Nonlinear Regression using Particle Swarm ...

7 downloads 0 Views 965KB Size Report
ABSTRACT. Nonlinear regression is a type of regression which is used for modeling a relation between the independent variables and dependent variables.
International Journal of Computer Applications (0975 – 8887) Volume 153 – No 6, November 2016

Nonlinear Regression using Particle Swarm Optimization and Genetic Algorithm Pakize Erdoğmuş

Simge Ekiz

Düzce University, Computer Engineering Department, DUZCE

Düzce University, Computer Engineering Department, DUZCE

ABSTRACT Nonlinear regression is a type of regression which is used for modeling a relation between the independent variables and dependent variables. Finding the proper regression model and coefficients is important for all disciplines. In this study, it is aimed at finding the nonlinear model coefficients with two well-known population-based optimization algorithms. Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) were used for finding some nonlinear regression model coefficients. It is shown that both algorithms can be used as an alternative way for coefficients estimation of nonlinear regression models.

regression is an optimization problem. Not only some classic optimization methods but also some heuristic algorithm can be used to find the optimum parameters of the nonlinear regression model. The disadvantage of the classic optimization method like Gauss-Newton can be trapped local minimal (Lu, Yang, Qin, Luo, Momayez, 2016). So; heuristic methods can be an alternative for the nonlinear regression parameter estimation. In this study, two well-known population-based algorithms are used to find the optimum parameters of the nonlinear regression model.

Nonlinear regression, Genetic Algorithm, Particle Swarm Optimization

The rest of the paper is organized as follows; in the following section, Nonlinear Regression is explained. In the third section, Nonlinear Regression with GA and PSO for some test problems are applied. In the fourth section, experimental results with comparisons are presented. Finally, conclusions about the results are given.

1. INTRODUCTION

2. NONLİNEAR REGRESSION

Keywords

Regression is predicting the coefficients for a function. So it is known as function estimation or approximation. Depending on the relationship between dependent variables and independent variables, a regression problem can be two types. There can be linear regression function as well as nonlinear regression function (Kumar, 2015). Nonlinear Regression based prediction has already been successfully implemented in various areas of scientific research and technology. It is mostly used for function estimation or solutions that enable modeling of a dependence between two variables (Akoa, Simeu ,& Lebowsky, 2013). Lu, Sugano, Okabe, and Sato (2011) used Adaptive Linear Regression in order to estimate gaze coordinates and sub pixel eye alignment. Martinez, Carbone, and Pissaloux (2012) realized gaze estimation using local features and nonlinear regression. In another study, nonlinear regression analysis technique is used to develop a model for prediction of the flashover voltage of ceramic insulators (porcelain, flashover voltage of non-ceramic insulators (NCIs) (Venkataraman & Gorur, 2006). Nonlinear regression is applied to Internet traffic monitoring by Frecon et al. (2016). A nonlinear regression procedure, based on an original branch and bound resolution procedure, is devised for the full identification of bivariate OfBm. The Nonlinear regression model is predicted in some ways. One of the solution methods is the linear model approximation. But converting nonlinear regression model to linear is not possible for all the models. So there are some methods for the nonlinear regression model. One of the solution methods for nonlinear regression is an iterative estimation of the parameters like Gauss-Newton (Gray, Docherty, Fisk, & Murray, 2016). The main idea is the minimization of the nonlinear least squares. So, nonlinear

For a scientific study, the first step is modeling the variation between the dependent values and independent values. After decided which model describes the variation best, parameter estimation of the model is made. With the development of computer technology, it has been developed some algorithms for the estimation of the models' parameters. Regression model can be linear or nonlinear. Unlike linear regression, there are a few limitations of a nonlinear regression model. The way in which the unknown parameters in the function are estimated, however, is conceptually the same as it is in linear least squares regression („Nonlinear Least Squares Regression‟, n.d.). A nonlinear model can be a basic form, given by Equation (1). Y=f(x,A)+e;

(1)

The function in Equation (1) is nonlinear and has some parameters given with A=(A1,A2,..). The aim is to estimate these parameters given with A. Some of the methods for the nonlinear regression are Gauss-Newton and LevenbergMarquardt methods. Both methods are based on the minimization of the nonlinear least squares. The Gauss-Newton method is a simple iterative gradient descent optimization method. The iterative gradient method is used to modify a mathematical model by minimizing the least-squares between the modeled response and observed values (Minot, Lu, & Li, 2015). But this method requires starting values for the unknown parameters. So the performance of the method is related to the initial values of the parameters. Bad starting values can cause the convergence to the local minimum as it is seen most of the classical optimization methods. In comparison to gradientbased methods, Newton-type methods are advantageous with respect to convergence rate, which is usually quadratic. The

