinear Partial Differential Equations, Gordon & Breach, 1984. Vinogradov, A. M., Krasil’shchik, I. S., and Lychagin, V. V., Introduction to Geometry of Nonlinear Differential Equations [in Russian], Nauka, Moscow, 1986. Vinokurov, V. A. and Nurgalieva, I. G., Research of nonlinear equation of adiabatic motion of an ideal gas, p. 53, In: Nonclassical Equations of Mathematical Physics (Ed. V. N. Vragov), Novosibirsk, 1985. Voinov, O. V., Dynamics of a viscous liquid wetting a solid via Van der Waals forces, J. Appl. Mechanics and Tech. Physics, Vol. 35, No. 6, pp. 875–890, 1994. Volosov, K. A., A Method of Analysis for Evolution Systems with Distributed Parameters, DSc Thesis, Moscow, 2007. Vorob’ev, E. M., Ignatovich N. V., and Semenova E. O., Invariant and partially invariant solutions of boundary value problems [in Russian], Doklady AN USSR, Vol. 306, No. 4, pp. 836–840, 1989. Vvedensky, D. D., Partial Differential Equations with Mathematica, Addison-Wesley, Wokingham, 1993. Vyazmina, E. A. and Polyanin, A. D., New classes of exact solutions to general nonlinear diffusion-kinetic equations, Theor. Foundations of Chemical Engineering, Vol. 40, No. 6, pp. 555–563, 2006. Wachmann, C., A mathematical theory for the displacement of oil and water by alcohol, Soc. Petroleum Eng. J., Vol. 4, pp. 250–266, 1964. Wadati, M., The exact solution of the modified Korteweg–de Vries equation, J. Phys. Soc. Japan, Vol. 32, pp. 1681–1687, 1972.

C ONTENTS

1851

Wadati, M., The modified Korteweg–de Vries equation, J. Phys. Soc. Japan, Vol. 34, pp. 1289–1296, 1973. Wadati, M. and Sawada, K., New representation of the soliton solution for the Korteweg– de Vries equation, J. Phys. Soc. Japan, Vol. 48, No. 1, pp. 312–318, 1980. Wadati, M. and Sawada, K., Application of the trace method to the modified Korteweg–de Vries equation, J. Phys. Soc. Japan, Vol. 48, No. 1, pp. 319–326, 1980. Wang, C. Y., On a class of exact solutions of the Navier–Stokes equations, J. Appl. Mech., Vol. 33, pp. 696–698, 1966. Wang, C. Y., Pulsative flow in a porous channel, J. Appl. Mech., Vol. 38, pp. 553–555, 1971. Wang, C. Y., Axisymmetric stagnation flow towards a moving plate, Am. Inst. Chem. Eng. J., Vol. 19, pp. 1080–1081, 1973. Wang, C. Y., Axisymmetric stagnation flow on a cylinder, Q. Appl. Math., Vol. 32, pp. 207– 213, 1974. Wang, C. Y., The squeezing of a fluid between two plates, J. Appl. Mech., Vol. 43, pp. 579– 582, 1976. Wang, C. Y., The three-dimensional flow due to a stretching flat surface, Phys. Fluids, Vol. 27, pp. 1915–1917, 1984. Wang, C. Y., Stagnation flow on the surface of a quiescent fluid — an exact solution of the Navier–Stokes equations, Quart. Appl. Math., Vol. 43, pp. 215–223, 1985. Wang, C. Y., Exact solutions of the unsteady Navier–Stokes equations, Appl. Mech. Rev., Vol. 42, No. 11, pp. 269–282, 1989. Wang, C. Y., Exact solutions for the Navier–Stokes equations—the generalized Beltrami flows, review and extension, Acta Mech., Vol. 81, pp. 69–74, 1990. Wang, C. Y., Exact solutions for the steady-state Navier–Stokes equations, Annual Rev. of Fluid Mech., Vol. 23, pp. 159–177, 1991. Wang, C. Y. and Watson, L. T., Squeezing of a viscous fluid between elliptic plates, Appl. Sci. Res., Vol. 35, pp. 195–207, 1979. Wang, C. Y., Watson, L. T., and Alexander, K. A., Spinning of a liquid film from an accelerating disk, IMA J. Appl. Math., Vol. 46, pp. 201–210, 1991. Warsi, Z. U. A., Fluid Dynamics, CRC Press, Boca Raton, 1993. Waters, S. L., Solute uptake through the walls of a pulsating channel, J. Fluid Mech., Vol. 433, pp. 193–208, 2001. Watson, J., A solution of the Navier–Stokes equations illustrating the response of a laminar boundary layer to a given change in the external stream velocity, Quart. J. Mech. Appl. Math., Vol. 11, pp. 302–325, 1958. Watson, L. T. and Wang C. Y., Deceleration of a rotating disc in a viscous fluid, Phys. Fluids, Vol. 22, No. 12, pp. 2267–2269, 1979. Watson, E., Boundary-layer growth, Proc. Roy. Soc. London, Ser. A, Vol. 231, pp. 104–116, 1955.

