Numerical Investigation of a Tuned Heave Plate ... - Semantic Scholar

1 downloads 0 Views 7MB Size Report
Jan 28, 2016 - Abstract: A novel tuned heave plate energy-harvesting system (THPEH) is presented for the motion suppressing and energy harvesting of a ...
energies Article

Numerical Investigation of a Tuned Heave Plate Energy-Harvesting System of a Semi-Submersible Platform Kun Liu 1,2, *, Haizhi Liang 3 and Jinping Ou 1,2,4 1 2 3 4

*

School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China; [email protected] Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education (Harbin Institute of Technology), Harbin 150090, China Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China; [email protected] State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China Correspondence: [email protected]; Tel.: +86-451-8628-2209

Academic Editor: Ling Bing Kong Received: 5 December 2015; Accepted: 20 January 2016; Published: 28 January 2016

Abstract: A novel tuned heave plate energy-harvesting system (THPEH) is presented for the motion suppressing and energy harvesting of a semi-submersible platform. This THPEH system is designed based on the principle of a tuned mass damper (TMD) and is composed of spring supports, a power take-off system (PTO) and four movable heave plates. The permanent magnet linear generators (PMLG) are used as the PTO system in this design. A semi-submersible platform operating in the South China Sea is selected as the research subject for investigating the effects of the THPEH system on motion reduction and harvesting energy through numerical simulations. The numerical model of the platform and the THPEH system, which was established based on hydrodynamic analysis, is modified and validated by the results of the flume test of a 1:70 scale model. The effects of the parameters, including the size, the frequency ratio and the damping ratio of the THPEH system, are systematically investigated. The results show that this THPEH system, with proper parameters, could significantly reduce the motions of the semi-submersible platform and generate considerable power under different wave conditions. Keywords: semi-submersible; heave plate; wave energy; wave energy converter; tuned mass damper (TMD)

1. Introduction Powerful waves are harmful to ocean structures but also have the great potential to provide clean energy at the same time. Utilizing this powerful renewable energy and protecting our structures at the same time is a meaningful and interesting topic. Although wave energy converters are still far from commercial use, with the development of energy harvesting technologies, especially the improvement of the permanent magnet linear generator, wave energy converters (WEC) employing PMLG as the PTO system have emerged in applications and research studies [1–3]. For deep water utilization, whose energy flux densities are much larger compared to near shore sites, multi-body floating WECs such as Wavebob [4] and IPS Buoy [5] have been systematically studied during the most recent decade. Nevertheless, building a power grid for transmitting the electronic power from a deep-water site would significantly increase the total cost of wave power. If the power generated by deep-water WECs is directly supplied for the operation of