28

International Journal of Computer Applications (0975 – 8887) Volume 153 – No 6, November 2016 difficulty is that Newton-type methods require solving a matrix inversion at each iteration (Minot et al., 2015). The Levenberg-Marquardt algorithm is an iterative technique that locates a local minimum of a multivariate function that is expressed as the sum of squares of several nonlinear, realvalued functions. It has become a standard technique for nonlinear least-squares problems, widely adopted in various disciplines for dealing with data-fitting applications. Levenberg-Marquardt algorithm solves nonlinear least squares problems by combining the steepest descent and Gauss-Newton method. It introduces a damping parameter ʎ into the classical Gauss-Newton algorithm (Polykarpou, & Kyriakides, 2016). When the parameters are far from the optimal, the damping factor has larger values and the method acts more like a steepest descent method, but guaranteed to converge. The damping factor has small values when the current solution is close to the optimal and acts like a GaussNewton method (Lourakis, & Argyros, 2005). The algorithms of Gaus-Newton and Levenberg-Marquardt Methods are given in Figure 1(Basics on Continuous Optimization, 2011).

crossover, and mutation are applied to the population. The pseudo code of GA is given Figure 2. The advantage of GA is that it is popular and applied successfully nearly in every area. Because of GA operators, sometimes it can‟t be practical to use GA for the solution of an optimization problem. Create initial population and calculate fitness values do Select best individuals for the next generation Apply elitism Apply crossover Apply mutation until terminating condition met Figure 2. The pseudo code of GA

3.2 Particle Swarm Optimization

PSO is one of the successfully studied population-based heuristic search algorithm inspired by the social behaviors of flocks (Bamakan, Wang, & Rayasan, 2016). In PSO, each solution called “particle”. Particles consist of the swarm. Figure 1. Gauss-Newton and Levenberg- Marquardt algorithms for nonlinear regression

METHODS

Gauss-Newton Algorithm 2 𝑓: 𝑅 𝑛 → 𝑅, 𝑓 𝑥 = 𝑚 𝑖=1(𝑓𝑖 (𝑥)) 𝑅 𝑛 to 𝑅 𝑥 (0) an initial solution 𝑥 ∗ , a local minimum of the cost function 𝑓. begin 𝑘 ← 0; 𝐰𝐡𝐢𝐥𝐞 STOP − CRIT 𝐚𝐧𝐝 k < 𝑘𝑚𝑎𝑥 𝒅𝒐 𝑥 𝑘+1 ← 𝑥 𝑘 + 𝛿 𝑘 ; 𝑤𝑖𝑡𝑕 𝜹(𝑘)=arg min𝛿 ||𝐹(𝑥 (𝑘) ) + 𝐉𝐹 𝑥 𝑘 𝜹||2 ; 𝑘 ← 𝑘 + 1; return 𝒙𝒌 end

Levenberg-Marquardt Algorithm 2 𝑓: 𝑅 𝑛 → 𝑅 , 𝑓 𝑥 = 𝑚 𝑖=1(𝑓𝑖 (𝑥)) 𝑅 𝑛 to 𝑅 𝑥 (0) an initial solution 𝑥 ∗ , a local minimum of the cost function 𝑓. begin 𝑘 ← 0; 𝜆 ← max 𝑑𝑖𝑎𝑔(𝐉 𝐓 𝐉) ; 𝑥 ← 𝑥 (0) ; 𝐰𝐡𝐢𝐥𝐞 STOP − CRIT 𝐚𝐧𝐝 k < 𝑘𝑚𝑎𝑥 𝒅𝒐 𝐹𝑖𝑛𝑑 𝜹 𝑠𝑢𝑐𝑕 𝑡𝑕𝑎𝑡 𝐉 𝐓 𝐉 + λ𝑑𝑖𝑎𝑔 𝐉 𝐓 𝐉 𝜹 = 𝐉 𝐓 𝑓; 𝑥 ′ ← 𝑥 + 𝛿; 𝒊𝒇 𝑓 𝒙′ < 𝑓 𝑥 𝒕𝒉𝒆𝒏 𝑥 ← 𝑥′ ;

𝜆 ←

𝜆 𝑣

;

𝒆𝒍𝒔𝒆 𝜆 ← 𝑣𝜆; 𝑘 ← 𝑘 + 1; return 𝒙 end

3. NONLİNEAR REGRESSION WITH GA AND PSO 3.1 Genetic Algorithm GA is one of the most studied evolutionary computation technique since David Goldberg was firstly published (Holland, 1975; Ijjina, and Chalavadi, 2016). GA is a population-based heuristic search algorithm inspired by the theory of evolution. In the algorithm, best properties are transferred from the generation to generation with crossover and elitism. Algorithm starts some initial random solutions of the optimization problem called individuals. Each individual consists of the variables of the optimization problem called chromosome. GA uses some genetic operators such as crossover, mutation, and elitism in order to find the optimum solution. In each generation, fitness function values for each individual are calculated. The best individuals are selected for the next generation by some methods such as tournament selection or roulette wheel. After the selection, elitism,

