notes7 Image Enhancement I

4 downloads 195 Views 2MB Size Report
ECE/OPTI533 Digital Image Processing class notes 138 Dr. Robert A. Schowengerdt 2003. IMAGE ENHANCEMENT I (RADIOMETRIC).
IMAGE ENHANCEMENT I (RADIOMETRIC) MOTIVATION • Recorded images often exhibit problems such as: • too dark • too light • not enough contrast

• Image enhancement aims to improve visual quality “Cosmetic” processing

• Usually empirical techniques, with ad hoc parameters (“whatever works”)

137

Dr. Robert A. Schowengerdt

2003

• Distinct from “restoration,” which is processing designed to recover true object using blur and noise reduction on a degraded image

ECE/OPTI533 Digital Image Processing class notes

DN1

LUT

LUT

GLB

GLG

GLR

D/A

D/A

D/A

R

G

B

RGB

IMAGE ENHANCEMENT I (RADIOMETRIC)

DN2

LUT

IMAGE DISPLAY

color image

DN3

• Input quantized image pixel values (integers): Digital Number (DN)

• Output quantized image pixel values (integers): Grey Level (GL)

138

Dr. Robert A. Schowengerdt

GLs are in display space, typically [0..255] in each color (red, green, blue)

ECE/OPTI533 Digital Image Processing class notes

2003

IMAGE ENHANCEMENT I (RADIOMETRIC)

• Mapping from DNs to GLs may be done with discrete hardware or software Look-Up Tables (LUTs) GL = LUT ( DN )

Dr. Robert A. Schowengerdt

2003

• Contrast enhancement techniques are designed to find a LUT that yields “optimal,” or at least “good,” displayed visual quality

139

Result is a radiometric enhancement of the displayed image, i.e features in the image become more easily seen

ECE/OPTI533 Digital Image Processing class notes

“global”

Dr. Robert A. Schowengerdt

“neighborhood”

“local”

IMAGE ENHANCEMENT I (RADIOMETRIC) IMAGE STATISTICS • Global image DN statistics useful for designing an image-specific LUT for entire image • Local image DN statistics useful for “adaptive” contrast enhancement algorithm, with varying LUT across image

140

• Neighborhood DN statistics useful for noise processing and spatial filtering enhancement, not contrast enhancement

ECE/OPTI533 Digital Image Processing class notes

2003

0.15

0.1

0.05

0 0

20

µ−σ

µ

40

60

80

Gaussian image

DN

Dr. Robert A. Schowengerdt

µ+σ

2003

100

Example normalized image histogram compared to the equivalent Gaussian distribution

IMAGE ENHANCEMENT I (RADIOMETRIC) Image Histogram • Number of pixels with the specific DN, tabulated for all DNs hist DN = pixel count ( DN ) • Divide by the total number of pixels in the image N to normalize normhist DN = count ( DN ) ⁄ N ≈ PDF ( DN ) Analogous to the continuous Probability Density Function (PDF) of statistics

141

• Contains no information about the spatial distribution of pixels

ECE/OPTI533 Digital Image Processing class notes

fraction of total pixels

1

0.8

0.6

0.4

0.2

0 0

20

40

60

Gaussian image

80

100

Dr. Robert A. Schowengerdt

DN

Example normalized image cumulative histogram compared to the equivalent Gaussian CDF

IMAGE ENHANCEMENT I (RADIOMETRIC) Cumulative Histogram

DN

∑ hist DN

• Number of pixels with a DN less than or equal to the specified DN

chist DN = DN = DN min

142

• Divide by the total number of pixels in the image N to normalize normchist DN = chist DN ⁄ N ≈ CDF ( DN ) Analogous to the Cumulative Distribution Function (CDF) of statistics

• Monotonic function of DN

ECE/OPTI533 Digital Image Processing class notes

fraction of total pixels

2003

Dr. Robert A. Schowengerdt

IMAGE ENHANCEMENT I (RADIOMETRIC) RADIOMETRIC ENHANCEMENT • Point processing every pixel undergoes the same transformation parameters of the transformation are: • fixed, from global statistics (entire image) or • adaptive, from local statistics

• Distinct from neighborhood processing (convolution) or global transforms (e.g. Fourier)