Energies 2016, 9, 82; doi:10.3390/en9020082

www.mdpi.com/journal/energies

Energies 2016, 9, 82

2 of 22

deep-water platforms, whose energy supply from the shore is difficult and expensive, it will make the WECs’ future brighter. Semi-submersible platforms are considered to be the earliest type and most widely used deep water platform for oil and gas exploration because of their large deck area and payload capacities. However, because of the small water plane area and the draft, the motions of semi-submersibles, especially heave motion, are much larger than other deep-water platforms such as Spars and the tension leg platforms (TLP). To improve the performance of semi-submersible platforms, many scholars have concentrated their efforts on inventing novel type semi-submersibles [6–9]. These concepts for improving the semi-submersible platform could be summarized as having a deeper draft, installing heave plates and using truss columns instead of conventional columns. In the author’s opinion, the best solution is converting the kinetic energy of the platform into electronic power, which would make the operation more safe and economical. The tuned mass damper (TMD) is an effective way for the vibration control of structures and has been fully developed since Frahm [10] proposed the first tuned mass damper in his patent in 1911. Since then, many adaptive, semi-active and active methods for improving the performance of the TMD have been developed [11–13] and realized in practical engineering projects [14–16]. The dampers are adapted in conventional TMDs, and the energy absorbed by a TMD system is converted to heat and dissipated in the damper. Recently, the absorbed energy could be converted into electrical power by different generators or the use of piezoelectric materials [17–19] applied in the TMD system. For reducing the heave motion of the semi-submersible platform, a novel tuned heave plate system was proposed by Kun Liu [20] and Hang Zhu [21] based on the same idea as the TMD. Compared to the traditional heave plate system, the plate is connected to the platform by spring and damping elements. In this way, the tuned heave plate system could be tuned to a certain period in order to achieve better control than a traditional fixed heave plate. In this paper, four movable heave plates are installed beneath the columns to control not only the heave motion but also the roll and pitch motions. The damping elements of the tuned heave plate system are replaced by PMLGs, and this tuned heave plate energy-harvesting system (THPEH) could not only suppress the motions of the platform but also produce power for the platform’s operation at the same time. In this paper, the effectiveness of the THPEH system with different parameters under different wave conditions is investigated systematically. First, the numerical model of the semi-submersible platform with the THPEH system is built in the Matlab & Simulink module. Second, the numerical model of the semi-submersible platform is modified and verified by testing a 1:70 scale model in a wave tank. Third, the parameter studies of the size, the tuned period ratio and the damping ratio of the THPEH system are carried out. Finally, the performances of the semi-submersible platform with the designed THPEH system under different waves are illustrated and analyzed. The results show that the THPEH system could significantly reduce motions and generate considerable power at the same time. 2. Conceptual Design of the Tuned Heave Plate Energy Harvesting System The illustration of the THPEH system installed on the semi-submersible platform and the details of the THPEH system are shown in Figure 1. Figure 1a shows the conceptual design of a semi-submersible with the tuned heave plate system. The THPEH system is composed of four truss-plate structures located under the columns. The plate below the pontoon is installed deep enough to avoid the wave exciting force. Figure 1b shows an illustration of a truss-plate structure. The permanent magnet linear generator is used and is placed on the top of the truss tube in the platform pontoon. Figure 1c illustrates the connection structure of the heave plate and the truss structure. The connection only allows the heave plate move along the vertical truss tube. The stator coil and iron are rigidly connected to the outer tube on the heave plate, and the tube wrapped by the permanent-magnets extended from the truss structure can move through the stator and the outer tube on the plate. This PMLG can harvest

Energies 2016, 9, 82

3 of 22

the related motion energy into electrical power. The spring support is placed between the truss tube and the heaveEnergies 2016, 9, 82  plate, which determines the natural period of the THPEH system. 3 of 22 

  (a)

  (b) 

(c)

Figure  1.  (a)  The  illustration  of  the  semi‐submersible  platform  with  the  tuned  heave  plate  energy  Figure 1. (a) The illustration of the semi-submersible platform with the tuned heave plate energy harvesting system; (b) the illustration of a truss‐plate structure of the THPEH system; (c) the diagram  of the connection structure in the sleeve tube.  harvesting system; (b) the illustration of a truss-plate structure of the THPEH system; (c) the diagram

of the connection structure in the sleeve tube. Assuming the force of PMLG is a linear damping force, Figure 2a shows the mechanical model  diagram  of  the  semi‐submersible  platform  with  the  THPEH  system  in  heave  motion.  The  whole  system of the spring supports and PMLGs are the power take‐off system (PTO) in this model. The  Assuming the force of PMLG is a linear damping force, Figure 2a shows the mechanical model plane layout of the plates is shown in Figure 2b. Under the small motion assumption, the motion of  diagram of thethe THPEH system is governed by Equation (1).  semi-submersible platform with the THPEH system in heave motion. The whole system

1 of the spring supports and PMLGs power take-off system (PTO) in this model.   (1)  The plane layout + Cthe  m + a zare d S z  z = f   CPTO  z  T46 x   KPTO  z  T46 x     2 of the plates is shown in Figure 2b. Under the small motion assumption, the motion of the THPEH where  m ,  a ,  C , and  f   are the matrices of the mass, added mass, the drag coefficient and wave  system is governed by Equation (1). d

exciting force of the heave plates of the THPEH system, respectively;  z ,  z   and  z   are the heave  displacement vector, velocity vector and acceleration vector of the four plates of the THPEH system;  ˇ.ˇ . “ `. ‰ .˘ .. 1 C PTO   and  K PTO   are the damping coefficient and stiffness coefficient of the THPEH provided by the  ˇ ˇ

pm ` aq z` Cd ρS z ¨ z “ f ´ CPTO z ´ T46 x ` KPTO pz ´ T46 xq

2    is the density of sea water;  S   is the area of the plate;  PMLGs and spring supports, respectively. 