In PSO, the algorithm starts with initial solutions. Each initial solution represents the coordinate of a particle. Particles starts fly to hyperspace. Particles adapt their velocities according to social and individual information. After the iterations, particles coordinates converge to the best particle coordinate which is the global optimum solution (Liu,& Zhou, 2015). PSO has quite simple and fast converging algorithm. There is no operator. There are two important formulas in PSO. Particles move according to this formula given in (2) and (3) (Cavuslu, Karakuzu, & Karakaya, 2012). 𝑣𝑖𝑘+1 = 𝐾 𝑣𝑖𝑘 + 𝜑1 𝑟𝑎𝑛𝑑

𝑘 𝑝𝑏𝑒𝑠𝑡 − 𝑥𝑖𝑘

+ 𝜑2 𝑟𝑎𝑛𝑑

𝑥𝑖𝑘+1 = 𝑥𝑖𝑘 + 𝑣𝑖𝑘+1

𝑘 𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖𝑘

(2)

(3)

PSO has little parameters. The constriction factor(K) is a damping effect on the amplitude of an individual particle‟s

29

International Journal of Computer Applications (0975 – 8887) Volume 153 – No 6, November 2016 oscillations. 1 and 2 represent the cognitive and social parameters, respectively. Rand is random number uniformly distributed. Pbest ik is the best position for the i.th particle at the k.th iteration, gbest is the global best position, xik, vik are the position and velocity of the i.th particle at the k.th iteration respectively. Although PSO is a population-based algorithm, it has many advantages such as simplicity, little parameters to be adjusted and rapid convergence. The pseudo code of PSO is given Figure 3. P is the number of particles.

problems. The average and standard deviation of the estimated parameter is given in the tables. So the given results are accepted the real solution. The results found with GA and PSO are compared with these results.

Figure 3. The pseudo code of PSO Generate initial swarm(P) do for i=1:P update local best update global bet update velocity and location end until stopping criteria met

Table 1. Nonlinear Regression Test Problems Problem Number 1 2

Dataset Name Chwirut1 Chwirut2

Model 𝑦 = 𝑓(𝑥𝑖 𝛽)+∈ = 𝑦 = 𝑓(𝑥𝑖 𝛽)+∈ =

e −𝛽 1 𝑥 𝛽2 +𝛽3 𝑥 e −𝛽 1 𝑥 𝛽2 +𝛽3 𝑥

+∈ +∈ 2 /𝛽 2 5

3

Gauss1

𝑦 = 𝑓(𝑥𝑖 𝛽)+∈ = 𝛽1 e−𝛽2 𝑥 +𝛽3 e−(𝑥−𝛽4 )

4

Nelson

log 𝑦 = 𝑓(𝑥𝑖 𝛽)+∈ = 𝛽1 − 𝛽2 𝑥1 e−𝛽3 𝑥 2 +∈

5

Kirby2

𝑦 = 𝑓(𝑥𝑖 𝛽)+∈ =

𝛽1 + 𝛽2 𝑥+ 𝛽3 𝑥 2 1+ 𝛽4 𝑥+ 𝛽5 𝑥 2

+ 𝛽6 e−(𝑥−𝛽7 )

2 /𝛽 2 8

+∈

+∈ 2 /𝛽 2 5

6

Gauss3

𝑦 = 𝑓(𝑥𝑖 𝛽)+∈ = 𝛽1 e−𝛽2 𝑥 + 𝛽3 e−(𝑥−𝛽4 )

7

ENSO

𝑦 = 𝑓 𝑥𝑖 𝛽 +∈ = 𝛽1 + 𝛽2 cos 2𝜋𝑥/12 + 𝛽3 sin 2𝜋𝑥/12

2 /𝛽 2 8

+ 𝛽6 e−(𝑥−𝛽7 )

+∈

𝛽5 cos 2𝜋𝑥/𝛽4 + 𝛽6 sin 2𝜋𝑥/𝛽4 + 𝛽8 cos 2𝜋𝑥/𝛽7 + 𝛽9 sin 2𝜋𝑥/𝛽7 +∈ 8

Thurber

9

Rat43

10

Bennett5

𝑦 = 𝑓 𝑥𝑖 𝛽 +∈ =

𝛽1 + 𝛽2 𝑥 + 𝛽3 𝑥 2 + 𝛽4 𝑥 3 +∈ 1 + 𝛽5 𝑥 + 𝛽6 𝑥 2 + 𝛽7 𝑥 3

𝑦 = 𝑓 𝑥𝑖 𝛽 +∈ =

𝛽1 +∈ (1 + e𝛽2 −𝛽3 𝑥 )1/𝛽4

𝑦 = 𝑓 𝑥𝑖 𝛽 +∈ = 𝛽1 + (𝛽2 + 𝑥)−1/𝛽3 +∈

3.3 Optimization of the parameters of Nonlinear Regression model with GA and PSO In this study, some nonlinear regression problems are selected for the testing the performance of GA and PSO with classical nonlinear methods („Nonlinear Least Squares Regression‟, n.d.). The nonlinear models of the problems are given in Table 1. Some initial starting values for the nonlinear regression models are also given. The difficulty levels of the problems, the number of parameters and models classification are given in Table 2. The estimation of the parameters found classical nonlinear regression analysis are given with the