1852

C ONTENTS

Wazwaz, A. M., General compactons solutions for the focusing branch of the nonlinear dispersive K(n, n) equations in higher dimensional spaces, Appl. Math. Comput., Vol. 133, No. 2/3, pp. 213–227, 2002 a. Wazwaz, A. M., General solutions with solitary patterns for the defocusing branch of the nonlinear dispersive K(n, n) equations in higher dimensional spaces, Appl. Math. Comput., Vol. 133, No. 2/3, pp. 229–244, 2002 b. Wazwaz, A. M., Peakons, kinks, compactons and solitary patterns solutions for a family of Camassa–Holm equations by using new hyperbolic schemes, Appl. Math. Comput., Vol. 182, No. 1, pp. 412–424, 2006. Wazwaz, A. M., Kinks and solitons solutions for the generalized KdV equation with two power nonlinearities, Appl. Math. Comput., Vol. 183, No. 2, 1181–1189, 2006. Wazwaz, A. M., New solitons and kink solutions for the Gardner equation, Commun. Nonlin. Science Numer. Simul., Vol. 12, No. 8, 1395–1404, 2007. Wazwaz, A. M., The KdV equation, In: Handbook of Differential Equations, Evolutionary Equations, Vol. 4 (Eds. C. M. Dafermos and M. Pokorny), Elsevier, Amsterdam, 2008. Wazwaz, A. M. and Mehanna, M. S., A variety of exact travelling wave solutions for the (2 + 1)-dimensional Boiti–Leon–Pempinelli equation, Appl. Math. Comp., Vol. 217, pp. 1484–1490, 2010. Webb, G., Sorensen, M. P., Brio, M., Zakharian, A. R., and Moloney, J. V., Variational principles, Lie point symmetries, and similarity solutions of the vector Maxwell equations in non-linear optics, Phys. D., Vol. 191, pp. 49–80, 2004. Weidman, P. D., New solutions for laminar boundary layers with cross flow, Z. Angew. Math. Phys., Vol. 48, No. 2, pp. 341–356, 1997. Weidman, P. D. and Putkaradze, V., Axisymmetric stagnation flow obliquely impinging on a circular cylinder, Eur. J. Mech. B, Fluids, Vol. 22, pp. 123–131, 2003. Weidman, P. D. and Putkaradze, V., Erratum: ‘Axisymmetric stagnation flow obliquely impinging on a circular cylinder,’ Eur. J. Mech. B, Fluids, Vol. 24, pp. 788–790, 2005. Weinbaum, S. and O’Brien, V., Exact Navier–Stokes solutions including swirl and cross flow, Phys. Fluids, Vol. 10, pp. 1438–1447, 1967. Weinbaum, S., Lawrence, C. J., and Kuang, Y., The inertial draining of a thin fluid layer between parallel plates with a constant normal force. Part 1. Analytical solutions; inviscid and small but finite-Reynolds-number limits, J. Fluid Mech., Vol. 156, pp. 463– 477, 1985. Weiss, J., The Painleve property for partial differential equations. II: B¨acklund transformation, Lax pairs, and the Schwarzian derivative, J. Math. Phys., Vol. 24, No. 6, pp. 1405– 1413, 1983. Weiss, J., The sine-Gordon equations: complete and partial integrability, J. Math. Phys., Vol. 25, pp. 2226–2235, 1984. Weiss, J., The Painleve property and B¨acklund transformations for the sequence of Boussinesq equations, J. Math. Phys., Vol. 26, pp. 258–269, 1985. Weiss, J., B¨acklund transformations and the Painleve property, J. Math. Phys., Vol. 27, No. 5, pp. 1293–1305, 1986.