(1)

T46   and  T64   are the displacement transformation matrices of the THPEH system, defined by 

where m, a, Cd , and f are the matrices of the mass, added mass, the drag coefficient and wave exciting . .. force of the heave plates of the THPEH system, respectively; z, z and z are the heave displacement vector, velocity vector and acceleration vector of the four plates of the THPEH system; CPTO and KPTO are the damping coefficient and stiffness coefficient of the THPEH provided by the PMLGs and spring supports, respectively. ρ is the density of sea water; S is the area of the plate; T46 and T64 are the displacement transformation matrices of the THPEH system, defined by »

T64

— — — — “— — — –

0 0 1 ly lx 0

0 0 1 ly ´lx 0

0 0 1 ´ly ´lx 0

0 0 1 ´ly lx 0

fi » ffi 0 0 1 ffi — 0 0 1 ffi ffi — ffi , T46 “ — ffi – 0 0 1 ffi fl 0 0 1

ly ly ´ly ´ly

lx ´lx ´lx lx

0 0 0 0

fi ffi ffi ffi fl

(2)

0  1 T64 =  l y  lx   0

Energies 2016, 9, 82

0

0

1 ly

1 l y

lx 0

lx 0

0  0 0  1  , T46 =  0 l y   lx  0  0 

ly ly

lx lx

0 1 l y 0 1 l y

lx lx

0 1 0 1

0 0   0  0

(2)  4 of 22

where lxlxand   and    are the distances between the centers of the platform and the plates along the x‐axis  where ly lare the distances between the centers of the platform and the plates along the x-axis y and y-axis, respectively. and y‐axis, respectively. 

 

M + M a   F

Ks  Km

f

f

C + Cr   

m+a

m+a

1 Cd  S z 2

1 Cd  S z 2

 

(a) 

(b) 

Figure 2.2. (a) (a)  The  mechanical  model  diagram  of semi-submersible the  semi‐submersible  platform  with  the  THPEH  Figure The mechanical model diagram of the platform with the THPEH system; system; (b) The horizontal arrangement and serial number of the plates in the THPEH system.  (b) The horizontal arrangement and serial number of the plates in the THPEH system.

The second item on the right side of the Equation (1) is the force of the PTO system act on the  The second item on the right side of the Equation (1) is the force of the PTO system act on the THPEH system, and it is the interaction force between the THPEH system and the semi‐submersible  THPEH system, and it is the interaction force between the THPEH system and the semi-submersible platform. In this way, the motion of the semi‐submersible platform is governed by Equation (3).  platform. In this way, the motion of the semi-submersible platform is governed by Equation (3).  M + M a     M p   x +  C + C r     x +  K s  K m  x = F  T64  C P T O  z  T4 6 x   K P T O  z  T4 6 x     “ ‰ .. “ `. ‰ (3)  . .˘ M`Ma pωq ` M p x` rC`Cr pωqs x` pKs ` Km q x“F ` T64 CPTO z ´ T46 x ` KPTO pz ´ T46 xq (3) where  M ,  M a   are the matrices of the mass and the added mass of the platform and respectively.  F   are the matrices of the radiation damping, viscous damping, stationary water  C r ,  C, M,KM where matrices of the mass and the added mass of the platform and respectively. Cr , s , and  a are the x  water C, Ks , and F are the matrices of the radiation damping, viscous damping, stationary stiffness stiffness and wave exciting force of the semi‐submersible platform, respectively;  is the six‐DOF  and wave exciting forceof ofthe  the platform.  semi-submersible platform, x is theis six-DOF displacement displacement  vector  The  force  of  the respectively; mooring  system  accounted  for  in  an  vector of the platform. The force of the system is accounted for in an equivalent linear stiffness Mp   is the mass contributed by the THPEH system  equivalent linear stiffness matrix  Km . mooring matrix Km . M p is the mass contributed by the THPEH system 2 2 2 2   ı M p  diag (4)  ” 4m 4m 4m 4mh 4mh 4m´lx  l y ¯  2 2 2 2 M p “ diag 4m 4m 4m 4mh 4mh 4m lx ` ly (4) where  m   is the mass of the heave plate,  h  is the distance between the heave plate and the C.O.G  of the platform. The second item on the right side of the Equation (3) is the force of the PTO system  where m is the mass of the heave plate, h is the distance between the heave plate and the C.O.G of the u  the PTO system act on act on the semi‐submersible platform system, defined as the control force  platform. The second item on the right side of the Equation (3) is the force of the semi-submersible platform system, defined as the control force u u  T64 CPTO  z  T46x   KPTO  z  T46x    (5)  “ `. ‰ .˘ u “ T64 CPTO z ´ T46 x ` KPTO pz ´ T46 xq (5)