30

International Journal of Computer Applications (0975 – 8887) Volume 153 – No 6, November 2016 Table 2. Properties of Nonlinear Regression Test Problems Problem Number

Dataset Name

Difficulty Level

Model Classification

Number of Parameter /Number of Observation

1 2 3 4 5 6 7 8 9 10

Chwirut1 Chwirut2 Gauss1 Nelson Kirby2 Gauss3 ENSO Thurber Rat43 Bennett5

Lover Lover Lover Average Average Average Average Higher Higher Higher

Exponential Exponential Exponential Exponential Rational Exponential Miscellaneous Rational Exponential Miscellaneous

3/214 3/54 8/250 3/128 5/151 8/250 9/168 7/37 4/15 3/154

The object function in this study is the difference between the real values and the calculated values with the estimated models. There is no constrained. So the problem is unconstrained optimization problem. The aim is to minimize the squares of the object function given in Equation (4). Fobj=

𝑚 𝑖=1 (𝑌𝑖

− 𝑓𝑖 (𝑥))2

(4)

GA and PSO parameters used in this study are given Table 3 . Table 3. GA and PSO parameters GA PopulationSize:100

PSO SwarmSize:100

Generations:1000

SelfAdjustment:1.4900

CrossoverFraction:0.8

SocialAdjustment:1.4900

EliteCount:10

Max iteration:200*Number of variable

SelectionFcn:Roulette

4. EXPERIMENTAL RESULTS AND ANALYSIS The selected nonlinear regression problems are solved with GA and PSO. In this study, codes are written by Matlab© with “Intel Core 2 Duo 3.00GHz processor, 64-bit Windows 8 version operating system”. Results are given in Table 4- Table 13. As it has seen in the tables, the parameters found GA are mostly nearer to nonlinear regression parameters. PSO solution absolute errors have been compared with GA solution absolute errors. As it has been seen in Table 4(Chwirut1), Table 5(Chwirut2), Table 10(ENSO), Table 11(Thurber), Table 12(Rat43) and Table 13(Benett5), results found with GA is nearer to real values found Nonlinear Regression. GA outperforms PSO in view of the solution time also.

5. CONCLUSIONS As it is known, nonlinear regression with classical methods like Gauss-Newton and Levenberg-Marquardt has some disadvantages. The first disadvantage of the classical methods is that they require a lot of mathematical operations. Matrix

operations, gradient operation and Jacobean matrix calculation and some other mathematic operators have been required both Gauss-Newton and Levenberg-Marquardt methods. Another disadvantage is that classic methods like Gauss-Newton can be trapped local minima. And the convergence to the local minima can be too slow. So the number of iteration for the minimization of the nonlinear least squares can be time-consuming. Both classical methods require starting values for the unknown parameters. So the performances of the methods are related to the initial values of the parameters. Bad starting values can cause the convergence to the local minimum as it is seen most of the classical optimization methods. So in order to overcome these difficulties, heuristic search algorithms are suggested as an alternative. In this study, the nonlinear least squares problems were solved with the same starting values given in the reference. According to the reference web site, reported results for nonlinear regression were confirmed by at least two different algorithms and software packages using analytic derivatives. Results prove that GA and PSO are good alternatives for the classical nonlinear least squares regression. But GA is more successful in view of parameters estimation. For future studies, it is aimed to test the classical methods like Gauss-Newton with some heuristic optimization algorithms and show the performances of the methods in view of both solution time and optimal values.

6. REFERENCES [1] Kumar, T. (2015, February). Solution of Linear and Non Linear Regression Problem by K Nearest Neighbor Approach: By Using Three Sigma Rule. Computational Intelligence & Communication Technology (CICT), pp. 197-201. doi: 10.1109/CICT.2015.110 [2] Akoa, B. E., Simeu, E., and Lebowsky, F. (2013, July). Video decoder monitoring using nonlinear regression. 2013 IEEE 19th International On-Line Testing Symposium (IOLTS), pp. 175-178. doi: 10.1109/IOLTS.2013.6604073G. [3] Lu, F., Sugano, Y., Okabe, T., and Sato, Y. (2011, November). Inferring human gaze from appearance via adaptive linear regression. 2011 International Conference on Computer Vision, pp.153-160. doi: 10.1109/ICCV.2011.6126237 [4] Martinez, F., Carbone, A., and Pissaloux, E. (2012, September). Gaze estimation using local features and nonlinear regression. 19th IEEE International