143

• Only improves visual content; does not add information to the data

ECE/OPTI533 Digital Image Processing class notes

2003

100

DNmax

100

150 DN

GL

200

200

250

300

250

255

GL

0

Dr. Robert A. Schowengerdt

DNmin

255 GL = -------------------------------------- ( DN – DN min ) DN max – DN min

150

144

DNmax

2003

DN

IMAGE ENHANCEMENT I (RADIOMETRIC)

DNmin

50

50

Min-Max Mapping

14000 12000 10000 8000 6000 4000

0

2000 0

14000 12000 10000 8000 6000 4000 2000 0 0

ECE/OPTI533 Digital Image Processing class notes

IMAGE ENHANCEMENT I (RADIOMETRIC) Histogram Modification

Dr. Robert A. Schowengerdt

• nonlinear “stretching” of the data to improve contrast

145

based on global or regional image statistics

ECE/OPTI533 Digital Image Processing class notes

2003

IMAGE ENHANCEMENT I (RADIOMETRIC) Histogram Equalization

x = M ( y)

–1

• Modify histogram to achieve uniform distribution of GL

y = M ( x)

• Look at continuous distributions for “proof” Mapping function from input to output:

Output PDF related to input PDF as:

dx PDF ( y ) = PDF ( x ) -----dy

desire output PDF that is flat, i.e. uniform distribution

x

∫ PDF ( α ) dα

146

Dr. Robert A. Schowengerdt

consider a transformation M that is the CDF of x: (we know the answer!)

y = M ( x) =

–∞

ECE/OPTI533 Digital Image Processing class notes

2003

dy ------ = PDF ( x ) dx 255

GL

0 DNmin

DNmax

Dr. Robert A. Schowengerdt

DN

IMAGE ENHANCEMENT I (RADIOMETRIC)

then

–1

x = M ( y)

147

substituting into above equation for PDF(y):

1 PDF ( y ) = PDF ( x ) ⋅ -------------------PDF ( x ) = [ 1 ] x = M –1 ( y ) = 1 • Discrete case is simply, GL = int [ 255chist ( DN ) ]

ECE/OPTI533 Digital Image Processing class notes

2003

50

100 GL

148

150

200

Dr. Robert A. Schowengerdt

250

IMAGE ENHANCEMENT I (RADIOMETRIC) output histogram 14000 12000 10000 8000 6000 4000

0

2000 0

ECE/OPTI533 Digital Image Processing class notes

2003

IMAGE ENHANCEMENT I (RADIOMETRIC) Histogram Matching

2003

• Modify histogram to match “reference” histogram, e.g. Gaussian –1

GL = normchist ref [ normchist ( DN ) ]

Dr. Robert A. Schowengerdt

DNref

• Can also be used to match histogram of one image to that of another, e.g multidate imagery of same scene

normchistref 1

normchist 1

0 DN

149

0

ECE/OPTI533 Digital Image Processing class notes

100 GL

150

200

250

IMAGE ENHANCEMENT I (RADIOMETRIC)

50

output histogram matched to Gaussian

14000 12000 10000 8000 6000 4000

0

2000 0

150

Dr. Robert A. Schowengerdt

• Produces “softer” contrast than histogram equalization

ECE/OPTI533 Digital Image Processing class notes

2003

Dr. Robert A. Schowengerdt

IMAGE ENHANCEMENT I (RADIOMETRIC) ADAPTIVE CONTRAST STRETCH • Adapts to “local” contrast differences

151

• Resulting contrast is more uniform across entire image

ECE/OPTI533 Digital Image Processing class notes

2003

152

MIN1, MAX1

MIN5, MAX5

MIN9, MAX9

MIN13, MAX13

Y

MIN2, MAX2 X LA,HA MIN6, MAX6

LD,HD MIN10, MAX10

LG,HG MIN14, MAX14

MIN3, MAX3

MIN7, MAX7

LB,HB

y LE,HE

MIN11, MAX11

LH,HH

MIN15, MAX15

MIN4, MAX4

LC,HC

MIN8, MAX8

LF,HF

MIN12, MAX12

LI,HI

MIN16, MAX16

Dr. Robert A. Schowengerdt

x

IMAGE ENHANCEMENT I (RADIOMETRIC) Local Range Modification (LRM) • Partition image into adjacent blocks, X x Y in size • Find the minimum DN L and maximum DN H in each block