3. Numerical Model of the Semi‐Submersible with the THPEH System  3. Numerical Model of the Semi-Submersible with the THPEH System 3.1. The State‐Space Model for Radiation Damping Force Calculation  3.1. The State-Space Model for Radiation Damping Force Calculation The added added mass mass and and radiation radiation damping damping  coefficients  relative  motion  frequency.  The coefficients areare  relative to to  thethe  motion frequency. A   A convolution calculation method is introduced to calculate the radiation force of the platform [22].  convolution calculation method is introduced to calculate the radiation force of the platform [22]. The The radiation force of the semi‐submersible is composed of two parts:  radiation force of the semi-submersible is composed of two parts: “ .. .‰ Fr “ ´ Ma pωq x`Cr pωq x

(6)

Energies 2016, 9, 82

5 of 22

Introducing the impulse response function for calculating the radiation forces in the time domain gives ż8 2 (7) Cr pωq cos pωtq dω hr ptq “ π 0

Therefore, the radiation force can be expressed as a convolution function of the velocity of the platform: żt .. . Fr ptq “ ´Ma p8q x ´ hr pt ´ τqxpτqdτ (8) ´8

Additionally, the convolution calculation could be replaced by a linear system whose inputs are the velocities and outputs are the convolution parts of the radiation forces, and the linear system in the state-space model is an auxiliary state vector for convolution [23]. #

.

.

w ptq “ar w ptq `br z3 ptq . F1r ptq “cr w ptq `dr z3 ptq

(9)

where ar , br , cr , and dr are the system matrices, and w is an auxiliary state vector for calculation. F1r ptq is the convolution part of the radiation force: żt F1r ptq “ ´

.

(10)

hr pt ´ τqxpτqdτ

´8

3.2. The State-Space Model for the Platform with the THPEH System The motion Equation of the semi-submersible platform could be transformed to the state-space Equation as . ξ “ As ξ ` Bs pF ` uq (11) where the state vector ξ is ”

.

x x

ξ“

w

ıT

(12)

By introducing the model of the radiation force model, the system matrices As and Bs are »

” ı A` 012ˆ6 Bdr ” ı As “ – 0nˆ6 br « ff B Bs “ 0nˆ2

fi Bcr fl ar

(13)

The displacements and velocities are set as the outputs, so the output matrices can be built as ” Cs “

ı I12ˆ12

012ˆn

(14)

Ds “ 012ˆ6

According to the motion Equation, Equation (1), the state-space model of the heave plate motion is «

.

z .. z

ff

« “ Ap

ff z . z

´ ˇ.ˇ . ” ` Bp f´Cd ˇzˇ z ` KPTO T46

CPTO T46

04ˆn

ı ¯ x

(15)

Energies 2016, 9, 82

where Energies 2016, 9, 82  where 

6 of 22

«

04ˆ4 I4ˆ4 Ap “ ´KPTO pm ` aq´1 ´CPTO pm ` aq´1 « ff 044   04ˆ4 I 44 A p =  Bp “ 1 1  ´ 1  `CaqPTO  m + a    KPTO  m + apm  

ff

6 of 22 

(16) (16) 

 44 The plates are assumed to beBplaced deep enough to ignore the wave exciting force on the plates. 1 p= + a   matrices are constructed as To output the velocity of the plates, the  moutput 0

The plates are assumed to be placed deep enough to ignore the wave exciting force on the plates.  C p “ I8ˆ8 , D p “ 08ˆ8 (17) To output the velocity of the plates, the output matrices are constructed as    p =ITHPEH 8  8 , D p = 0 8System 8 3.3. The Simulink Model for the Platform withCthe

(17) 

According to Equations (11) and (15), the state-space model of the semi-submersible and THPEH system, the diagram of the Simulink model, for calculating the performance of the system is shown in Figure 3.According to Equations (11) and (15), the state‐space model of the semi‐submersible and THPEH  In addition, four gain matrices G1 , G2 , G3 and G4 are introduced to establish the calculation system, the diagram of the Simulink model, for calculating the performance of the system is shown  model in Simulink for the state-space model of the platform with the THPEH system. 3.3. The Simulink Model for the Platform with the THPEH System 

in  Figure  3.  In  addition,  four  gain  matrices  G 1 ,  G 2 ,  G 3   and  G 4   are  introduced  to  establish  the 



ı

calculation model in Simulink for the state‐space model of the platform with the THPEH system.  G1 “ K T C T 0 PTO «