31

International Journal of Computer Applications (0975 – 8887) Volume 153 – No 6, November 2016 [5] Conference on Image Processing, pp. 1961-1964. doi: 0.1109/ICIP.2012.6467271

algorithm. Electrotechnical Conference (MELECON), 2016 18th Mediterranean, pp. 1-6. doi: 10.1109/MELCON.2016.7495363

[6] Venkataraman, S., and Gorur, R. S. (2006). Non linear regression model to predict flashover of nonceramic insulators. 38th Annual North American Power Symposium, NAPS-2006, pp. 663-666.doi: 10.1109/NAPS.2006.359643

[13] Lourakis, M. L. A., and Argyros, A. A. (2005, October). Is Levenberg-Marquardt the most efficient optimization algorithm for implementing bundle adjustment?. Tenth IEEE International Conference on Computer Vision (ICCV'05, 1, pp. 1526-1531). doi: 10.1109/ICCV.2005.128.

[7] Frecon, J., Fontugne, R., Didier, G., Pustelnik, N., Fukuda, K., and Abry, P. (2016, March). Nonlinear regression for bivariate self-similarity identification— application to anomaly detection in Internet traffic based on a joint scaling analysis of packet and byte counts. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4184-4188.

[14] Basics on Continuous Optimization, (2011, July). Retrieved from http://www.brnt.eu/phd/node10.html [15] Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. U Michigan Press, Retrieved from https://books.google.com.tr/books?id=YE5RAAAAMA AJ&redir_esc=y

[8] Gray, R. A., Docherty, P. D., Fisk, L. M., and Murray, R. (2016). A modified approach to objective surface generation within the Gauss-Newton parameter identification to ignore outlier data points. Biomedical Signal Processing and Control, 30, pp. 162-169. http://dx.doi.org/10.1016/j.bspc.2016.06.009.

[16] Ijjina, E. P., and Chalavadi, K. M. (2016). Human action recognition using genetic algorithms and convolutional neural networks. Pattern Recognition,59, pp. 199-212. http://dx.doi.org/10.1016/j.patcog.2016.01.012.

[9] Lu, Z., Yang, C., Qin, D., Luo, Y., and Momayez, M. (2016). Estimating ultrasonic time-of-flight through echo signal envelope and modified Gauss Newton method. Measurement, 94, pp. 355-363. http://dx.doi.org/10.1016/j.measurement.2016.08.013

[17] Bamakan, S. M. H., Wang, H., and Ravasan, A. Z. (2016). Parameters Optimization for Nonparallel Support Vector Machine by Particle Swarm Optimization. Procedia Computer Science, 91, pp. 482491. http://dx.doi.org/10.1016/j.procs.2016.07.125

[10] Nonlinear Least Squares Regression. (n.d.). Engineering Statistics Handbook. Retrieved from http://www.itl.nist.gov/div898/handbook/pmd/section1/p md142.htm

[18] Liu, F., and Zhou, Z. (2015). A new data classification method based on chaotic particle swarm optimization and least square-support vector machine. Chemometrics and Intelligent Laboratory Systems, 147, pp. 147-156. http://dx.doi.org/10.1016/j.chemolab.2015.08.015.

[11] Minot, A., Lu, Y. M., and Li, N. (2015). A distributed Gauss-Newton method for power system state estimation. IEEE Transactions on Power Systems, 31(5), pp. 3804-3815. doi: 10.1109/TPWRS.2015.2497330

[19] Cavuslu, M. A., Karakuzu, C., and Karakaya, F. (2012). Neural identification of dynamic systems on FPGA with improved PSO learning. Applied Soft Computing, 12(9), pp.27072718.http://dx.doi.org/10.1016/j.asoc.2012.03.02 2.

[12] Polykarpou, E., and Kyriakides, E. (2016, April). Parameter estimation for measurement-based load modeling using the Levenberg-Marquardt

7. APPENDIX Table 4. The Chwirut1 parameters estimation with GA, PSO and classical methods Dataset name Heuristic Algorithm

Chwirut1 PSO

GA Std. Dev.

Best

Worst

Avg.

Std. Dev.

Avg.

Std. Dev.

0,1802

0,0010

0,1901

0,1904

0,1903

5,64E-05

1.9027818370E-01

2.1938557035E-02

0,0060

8,3E-06 1,63E05

0,0061

0,0061

0,0061

8,13E-07

6.1314004477E-03

3.4500025051E-04

0,0105

0,0105

0,0105

2,02E-06

1.0530908399E-02

7.9281847748E-04

0,5824

2384,47 71

2384,47 79

2384,47 72

0,000157

0,3670

0,2327

0,4924

0,3437

0,0654

Best

Worst

Avg.