C ONTENTS

1853

Weiss, J., Tabor, M., and Carnevalle, G., The Painleve property for partial differential equations, J. Math. Phys., Vol. 24, No. 3, pp. 522–526, 1983. Wester, M. J., Computer Algebra Systems: A Practical Guide, Wiley, Chichester, 1999. White, F. M., Laminar flow in a uniformly porous tube, J. Appl. Mech., Vol. 29, pp. 201– 204, 1962. Whitham, G. B., The Navier–Stokes equations of motion, In: Laminar Boundary Layers (Ed. L. Rosenhead), Clarendon Press, London, pp. 114–162, 1963. Whitham, G. B., Non-linear dispersive waves, Proc. Roy. Soc. London, Ser. A, Vol. 283, pp. 238–261, 1965. Whitham, G. B., Linear and Nonlinear Waves, Wiley, New York, 1974. Wilson, G., On the quasi-Hamiltonian formalism of the KdV equation, Phys. Letters A, Vol. 132, pp. 445–450, 1988. Wolfram, S., A New Kind of Science, Wolfram Media, Champaign, IL, 2002. Wolfram, S., The Mathematica Book, 5th ed., Wolfram Media, Champaign, IL, 2003. Womersley, J. R., Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known, J. Physiol., Vol. 127, pp. 553–563, 1955 a. Womersley, J. R., Oscillatory motion of a viscous liquid in a thin-walled elastic tube: I. The linear approximation for long waves, Philos. Mag., Vol. 46, No. 7, pp. 199–221, 1955 b. Yanenko, N. N., The compatibility theory and methods of integration of systems of nonlinear partial differential equations, In: Proceedings of All-Union Math. Congress, Vol. 2, pp. 613–621, Nauka, Leningrad, 1964. Yang, K. T., Unsteady laminar boundary layers in a incompressible stagnation flow, J. Appl. Mech., Vol. 25, pp. 421–427, 1958. Yao, Y., New type of exact solutions of nonlinear evolution equations via the new SinePoisson equation expansion method, Chaos, Solitons and Fractals, Vol. 26, pp. 1081– 1086, 2005. Yatseev, V. I., On one class of exact solutions to the equations of motion of a viscous fluid [in Russian], Zh. Eksp. Teor. Fiz., Vol. 20, No. 11, pp. 1031–1034, 1950. Yih, C.-S., Stratified Flows, Academic Press, New York, 1980. Yih, C.-S.,Wu, F., Garg, A. K., and Leibovich, S., Conical vortices: a class of exact solutions of the Navier–Stokes equations, Phys. Fluids, Vol. 25, pp. 2147–2158, 1982. Yin, Z., On the Cauchy problem for an integrable equation with peakon solutions, Illinois J. Math., Vol. 47, No. 3, pp. 649–666, 2003. Yin, Z., Global solutions to a new integrable equation with peakons, Indiana Univ. Math. J., Vol. 53, No. 4, pp. 1189–1209, 2004. Yonga, X., Zhang, Z., and Chen, Y., B¨acklund transformation, nonlinear superposition formula and solutions of the Calogero equation. Phys. Let. A., Vol. 372, pp. 6273–6279, 2008. Yu, S.-J., Toda, K., and Fukuyama, T., N -soliton solutions to a (2 + 1)-dimensional integrable equation, J. Phys. A., Vol. 31, pp. 10181–10186, 1998.