PTO 46

46

4ˆ n

G1   K PTOTT46 C0PTO 46  nn 4ˆT 646 0044ˆ G2 “ 04ˆn  T 04ˆ0646 T046 4 n  ı G 2  ” 46  TT G3 “ 04K   T 46 64 04C 6 PTO n PTO 64 ” ı G3  K T C T  PTO 64 PTO 64 G “ 0 I  4

G 4   044

ff

4 ˆ4

I 44 

(18) (18) 

4ˆ4

In this way, the control force, relative displacements and velocities of the THPEH system In  this  way,  the  control  force,  relative  displacements  and  velocities  of  the  THPEH  system    are outputted. are outputted. 

  Figure  3.  The  diagram  of  the  numerical  model  of  the  semi‐submersible  platform  in  the    Figure 3. The diagram of the numerical model of the semi-submersible platform in the Simulink module. Simulink module. 

 

 

Energies 2016, 9, 82

7 of 22

Energies 2016, 9, 82  Energies 2016, 9, 82  4. Wave Tank Tests for Semi-Platform Numerical Model Modification and Validation

7 of 22  7 of 22 

4. Wave Tank Tests for Semi‐Platform Numerical Model Modification and Validation 

4. Wave Tank Tests for Semi‐Platform Numerical Model Modification and Validation  4.1. Hydrodynamic Analysis of the Platform 4.1. Hydrodynamic Analysis of the Platform 

4.1. Hydrodynamic Analysis of the Platform  For the semi-submersible platform, the panel model of the platform is established in AQWA For  the  semi‐submersible  platform,  the  panel  model  of  the  platform  is  established  in  AQWA  software,For  as shown in Figure 4. Fifty regular uniformly in the frequency interval the  semi‐submersible  platform,  the waves panel  model  of  the distributed platform  is  established  in  AQWA  software, as shown in Figure 4. Fifty regular waves uniformly distributed in the frequency interval  0.1 rad/s~1.2 rad/s are adopted for the hydrodynamic parameter analysis. Only the hydrodynamic software, as shown in Figure 4. Fifty regular waves uniformly distributed in the frequency interval  0.1 rad/s~1.2 rad/s are adopted for the hydrodynamic parameter analysis. Only the hydrodynamic  parameters of the heave degree of freedom in the frequency domain are given in Figure 5 because of 0.1 rad/s~1.2 rad/s are adopted for the hydrodynamic parameter analysis. Only the hydrodynamic  parameters of the heave degree of freedom in the frequency domain are given in Figure 5 because of  parameters of the heave degree of freedom in the frequency domain are given in Figure 5 because of  limited space. limited space.  limited space. 

   

Figure 4. The panel model of the semi‐submersible platform for boundary element method (BEM)  Figure 4. The panel model of the semi-submersible platform for boundary element method (BEM) Figure 4. The panel model of the semi‐submersible platform for boundary element method (BEM)  calculation in AQWA software.  calculation in AQWA software. calculation in AQWA software.  7

x 10 6 x 107 6 Radiation damping [kg/s] Radiation damping [kg/s]

Added mass Added mass [kg][kg]

7

x 10 11 x 107 11 10 10 9 9 8 8 7 7 6 6 5 5 4 4 0 0

0.5 1 0.5Frequency [rad/s] 1 Frequency [rad/s]

(a)  (a) 

5 5 4 4 3 3 2 2 1 1 0 0 0 0

1.5 1.5

0.5 1 0.5Frequency [rad/s] 1 Frequency [rad/s]

(b) (b)

Wave exciting force [N/m] Wave exciting force [N/m]

6

12 12 10 10

1.5 1.5

x 10 6 x 10

8 8 6 6 4 4 2 2 0 0

0.5 1 0.5Frequency [rad/s] 1 Frequency [rad/s]

1.5 1.5

(c) (c)

Figure 5. (a) Added mass coefficients of the semi‐submersible platform in the heave motion direction;  Figure 5. (a) Added mass coefficients of the semi‐submersible platform in the heave motion direction;  (b) radiation damping coefficients of the semi‐submersible platform in the heave motion direction; (c)  Figure 5. (a) Added mass coefficients of the semi-submersible platform in the heave motion direction; (b) radiation damping coefficients of the semi‐submersible platform in the heave motion direction; (c)  wave exciting force amplitudes of the semi‐submersible platform under 1 meter amplitude regular  (b) radiation damping coefficients of the semi-submersible platform in the heave motion direction; wave exciting force amplitudes of the semi‐submersible platform under 1 meter amplitude regular  waves in the heave motion direction.  (c) wave exciting force amplitudes of the semi-submersible platform under 1 meter amplitude regular waves in the heave motion direction. 

waves in the heave motion direction.

