Nov 1, 2012 ... November 2012 MLC Solutions. Question # 1. Answer: E. Pr(last survivor dies in
the third year). (. ) (. ) 2. 3. 80:90. 80:90. 2. 80. 2. 90. 2. 80:90. 3.
November 2012 MLC Solutions Question # 1 Answer: E Pr(last survivor dies in the third year) 2 p 80:90 3 p 80:90 2 p 80 2 p 90 2 p 80:90 3 p 80 3 p 90 3 p 80:90 [0.9(0.8) 0.6(0.5) 0.9(0.8)(0.6)(0.5)] [0.9(0.8)(0.7) 0.6(0.5)(0.4) 0.9(0.8)(0.7)(0.6)(0.5)(0.4)] (0.72 0.30 0.216) (0.504 0.12 0.06048) 0.804 0.56352 0.24048
Question # 2 Answer: B Under constant force over each year of age, l x k (lx )1 k (l x 1 ) k for x an integer and 0 k 1. l [60] 2.75 l [60] 5.75 q 2 3 [60] 0.75 l [60] 0.75 l [60] 0.75 80, 0000.25 79, 0000.75 79, 249 l [60] 2.75 77, 0000.25 74, 0000.75 74, 739 l [60] 5.75 67, 0000.25 65, 0000.75 65, 494 23
q [60] 0.75
74, 739 65, 494 79, 249
0.1167 1000 2 3 q [60] 0.75 1000(0.11679) 116.8
Question # 3 Answer: B 1
1 t t 4 . Since S0 (t ) 1 F0 (t ) 1 , we have ln S0 (t ) ln 4 d 1 1 1 1 1 110. and 65 Then t ln S0 (t ) dt 4 t 180 4 65 3
e106 t p106 , since 4 p106 0 t 1
106 t 1 1/4 S0 (106 t ) 110 4t 1/ 4 S0 (106) 4 106 1 110 1/4
t
p106
1
4t 4 t 1 4 1 0.25 3 0.25 2 0.25 10.25 4 2.4786 3
e106
Question # 4 Answer: D 10
V 50, 000 A50 10 E50 A60 1116 a50 10 E 50 a60 50, 000[0.24905 0.51081(0.36913)] 1116[13.2668 0.51081(11.1454)] 13, 428
Question # 5 Answer: C
V 0
0
V 2000
2
Year 1: 0V P 1 i qx 2000 1V px 1V
P(1.1) 0.15(2000 1V ) 0.85( 1V ) 1.1P 300 1V Year 2: 1V P 1 i qx 1 (2000 2V ) px 1 (2000) (1.1P 300 P )(1.1) 0.165(2000 2000) 0.835(2000) 2.31P 330 2330 2330 330 P 1152 2.31
Question # 6 Answer: B d tV G E S 9.6V ( ) where G, E, S and are evaluated at t = 9.6 and dt t 9.6 where S includes claims-related expenses. Then, d tV 450 0.02(450) (106, 000 200)(0.01) 9.6V (0.01 0.05) dt t 9.6
621 0.06 9.6V V 9.8V 0.2
9.6
d tV 126.68 0.2(621 0.06 9.6V ) dt t 9.6
250.88 0.012 9.6V V
9.6
250.88 247.91 1.012
Question # 7 Answer: C
Account Value at end of year 5 (30 20 9)1.06 43.46 Surrender Value at end of year 5 43.46 20 23.46 Asset Share [(20 (20 2))1.08 0.001(1000) 0.05(23.46)] / (1 0.001 0.05) 38.867 / 0.949 40.96
Question # 8 Answer: A
Let CSVk and SCk denote the cash surrender value and surrender charge at time k. In this solution, COIk denotes the cost of insurance for month k, to be deducted from the account value at time k – 1, that is, the beginning of month k.