Parameter1

0,1708

0,1983

Parameter2

0,0059

0,0063

Parameter3

0,0102

0,0113

0,0109

2384,489 2394,18 9 24

2388,18 13

0,9126

4,9874

Sum of Square Errors Solution Time

9,8075

Nonlinear Regression

32

International Journal of Computer Applications (0975 – 8887) Volume 153 – No 6, November 2016 Table 5. The Chwirut2 parameters estimation with GA, PSO and classical methods Dataset name

Chwirut2

Heuristic Algorithm

PSO

GA

Nonlinear Regression

Best

Worst

Avg.

Std. Dev.

Best

Worst

Avg.

Std. Dev.

Parameter1

0,1528

0,1902

0,1655

0,0112

0,1665

0,1667

0,1666

2,979E-05

Parameter2

0,0050

0,0055

0,0052

0,0002

0,0052

0,0052

0,0052

4,861E-07

Parameter3

0,0112

0,0127

0,0122

0,0005

0,0121

0,0122

0,0121

1,169E-06

Sum of Square Errors

513,095 6

516,866 9

513,955 7

0,7282

513,048 0

513,048 1

513,048 0

1,406E-05

Solution Time

1,3307

10,8088

6,5812

2,7433

0,2467

0,4731

0,3524

0,0568623

Avg.

Std. Dev.

1.6657666537E-01

3.8303286810E-02

5.1653291286E-03

6.6621605126E-04

1.2150007096E-02

1.5304234767E-03

Table 6. The Gauss1 parameters estimation with GA, PSO and classical methods Dataset name Heuristic Algorithm

Gauss1 PSO

0,0004

100,000 0

100,000 0

100,000 0

0,0000

0,0096

0,0005

0,0089

0,0098

0,0098

0,0002

80,0038

80,0008

0,0010

80,0000

80,0000

80,0000

0,0000

100,000 0

100,001 6

100,000 4

0,0005

100,000 0

100,000 0

100,000 0

0,0000

20,0000

25,0000

23,0753

2,2707

20,0000

25,0000

24,8276

0,9285

70,0000

70,0029

70,0008

0,0009

70,0000

70,0000

70,0000

0,0000

149,998 8

150,000 0

149,999 9

0,0002

150,000 0

150,000 0

150,000 0

0,0000

15,0000

15,0018

15,0003

0,0005

15,0000

15,0000

15,0000

0,0000

Sum of 473890, 7330 Square Errors 1,7410 Solution Time

475324, 5926

474147, 8321

292,474 2

473888, 0086

474208, 6260

473899, 0644

59,5372

4,3939

2,5471

0,6263

0,1887

0,4693

0,3074

0,0579

Parameter4 Parameter5 Parameter6 Parameter7 Parameter8

99,9979

100,000 0

99,9999

0,0089

0,0106

80,0000

Std. Dev.

Avg.

Parameter3

Avg.

Std. Dev.

Worst

Parameter2

Worst

Nonlinear Regression

Best

Parameter1

Best

GA Avg.

Std. Dev.

9.8778210871E+01

5.7527312730E-01

1.0497276517E-02

1.1406289017E-04

1.0048990633E+02

5.8831775752E-01

6.7481111276E+01

1.0460593412E-01

2.3129773360E+01

1.7439951146E-01

7.1994503004E+01

6.2622793913E-01

1.7899805021E+02

1.2436988217E-01

1.8389389025E+01

2.0134312832E-01

33

International Journal of Computer Applications (0975 – 8887) Volume 153 – No 6, November 2016 Table 7. The Nelson parameters estimation with GA, PSO and classical methods Dataset name Heuristic Algorithm

Nelson PSO Best

Worst

2,2808

2,8618

Parameter2

7,629E06

0,0100

Parameter3

-0,0132

Parameter1

Sum of 7,025ESquare 14 Errors 0,7284 Solution Time

Avg.

GA Std. Dev.

Best

Worst

Avg.

Nonlinear Regression Std. Dev. Avg.

2,4594

0,1639

2,2806

2,9250

2,3912

0,1417

0,0039

0,0033

0,0000

0,0100

0,0040

0,0044

-1,012E05

-0,0027

0,0034

-0,5000

0,0000

-0,0861

0,1643

4,342E06

3,262E07

9,692E07

3,395E25

1,815E06

7,164E08

3,385E-07

1,1818

0,8456

0,0855

0,1369

0,2352

0,1830

0,0192

Std. Dev.

2.5906836021E+00

1.9149996413E-02

5.6177717026E-09

6.1124096540E-09

-5.7701013174E-02

3.9572366543E-03

Table 8. The Kirby2 parameters estimation with GA, PSO and classical methods. Dataset name Heuristic Algorithm

Kirby2 PSO Best

Parameter1 Parameter2 Parameter3 Parameter4 Parameter5

Worst

Avg.