Energies 2016, 9, 82

8 of 22

However, the heave plate is widely used in deep ocean structures for bringing large damping and added mass to the structure compared to its small volume. As the viscous effects are prominent because of its small thickness, the drag force of the Morison Equation is adapted for the heave plate’s radiation force. The drag force coefficient of the heave plates of different shapes have been studied both numerically [24] and experimentally [25,26] in the past decade. The drag coefficient of the heave plate is related to the KC number and the motion frequency. For a solid square heave plate, when the Energies 2016, 9, 82  8 of 22  KC number is between 0.2 and 0.4, the frequency is between 0.1 and 0.5 Hz, and the drag coefficient is approximatelyHowever, the heave plate is widely used in deep ocean structures for bringing large damping  5~10. In this paper, the drag coefficient is taken as 8. For the added mass calculation, the fitting and added mass to the structure compared to its small volume. As the viscous effects are prominent  Equation from the results of Prislin’s experiment is adopted in this study [27]. because of its small thickness, the drag force of the Morison Equation is adapted for the heave plate’s  radiation force. The drag force coefficient of the heave plates of different shapes have been studied  4.2. Introduction of the Experiment Setup both numerically [24] and experimentally [25,26] in the past decade. The drag coefficient of the heave 

Because the viscous effects are ignored in the hydrodynamic analysis, a viscous damping matrix plate is related to the KC number and the motion frequency. For a solid square heave plate, when the  should be KC number is between 0.2 and 0.4, the frequency is between 0.1 and 0.5 Hz, and the drag coefficient  introduced to the numerical model of the semi-submersible platform to consider the effects. is approximately 5~10. In this paper, the drag coefficient is taken as 8. For the added mass calculation,  The free-decay tests of the scale model are adopted to identify the viscous damping coefficients. the fitting Equation from the results of Prislin’s experiment is adopted in this study [27].  In this study, a 1:70 scale model of the semi-submersible platform is constructed for the flume tests. The specifications of the prototype and the model are shown in Table 1. According to the Froude 4.2. Introduction of the Experiment Setup  ? similarity criterion, the force scale and the time scale are 1 : 703 and 1 : 70, respectively. The tests Because the viscous effects are ignored in the hydrodynamic analysis, a viscous damping matrix  were carried out in the nonlinear flume water tank in the state key laboratory of coastal and offshore should be introduced to the numerical model of the semi‐submersible platform to consider the effects.  The free‐decay tests of the scale model are adopted to identify the viscous damping coefficients.  engineering of Dalian University of Technology. The pictures of the experimental model and the wave In this study, a 1:70 scale model of the semi‐submersible platform is constructed for the flume  tank are shown in Figures 6 and 7. The arrangement of the test is illustrated in Figure 8. The wave tank tests. The specifications of the prototype and the model are shown in Table 1. According to the Froude  is 60 meters long and 5 meters wide, and the maximum water 2 meters. A piston wave-maker 1 : 70 3 depth similarity criterion, the force scale and the time scale are    and  1:is 70 , respectively. The tests  is located at one end of the tank, and the wave absorber is on the other end. The model of the platform were carried out in the nonlinear flume water tank in the state key laboratory of coastal and offshore  is located in the central part of the tank. Two cameras used capture the six degrees of freedom engineering  of  Dalian  University  of  Technology.  The  are pictures  of to the  experimental  model  and  the  wave tank are shown in Figures 6 and 7. The arrangement of the test is illustrated in Figure 8. The  (DOF) motion of the platform, and tension sensors are employed to monitor the tension of the mooring wave tank is 60 meters long and 5 meters wide, and the maximum water depth is 2 meters. A piston  system. A taut truncated mooring system is designed to provide the total horizontal restoring stiffness wave‐maker is located at one end of the tank, and the wave absorber is on the other end. The model  as a deep-water mooring system. the  The mooringof line is setTwo  up cameras are  with steel used  wireto  and a spring of  the  platform  is located in  central part  the  tank.  capture  the  six to achieve this goal. degrees of freedom (DOF) motion of the platform, and tension sensors are employed to monitor the  tension  of  the  mooring  system.  A  taut  truncated  mooring  system  is  designed  to  provide  the  total  horizontal restoring stiffness as a deep‐water mooring system. The mooring line is set up with steel  Table 1. The physical parameters of the prototype and scale model of the semi-submersible. wire and a spring to achieve this goal. 