i (12) 0.054 i per month 0.0045 CSV13 AV13 SC13 1802.94 AV13 125 AV13 1927.94
AV12 AV11 300(1 W ) 10 COI12 1.0045
COI12 50, 000(0.002) / 1.0045 99.55 AV11 CSV11 SC11 1200 500 1700
AV12 1700 300(1 W ) 10 99.551.0045
AV12 1890.45 300W 1.0045 1898,96 301.35W COI13 50, 000(0.003) / 1.0045 149.33
AV13 [ AV12 300(1 0.15) 10 149.33](1.0045) (1898.96 301.35W 95.67)(1.0045) 2003.61 302.71W 1927.94 W (2003.61 1927.94) / 302.71 0.25
Question # 9 Answer: A Year Premium
Expense Charge
1
5000
100
2
5000
100
COI
Interest
EOY AV
200(5.40/1.06) = 1019 200(6.00/1.06) = 1132
0.06(5000–100 –1019) = 233 0.06(4114+5000 –100–1132) = 473
5000–100–1019+233 = 4114 4114+5000–100 –1132+473 = 8355
PV expected surrender cost in year 2 0.06(1 0.0034)(1 0.0038)(1 0.06)(8355)0.93 / 1.07 2 380
Question # 10 Answer: C p x k : y k px k p y k px k : y k 0.84366 0.86936 0.77105 0.94197 for k 0,1, 2 . qx k : y k 1 px k : y k 1 0.94197 0.05803 for k 0,1, 2 .
pxy pxy px 1: y 1 px k 1: y k 1 pxy 0.77105k for k 0,1, 2 . k
k
p xy
qx k : y k
Discount factor
Product
1 0.77105 0.59452
0.05803 0.05803 0.05803
1/1.03=0.97087 1/1.082 = 0.85734 1/1.13 = 0.75131
0.05634 0.03836 0.02592
k 0 1 2
k
EPV = (100,000)(0.05634 + 0.03836 + 0.02592) = 12,062
Question # 11 Answer: C
x
qx
t
70 71 72
0.03318 0.03626
0 1 2
t
p70
1 0.96682 0.93176
t
q70
0.03318 0.03506
Spot rate 0.016 0.026
v(t 1)
EPV
0.984252 0.94996
0.03266 0.03331
Sum =
0.06597
The EPV of a two-year deferred insurance is 0.93176(0.94996) A72 0.88513(0.54560) 0.48293 , where A72 is from the ILT at 6% (6% is correct since all forward rates are 6% after two years). Then the answer is 1000(0.06597 0.48293) 548.90
Question # 12 Answer: B
Because it is impossible to return to state 0, 1 p000 and 1 p000 are the same. Then,
t
p tp e 00 0
00 0
0 j1 0 s ds t
2
0j
t01 t02 0.01 0.02(2t ) 0.5 0.01 0.02(2t ) 0.015 0.03(2t ) which is Makeham’s law with A 0.015, B 0.03, c 2 1
1
p000 1 p000 e 0.015(1) e
0.03( 2 1) ln(2)
0.943
It is not necessary to recognize that this is Makeham’s law. The value can be calculated directly as t 00 00 1 1 p0 1 p0 exp 0 0.015 0.03(2 ) dt 1 0.03(2t ) exp 0.015t ln 2 0 exp[(0.015 0.08656 0 0.04328)] exp(0.05828) 0.943
Question # 13 Answer: D 00 p 50
l51( ) 90,365 0.90365 l50( ) 100, 000 03 p 50
00 q51(3) q50(3) 1 p50(3) 1 p 50
d
30 51
( ) 51
l
90,365
p
03 51
( ) 51
l
ln p51(3) 00 ln p 51
0 p 50