GA Std. Dev.

Best

Worst

Avg.

Nonlinear Regression Std. Dev. Avg.

Std. Dev.

2,146E-09

1.6745063063E+00

8.7989634338E-02

-1.3927397867E-01

4.1182041386E-03

2.5961181191E-03

4.1856520458E-05

5,536E-05

-1.7241811870E-03

5.8931897355E-05

3,448E-21

2.1664802578E-05

2.0129761919E-07

1,0000

1,5010

1,0174

0,0930

1,0000

1,0000

1,0000

0,0568

0,0943

0,0678

0,0097

0,0778

0,1000

0,0785

0,0041

-1,445E08 -0,0065

0,0000

5,685E09 0,0004

0,0000

0,0000

0,0000

0,0000

-0,0051

-5,459E09 -0,0058

-0,0054

-0,0051

-0,0054

1,349E05 18786,0 686

1,116E05 7097,99 08

1,078E06 4445,26 61

0,0000

0,0000

0,0000

2811,35 26

3946,36 65

2850,49 11

210,7668

14,5676

10,6883

3,0963

0,1573

0,4223

0,2720

0,0537

0,0000

Sum of 2825,49 78 Square Errors 1,0039 Solution Time

Table 9. The Gauss3 parameters estimation with GA, PSO and classical methods Dataset name Heuristic Algorithm

Parameter1 Parameter2 Parameter3

Parameter4

Gauss3 PSO Best

Worst

Avg.

97,6116

99,8586

98,7012

0,0105

0,0112

99,8927 111,214 0

GA Std. Dev.

Best

Worst

Avg.

0,6131

98,9198

98,9245

98,9220

0,0109

0,0002

0,0109

0,0109

0,0109

100,000 0

99,9960

0,0199

100,000 0

100,000 0

100,000 0

111,646 8

111,485 6

0,1249

111,438 6

111,444 0

111,441 4

Nonlinear Regression Std. Dev. Avg. 0,0011

Std. Dev.

9.8940368970E+01

5.3005192833E-01

2,605E-07

1.0945879335E-02

1.2554058911E-04

3,066E-06

1.0069553078E+02

8.1256587317E-01

1.1163619459E+02

3.5317859757E-01

0,0013

34

International Journal of Computer Applications (0975 – 8887) Volume 153 – No 6, November 2016 23,0040

23,2545

23,1468

0,0543

23,1535

23,1604

23,1570

0,0016

73,4440

74,8666

73,9766

0,4146

74,1200

74,1408

74,1307

0,0050

147,383 7

147,629 0

147,542 7

0,0661

147,517 6

147,524 2

147,520 6

0,0015

19,4999

20,2550

19,8131

0,2205

19,8893

19,8937

19,8909

0,0011

Sum of 1247,53 71 Square Errors 2,5983 Solution Time

1312,95 03

1262,96 64

16,8668

1247,48 25

1247,48 38

1247,48 28

0,0003

11,8373

7,5075

2,6315

0,6719

1,6020

0,9276

0,2186

Parameter5 Parameter6 Parameter7 Parameter8

2.3300500029E+01

3.6584783023E-01

7.3705031418E+01

1.2091239082E+00

1.4776164251E+02

4.0488183351E-01

1.9668221230E+01

3.7806634336E-01

Table 10. The ENSO parameters estimation with GA, PSO and classical methods Dataset name

ENSO

Heuristic Algorithm

PSO Best

Worst

Avg.

Parameter1

10,5075

10,5154

10,5105

Parameter2

3,0748

3,0800

Parameter3

0,5314

Parameter4

GA Std. Dev.

Nonlinear Regression

Best

Worst

Avg.

0,0017

10,5103

10,5110

10,5107

0,0002

1.0510749193E+01

1.7488832467E-01

3,0766

0,0011

3,0759

3,0765

3,0762

0,0002

3.0762128085E+00

2.4310052139E-01

0,5342

0,5329

0,0008

0,5326

0,5334

0,5328

0,0002

5.3280138227E-01

2.4354686618E-01

44,2525

44,4281

44,3269

0,0428

44,3081

44,3161

44,3122

0,0018

4.4311088700E+01

9.4408025976E-01

Parameter5

-1,6319

-1,6022

-1,6203

0,0075

-1,6238

-1,6220

-1,6229

0,0004

1.6231428586E+00

2.8078369611E-01

Parameter6

0,4907

0,5953

0,5341

0,0241

0,5238

0,5280

0,5262

0,0010

5.2554493756E-01

4.8073701119E-01

Parameter7

26,8724

26,9182

26,8904

0,0086

26,8864

26,8889

26,8878

0,0006

2.6887614440E+01

4.1612939130E-01

Parameter8

0,1932

0,2566

0,2158

0,0121

0,2108

0,2141

0,2125

0,0008

2.1232288488E-01

5.1460022911E-01

Parameter9

1,4878

1,4999

1,4961

0,0024

1,4962

1,4997

1,4967

0,0006

1.4966870418E+00

2.5434468893E-01

8

788,632 0

788,551 8

0,0198

788,539 8

788,540 5

788,539 9

0,0001

2,3511

6,1074

3,9741

0,8784

1,3001

2,6902

1,7220

0,3104

Sum Square Errors

of 788,539

Solution Time

Std. Dev. Avg.