Value Table 1. The physical parameters of the prototype and scale model of the semi‐submersible.  Parameters Prototype Model Value Parameters 

Prototype Deck (mm) 77470 ˆ 74380 ˆ 8600 77470 × 74380 × 8600  Column (mm)Deck (mm)  17385 ˆ 17385 ˆ 21460 Column (mm)  Pontoon (mm) 11407017385 × 17385 × 21460  ˆ 20120 ˆ 8540 114070 × 20120 × 8540  Draft (mm)Pontoon (mm)  19,000 Draft (mm)  Displacement (kg) 5.17 ˆ 19,000  107 7  Displacement (kg)  5.17 × 10 Roll Radius of inertia (mm) 33300 Roll Radius of inertia (mm)  Pitch Radius of inertia (mm) 3340033300  Pitch Radius of inertia (mm)  Yaw Radius of inertia (mm) 3500033400  Yaw Radius of inertia (mm) 

35000 

Model  1107 ˆ 1063 ˆ 123 1107 × 1063 × 123  307 ˆ 248 ˆ 248 307 × 248 × 248  1630 ˆ 287 ˆ 122 1630 × 287 × 122  271 271  150.73 150.73  476 476  477 477  500 500 

  Figure 6. The picture of the scale model of the semi‐submersible platform. 

Figure 6. The picture of the scale model of the semi-submersible platform.

Energies 2016, 9, 82

9 of 22

Energies 2016, 9, 82  Energies 2016, 9, 82 

9 of 22  9 of 22 

   

Figure 7. The picture of the scale model in the wave tank. 

Figure 7. The picture of the scale model in the wave tank. Figure 7. The picture of the scale model in the wave tank. 

Figure 8. The sketch of the layout of the wave tank tests of the semi‐submersible platform. 

   

Figure 8. The sketch of the layout of the wave tank tests of the semi‐submersible platform.  Figure 8. The sketch of the layout of the wave tank tests of the semi-submersible platform.

4.3. Free‐Decay Tests for Damping Modification  4.3. Free‐Decay Tests for Damping Modification  4.3. Free-Decay Tests for Damping Modification The viscous damping of the platform could be identified according to the free decay test results  The viscous damping of the platform could be identified according to the free decay test results  because  the  viscous  damping  predominant  to  the  radiation to damping  natural  The viscous damping of the is  platform couldcompared  be identified according the freein  decay testlow  results because  the  viscous  damping  is  predominant  compared  to  the  radiation  damping  in  natural  frequency  motion.  The  free  decay  tests  for  each  DOF  motion  are  carried  out  three  times,  and low  the  because the viscous damping is predominant compared to the radiation damping in natural frequency  motion.  The  free  decay  tests  for  each  DOF  motion  are  carried  out  three  times,  and  the  low logarithmic decrement ratio method is adopted to identify the damping ratio and natural period. The  frequency motion. The free decay tests for each DOF motion are carried out three times, and the logarithmic decrement ratio method is adopted to identify the damping ratio and natural period. The  identified results of the scale model and the equivalent values for the full scale numerical model are  logarithmic decrement ratio method is adopted to identify the damping ratio and natural period. The identified results of the scale model and the equivalent values for the full scale numerical model are  shown in Table 2. The diagonal elements of the viscous damping matrix are estimated by  shown in Table 2. The diagonal elements of the viscous damping matrix are estimated by  identified results of the scale model and the equivalent values for the full scale numerical model are C i, i of  2the iviscous  Ma  i, i   matrix   shown in Table 2. The diagonal elements are estimated by (1)  i M  i, i  damping C i, i   2ii M i, i   Ma  i, i    (1)  where  i   and   i   are the identification damping ratio and natural frequency for each DOF motion,  (19) C pi, iq “ 2ξ i ωi rM pi, iq ` Ma pi, iqs where  i   and   i   are the identification damping ratio and natural frequency for each DOF motion,  respectively. As the stiffness of the platform in the horizontal plane was completely contributed to  respectively. As the stiffness of the platform in the horizontal plane was completely contributed to  by  system,  the  equivalent  linear ratio stiffness  of  the  mooring  system  where ξ the  andmooring  ωi are the identification damping andcoefficients  natural frequency for each DOF are  motion, by i the  mooring  system,  the  equivalent  linear  stiffness  coefficients  of  the  mooring  system  are  calculated by  respectively. As the stiffness of the platform in the horizontal plane was completely contributed to by calculated by  2 the mooring system, the equivalent stiffness coefficients of the mooring system are calculated Kmlinear  i, i    (2)  by i M i, i   Ma  i, i    Ks  i, i    Km  i, i   i2 M i, i   Ma  i, i   Ks  i, i    (2)  2 The time history curves of the numerical simulation and scale model in surge and pitch motion  (20) Km pi, iq “ ωi rM pi, iq ` Ma pi, iqs ´ Ks pi, iq The time history curves of the numerical simulation and scale model in surge and pitch motion  are shown in Figure 9. Notice that all of the experiment results in this paper are transformed into  are shown in Figure 9. Notice that all of the experiment results in this paper are transformed into  results for a full scale model.  The time history curves of the numerical simulation and scale model in surge and pitch motion results for a full scale model. 