00 1 p 50
0 p 51 l51( )
d ( 3) 50 ( ) l 50
00 1 p 50
1 0.90365
1100 100,000 1 0.90365
0.0115
ln(1 0.0115) l52( ) 1 l52( ) l51( ) ln ( ) l51
ln(1 0.0115) (1 80, 000 / 90,365) 984 ln(80, 000 / 90,365)
d 51(1) l51( ) l52( ) d 51(2) d 51(3) 90,365 80, 000 8200 984 1181 01 p 51
00 q51(1) 1 p51(1) 1 p 51
0 p 51
00 1 p 51
d (1) 51 ( ) l 51
00 1 p 51
1 (80, 000 / 90,365)
1181 90,365 80,000 1 90,365
0.0138
10, 000q51(1) 10, 000(0.0138) 138
Note: This solution uses multi-state notation for dependent probabilities. There is alternative notation for these when the context is strictly multiple decrement, as it is here. Question # 14 Answer: A
2v K 1 , K 20 Z K 1 v , K 20 E[ Z ] 2 A40 20 E40 A60 2(0.36987) 0.51276(0.62567) 0.41892 Var ( Z ) E[ Z 2 ] ( E[ Z ])2 0.24954 0.418922 0.07405 SD( Z ) 0.07405 0.27212 1 An alternative way to obtain the mean is E[ Z ] 2 A40:20 20| A40 . Had the problem asked for the evaluation of the second moment, a formula is 1 E[ Z 2 ] (22 ) 2 A40:20 (v2 )20 20 p40 2 A60 .
Question # 15 Answer: D
Benefit 300,000 330,000 360,000 390,000
Half-year 1 2 3 4
Under CF assumption, 0.5
p x 1
0.5
0.5
PV of Benefit 275,229 277,754 277,986 276,286 px
0.5
PV 277, 000 if and only if (x) dies in the 2nd or 3rd half years.
p x 0.5 (0.84) 0.5 0.9165 and
p x 1.5 (0.77) 0.5 0.8775 . Then the probability of dying in the 2nd or 3rd half-
years is 0.5 p x 1 0.5 p x0.5 p x 1 0.5 p x1 (0.9165)(0.0835) (0.84)(0.1225) 0.1794
Question # 16 Answer: D
For t 0 and h 0.5, 0.5
p10 0 p10 0.5 0 p10 01 02 0 p11 10 0 p12 20 0 0.5 0 1 10 0 0.5 10 0.03.
Similarly
0.5
p12 0.5 12 0.05 .
Then, 0.5 p11 1 0.03 0.05 0.92 . For t 0.5 and h 0.5, 1
p10
0.5
p10 0.5
0.5
p10 01 02 0.5 p11 10 0.5 p12 20
0.03 0.5[0.03(0.02) 0.92(0.06) 0] 0.0573.
Question # 17 Answer: E
i (4) 0.08 means an interest rate of j 0.02 per quarter. This problem can be done with two quarterly recursions or as a single calculation. Using two recursions: 800 706 1000 10.5V 60(1 0.1)1.02 800 V 10.75 706 800 V 541.02 117.5 753.72 10.5 0.8825 10.5V 713.31 V
898 800 1000 898 800 898 10.25V 1.02 109.13
10.25V 1.02
10.5
713.31
0.8909
10.25V 730.02.
Using a single step: 10.25V is the EPV of cash flows through time 10.75 plus flows thereafter (that is,
0.5
E80.25 times the EPV of cash
V ).
10.75
898 800 800 706 800 706 V 1000 60(1 0.1) 753.72 2 898(1.02) 898(1.02) 2 898(1.02) 898(1.02) 730.