Std. Dev.

Table 11. The Thurber parameters estimation with GA, PSO and classical methods Dataset name Heuristic Algorithm

Thurber PSO Best

Worst

Avg.

Parameter1

1287,65 75

1300,00 00

1297,69 37

Parameter2

1136,41 81

1443,28 32

Parameter3

400,084 7

551,104 0

GA Std. Dev.

Nonlinear Regression

Best

Worst

Avg.

Std. Dev. Avg.

3,5463

1286,47 42

1300,00 00

1288,96 92

2,5820

1274,71 02

88,0345

1227,31 68

1499,98 91

1433,92 23

102,0089

476,984 9

41,8276

400,000 0

590,215 0

541,218 3

75,2202

Std. Dev.

1.2881396800E+03

4.6647963344E+00

1.4910792535E+03

3.9571156086E+01

5.8323836877E+02

2.8698696102E+01

35

International Journal of Computer Applications (0975 – 8887) Volume 153 – No 6, November 2016 45,8106

74,6032

61,4811

8,3181

40,0000

76,7254

67,1643

14,7000

0,6924

0,9332

0,8045

0,0703

0,7745

0,9758

0,9230

0,0794

0,3298

0,4312

0,3836

0,0291

0,3102

0,4016

0,3771

0,0376

0,0002

0,0412

0,0149

0,0117

0,0500

0,0409

0,0148

Sum of 5962,52 89 Square Errors 13,1821 Solution Time

34337,9 104

17039,6 575

7677,40 84

1,057E09 5650,85 52

11046,2 414

6294,94 04

1214,1195

22,6758

14,9553

2,0089

0,6581

10,2501

4,5588

2,8146

Parameter4 Parameter5 Parameter6 Parameter7

7.5416644291E+01

5.5675370270E+00

9.6629502864E-01

3.1333340687E-02

3.9797285797E-01

1.4984928198E-02

4.9727297349E-02

6.5842344623E-03

Table 12. The Rat43 parameters estimation with GA, PSO and classical methods Dataset name Heuristic Algorithm

Rat43 PSO

Avg.

0,7368

698,898 6

700,000 0

699,643 7

0,2056

5,7822

0,1940

5,2391

5,4023

5,2805

0,0290

0,8243

0,8067

0,0182

0,7560

0,7711

0,7599

0,0027

1,2602

1,5000

1,4463

0,0641

1,2668

1,3211

1,2804

0,0096

Sum of 8786,41 83 Square Errors 1,5486 Solution Time

8867,97 53

8836,70 94

24,1759

8786,40 59

8789,61 55

8786,61 61

0,5963

12,4791

6,1683

3,6875

0,2016

1,2131

0,5819

0,2573

Parameter3 Parameter4

Avg.

696,916 9

699,866 1

697,695 2

5,2185

5,9585

0,7543

Std. Dev.

Worst

Parameter2

Worst

Nonlinear Regression

Best

Parameter1

Best

GA Std. Dev. Avg.

Std. Dev.

6.9964151270E+02

1.6302297817E+01

5.2771253025E+00

2.0828735829E+00

7.5962938329E-01

1.9566123451E-01

1.2792483859E+00

6.8761936385E-01

Table 13. The Benett5 parameters estimation with GA, PSO and classical methods Dataset name Heuristic Algorithm

Parameter1

Parameter2 Parameter3 Sum of Square Errors Solution Time

Bennett5 PSO

GA

Nonlinear Regression

Best

Worst

Avg.

Std. Dev.

Best

Worst

Avg.

2952,17 44

1760,47 74

2358,77 24

424,129 9

3000,00 00

1752,23 08

2232,09 36

420,7070

32,6758

49,2215

43,8517

4,0623

42,8274

48,5850

45,2198

1,9491

0,8672

1,0000

0,9392

0,0374

0,9035

1,0000

0,9581

0,0339

0,0007

4,8422

0,6358

1,2108

0,0005

0,0203

0,0025

0,0047

0,8484

14,8566

9,1834

5,9525

0,2699

1,3078

0,4864

0,1903

IJCATM : www.ijcaonline.org

Std. Dev. Avg.

Std. Dev.

2.5235058043E+03

2.9715175411E+02

4.6736564644E+01

1.2448871856E+00

9.3218483193E-01

2.0272299378E-02

36

Suggest Documents