1854

C ONTENTS

Yung, C. M., Verburg, K., and Baveye, P., Group classifications and symmetry reductions of the nonlinear diffusion-convection equation ut = (D(u)ux )x − K ′ (u)ux , Int. J. NonLinear Mech., Vol. 29, pp. 273–278, 1994. Zababakhin, E. I., Filling of bubbles in a viscous fluid, J. Appl. Mech. & Tech. Phys., No. 6, p. 1129, 1960. Zabusky, N. J., Exact solution for the vibrations of a nonlinear continuous model string, J. Math. Phys., Vol. 3, pp. 1028–1039, 1962. Zaitsev, V. F. and Polyanin, A. D., Dynamics of spherical bubbles in non-Newtonian liquids, Theor. Found. Chem. Eng., Vol. 26, No. 2, pp. 185–190, 1992. Zaitsev, V. F. and Polyanin, A. D., Handbook on Nonlinear Differential Equations: Applications in Mechanics, Exact Solutions [in Russian], Fizmatlit / Nauka, Moscow, 1993. Zaitsev, V. F. and Polyanin, A. D., Discrete-Group Methods for Integrating Equations of Nonlinear Mechanics, CRC Press, Boca Raton, 1994. Zaitsev, V. F. and Polyanin, A. D., Handbook of Partial Differential Equations: Exact Solutions [in Russian], Mezhdunarodnaya Programma Obrazovaniya, Moscow, 1996. Zaitsev, V. F. and Polyanin, A. D., Exact solutions and transformations of nonlinear heat and wave equations, Doklady Mathematics, Vol. 64, No. 3, pp. 416–420, 2001. Zaitsev, V. F. and Polyanin, A. D., Handbook of First-Order PDEs [in Russian], Fizmatlit, Moscow, 2003. Zakharov, V. E., On the stochastization of one-dimensional chains of nonlinear oscillators [in Russian], Zhurn. Eksper. i Teor. Fiziki, Vol. 65, pp. 219–225, 1973. Zakharov, V. E. and Faddeev, L. D., The Korteweg–de Vries equation: a completely integrable Hamiltonian system, Funct. Anal. Appl., Vol. 5, pp. 280–287, 1971. Zakharov, V. E. and Shabat, A. B., Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Soviet Physics JETP, Vol. 34, pp. 62–69, 1972. Zakharov, V. E. and Shabat, A. B., A scheme for the integration of nonlinear evolutionary equations of mathematical physics by the inverse scattering method [in Russian], Funkts. Analiz i ego Prilozh., Vol. 8, No. 3, pp. 43–53, 1974. Zakharov, V. E., Takhtajan, L. A., and Faddeev, L. D., Complete description of solutions of the “sin-Gordon” equation [in Russian], Doklady AN USSR, Vol. 219, No. 6, pp. 1334–1337, 1973. Zandbergen, P. J., New solutions of the Karm’an problem for rotating flows, Lecture Notes in Mathematics, Springer-Verlag, Berlin, Vol. 771, pp. 563–581, 1980. Zandbergen, P. J. and Dijkstra, D., Non-unique solutions of the Navier–Stokes equations for the Karm’an swirling flow, J. Eng. Math., Vol. 11, pp. 167–188, 1977. Zandbergen, P. J. and Dijkstra, D., Von Karm’an swirling flow, Annual Rev. of Fluid Mech., Vol. 19, pp. 465–491, 1987. Zauderer, E., Partial Differential Equations of Applied Mathematics, John Wiley & Sons, New York, 1983.