10.25
Question # 18 Answer: B
EPV of benefits at issue 1000 A40 4 11 E40 (1000 A51 )
161.32 (4)(0.50330)(259.61) 683.97 EPV of expenses at issue 100 10( a40 1) 100 10(13.8166) 238.17 (683.97 238.17) / a40 922.14 / 14.8166 62.24 G 1.02 63.48
EPV of benefits at time 1 1000 A41 4 10 E 41 (1000 A51 )
168.69 (4)(0.53499)(259.61) 724.25 EPV of expenses at time 1 10(a41 ) 10(14.6864) 146.86 Gross Prem Reserve 724.25 146.86 Ga41 871.11 63.48(14.6864) 61.18
Question # 19 Answer: E
Let Xi be the present value of a life annuity of 1/12 per month on life i for i 1, 2, , 200 . 200
Let S 180 X i be the present value of all the annuity payments. i 1
(12) E[ X i ] a62
2
Var X i
1 A62(12) 1 0.4075 10.19267 d (12) 0.05813
12 12 A62 A62
d 12
2
2
0.2105 0.47052 13.15255 0.058132
E[ S ] 200 180 10.19267 366,936.12
Var S 200 180 13.15255 85, 228,524 2
With the normal approximation, for Pr S M 0.90 , M E[ S ] 1.282 Var S 366,936.12 1.282 85, 228,524 378, 771.45 . So
378, 771.45 1893.86 200
Question # 20 Answer: C
Let C be the annual contribution, then C
20
E 45 a65 a45:20
Let K65 be the future curtate lifetime of (65). The required probability is E a a45:20 Ca45:20 Pr aK 1 Pr 20 45 65 aK 1 65 65 E a45:20 20 E45 20 45
Pr 9.8969 a Pr a65 aK
65 1
K65 1
Thus, since a14 9.8527 and a15 10.2950 we have
Pr aK
65 1
9.8969 Pr K 65 1 14 1 14 p 65
1
l 79 l 65
1
4, 225,163 0.439 7,533,964
Note that it is not necessary to know the mortality or interest rates before age 65 because the values of 20 E45 and a45:20 cancel out in determining the actuarial accumulated value of the contributions. Question # 21 Answer: A
Let benefit premium, then a xy 100 A xy 3 1 1 3 1 1 a xy e 0.05t e 0.01t e 0.03t dt 13.54167 0 4 4 0.06 4 0.08 4 A xy 1 a xy 0.3229167
0.01 1 0.06 6 0.02 2 Ay 0.07 7 A xy A x A y A xy 0.1294643 Ax
100(0.1294643) 0.956044 13.54167
Question # 22 Answer: D
The equation of value is given in words by: Premiums for at most two years = 1000 for dying within two years + return of premium without interest (pay P if die in first year, 2P if die in second year). In symbols, the equation is: 1 1 Pa80:2 1000 A80:2 P ( IA)80:2 Solving for P we obtain P
1 1000 A80:2 1 a80:2 ( IA) 80:2
.
Then, a80:2 1 vp 80 1
0.91970 1.90388 1.0175
0.08030 0.91970(0.08764) 1 1000 A80:2 1000 vq 80 v 2 p 80 q 81 1000 156.77 1.0175 2 1.0175 0.08030 0.91970(0.08764) 1 vq 80 2v 2 p 80 q 81 2 0.23463 ( IA) 80:2 1.0175 1.0175 2
Then, P
156.77 93.92 1.90388 0.23463
Question # 23 Answer: A
Net amount at risk 1000 3V 987.82 Expected deaths (10, 000 30) q47 9970(0.00466) 46.46 Actual deaths = 18 Mortality Gain/Loss = (Expected deaths – Actual deaths)(Net amount at risk) (46.46 18)(987.82) 28,113
Question # 24 Answer: D
possible transitions H Z H L H Z D H LD H H Z H H L
probability 0.05 0.04 0.05(0.7) 0.035 0.04(0.6) 0.024 0.90(0.05) 0.045 0.90(0.04) 0.036
discounted benefits 250 v 250 v 1000 v 2 1000 v 2 250 v 2 250 v 2
APV 11.904762 9.523810 31.746032 21.768707 10.204082 8.163265
Sum of these gives total APV
=93.31066
Question # 25 Answer: E Ga x:10 100, 000 A1x:10 G ( IA)1x:10 0.45G 0.05Gax :10 200ax :10 G
100, 000(0.17094) 200(6.8865) 18, 471.3 3604.23 (1 0.05)(6.8865) 0.96728 0.45 5.124895