ECE/OPTI533 Digital Image Processing class notes

2003

IMAGE ENHANCEMENT I (RADIOMETRIC)

,

MIN 5 = minimum ( L A, L D )

Dr. Robert A. Schowengerdt

• Find the neighboring minimum and maximum L and H values at the intersecting nodes, e.g. MIN 6 = minimum ( L A, L B, L D, L E ) MAX 6 = maximum ( H A, H B, H D, H E )

=

LA

• In the corners and along the edges, e.g. MIN 1

153

MAX 1 = H A MAX 5 = maximum ( H A, H D )

ECE/OPTI533 Digital Image Processing class notes

2003

IMAGE ENHANCEMENT I (RADIOMETRIC)

• Linearly interpolate the expected output GL minimum and maximum at each pixel from these values x X–x Y–y GL min = ---- ⋅ MIN 7 +  ------------ ⋅ MIN 6 ⋅  ------------  X   Y  X X–x y x + ---- ⋅ MIN 11 +  ------------ ⋅ MIN 10 ⋅ -- X  Y X x X–x Y–y GL max = ---- ⋅ MAX 7 +  ------------ ⋅ MAX 6 ⋅  ------------  X   Y  X X–x y x + ---- ⋅ MAX 11 +  ------------ ⋅ MAX 10 ⋅ -- X  Y X

154

Dr. Robert A. Schowengerdt

2003

• Linear interpolation insures that we’re always within a specified output range, e.g. [0..255] MIN ≤ GL min ≤ MAX MIN ≤ GL max ≤ MAX ECE/OPTI533 Digital Image Processing class notes

IMAGE ENHANCEMENT I (RADIOMETRIC)

• Finally, calculate a linear stretch at each pixel using the estimated minimum and maximum range values 255 GL = ------------------------------------ ( DN – GL min ) GL max – GL min • Sensitive to block size too large produces little adaptivity to local contrast too small produces “halo” artifact near high contrast boundaries find “best” block size by trial-and-error

• Reference:

155

Dr. Robert A. Schowengerdt

2003

J. D. Fahnestock and R. A. Schowengerdt, "Spatially - variant Contrast Enhancement using Local Range Modification,” Opt. Eng., 22(3), p. 378 - 381, May - June 1983.

ECE/OPTI533 Digital Image Processing class notes

156

Dr. Robert A. Schowengerdt

IMAGE ENHANCEMENT I (RADIOMETRIC) IMAGE EXAMPLES original

ECE/OPTI533 Digital Image Processing class notes

2003

157

Dr. Robert A. Schowengerdt

IMAGE ENHANCEMENT I (RADIOMETRIC)

min-max stretched

ECE/OPTI533 Digital Image Processing class notes

2003

158

Dr. Robert A. Schowengerdt

IMAGE ENHANCEMENT I (RADIOMETRIC)

histogram equalized

ECE/OPTI533 Digital Image Processing class notes

2003

159

Dr. Robert A. Schowengerdt

IMAGE ENHANCEMENT I (RADIOMETRIC)

Gaussian stretched

ECE/OPTI533 Digital Image Processing class notes

2003

160

Dr. Robert A. Schowengerdt

IMAGE ENHANCEMENT I (RADIOMETRIC)

LRM stretched (block size = 100)

ECE/OPTI533 Digital Image Processing class notes

2003

161

Dr. Robert A. Schowengerdt

IMAGE ENHANCEMENT I (RADIOMETRIC)

LRM stretched (block size = 50)

ECE/OPTI533 Digital Image Processing class notes

2003

Dr. Robert A. Schowengerdt

IMAGE ENHANCEMENT I (RADIOMETRIC) COLOR IMAGE CONTRAST ENHANCEMENT • Can apply monochrome techniques to each color component (“band”)

162

• Sometimes leads to undesirable color shifts and poor color balance • More later on color image enhancement . . .

ECE/OPTI533 Digital Image Processing class notes

2003

163

Dr. Robert A. Schowengerdt

IMAGE ENHANCEMENT I (RADIOMETRIC) example original

ECE/OPTI533 Digital Image Processing class notes

2003

164

Dr. Robert A. Schowengerdt

IMAGE ENHANCEMENT I (RADIOMETRIC) histogram equalized in each band

ECE/OPTI533 Digital Image Processing class notes

2003