C ONTENTS

1855

Zayko, Y. N. and Nefedov, I. S., New class of solutions of the Korteweg–de Vries–Burgers equation, Appl. Math. Lett., Vol. 14, pp. 115–121, 2001. Zel’dovitch, B. Ya., Pilipetzky, N. F., and Shkunov, V. V., Wave Front Reversal [in Russian], Nauka, Moscow, 1985 [English translation: Principles of Phase Conjugation, Springer-Verlag, New York, 1985]. Zel’dovich, Ya. B. and Kompaneets, A. S., On the theory of propagation of heat with the heat conductivity depending upon the temperature, pp. 61–71, In: Collection in Honor of the Seventieth Birthday of Academician A. F. Ioffe [in Russian], Izdat. Akad. Nauk USSR, Moscow, 1950. Zel’dovich, Ya. B. and Raiser, Yu. P., Physics of Shock Waves and High Temperature Hydrodynamics Phenomena, Vols. 1 and 2, Academic Press, New York, 1966 and 1967. Zel’dovich, Ya. B. and Raizer, Yu. P., Elements of Gas Dynamics and the Classical Theory of Shock Waves, Academic Press, New York, 1968. Zel’dovich, Ya. B., Barenblatt, G. I., Librovich, V. B., and Makhviladze, G. M., The Mathematical Theory of Combustion and Explosion, Consultants Bureau, Division of Plenum Press, New York, 1985. Zhang, L., The extended tanh method and the exp-function method to solve a kind of nonlinear heat equation, Math. Prob. Engng., Vol. 2010, 2010. doi:10.1155/2010/935873. Zhang, L., Explicit traveling wave solutions of five kinds of nonlinear evolution equations, J. Math. Anal. & Appl., Vol. 379, pp. 91–124, 2011. Zhdanov, R. Z., Separation of variables in the non-linear wave equation, J. Phys. A, Vol. 27, pp. L291–L297, 1994. Zhdanov, R. Z., On relation between potential and contact symmetries of evolution equations, J. Math. Phys., 2009, Vol. 50, 053522 (DOI:10.1063/1.3138147). Zhdanov, R. Z., Nonlocal symmetries of evolution equations, Nonlinear Dyn., 2010 (DOI:10.1007/s11071-009-9604-y). Zhdanov, R. Z. and Lahno, V. I., Conditional symmetry of a porous medium equation, Physica D, Vol. 122, pp. 178–186, 1998. Zhiber, A. V. and Sokolov, V. V., Exact integrable Liouville type hyperbolic equations [in Russian], Uspekhi Mat. Nauk, Vol. 56, No. 1, pp. 64–104, 2001. Zhiber, A. V., Sokolov, V. V., and Startsev, S. Ya., On Darboux-integrable nonlinear hyperbolic equations [in Russian], Doklady RAN, Vol. 343, No. 6, pp. 746–748, 1995. Zhu, G. C. and Chen, H. H., Symmetries and integrability of the cylindrical Korteweg–de Vries equation, J. Math. Phys., Vol. 27, No. 1, pp. 100–103, 1986. Zhukov, M. Yu. and Yudovich, V. I., Mathematical theory of isotachophoresis, Doklady AN SSSR, Vol. 267, No. 2, pp. 334–338, 1982. Zhuravlev, V. M., Exact solutions of the nonlinear diffusion equation ut = ∆ ln u + λu in a two-dimensional coordinate space, Theor. & Math. Phys., Vol. 124, No. 2, pp. 1082– 1093, 2000. Zimmerman, R. L. and Olness, F., Mathematica for Physicists, Addison-Wesley, Reading, MA, 1995.

1856

C ONTENTS

Zmitrenko, N. V., Kurdyumov, S. P., and Mikhailov, A. P., Theory of blow-up regimes in compressible media [in Russian], In: Contemporary Problems of Mathematics, Vol. 28 (Itogi Nauki i Tekhniki, VINITI AN USSR), Moscow, pp. 3–94, 1987. Zmitrenko, N. V., Kurdyumov, S. P., Mikhailov, A. P., and Samarskii A. A., Appearance of Structures in Nonlinear Media and Transient Thermodynamics of Blow-up Regimes [in Russian], Preprint No. 74, Keldysh Institute of Applied Mathematics, Academy of Sciences, USSR, Moscow, 1976. Zwillinger, D., Handbook of Differential Equations, Academic Press, San Diego, 1989 and 1998.