are shown in Figure 9. Notice that all of the experiment results in this paper are transformed into Table 2. The identification results of the natural period and the damping ratio in free‐decay tests.  results for aTable 2. The identification results of the natural period and the damping ratio in free‐decay tests.  full scale model. Scale Model 

Full Scale Numerical Model 

Scale Model  Full Scale Numerical Model  TableMotion  2. The identification results of the natural periodPeriod (s) and the damping ratio in free-decay tests. Period (s)  Damping Ratio Damping Ratio  Motion  Surge  Surge  Sway  Motion Sway  Heave  Heave  Roll  Roll  Surge Pitch  Pitch  Sway Yaw  Yaw  Heave

Roll Pitch Yaw

Period (s)  Damping Ratio Period (s) Damping Ratio  32.32  6.05%  270.41  6.05%  32.32  6.05%  270.41  6.05% Model 42.40  6.06%  280.74  Full Scale Numerical 6.06%  Scale Model 42.40  6.06%  280.74  6.06%  2.44  4.48%  20.41  4.48%  Period (s) Damping Ratio 20.41 Period (s) Damping Ratio 2.44  4.48%  4.48%  7.26  6.70%  60.74  6.70%  7.26 32.32 6.70% 6.05% 60.74  270.41 6.70%  6.05% 6.28  7.61%  52.54  7.61%  6.28 42.40 7.61% 6.06% 52.54  280.74 7.61%  6.06% 42.8  8.64%  358.09  8.64%  42.8 2.44 8.64% 4.48% 358.09  20.41 8.64%  4.48%

7.26 6.28 42.8

6.70% 7.61% 8.64%

60.74 52.54 358.09

6.70% 7.61% 8.64%

Energies 2016, 9, 82 Energies 2016, 9, 82 

10 of 22 10 of 22 

10

15

Simulation data Experiment data

Simulation data Experiment data

10

Pitch [deg]

Surge [m]

5

0

5 0 -5

-5

-10 -10 0

500

1000

1500 2000 Time [s]

2500

3000

3500

0

 

(a) 

50

100

150 Time [s]

200

250

(b) 

Figure  (a) The The  comparison  of  the  surge  free‐decay  time  histories  of  the  modified  Figure 9.  9. (a) comparison of the surge free-decay time histories of the modified numericalnumerical  simulation simulation and the wave tank test; (b) The comparison of the pitch free‐decay time histories of the  and the wave tank test; (b) The comparison of the pitch free-decay time histories of the modified modified numerical simulation and the wave tank test.  numerical simulation and the wave tank test.

4.4. Numerical Model Validation by the Results of the Regular Wave Tests  4.4. Numerical Model Validation by the Results of the Regular Wave Tests To validate the veracity of the modified numerical model of the semi‐submersible platform, the  To validate the veracity of the modified numerical model of the semi-submersible platform, the response amplitude operator (RAO) curves of the numerical model and the scale model are compared.  response amplitude operator (RAO) curves of the numerical model and the scale model are compared. For the scale model tests, considering the capacity of the wave‐maker and the wave tank, 10 regular  For the scale model tests, considering the capacity of the wave-maker and the wave tank, 10 regular waves are designed for regular wave tests to obtain the RAO curves. The parameters of these regular  waves are designed for regular wave tests to obtain the RAO curves. The parameters of these regular waves are shown in the Table 3. For example, the experimental time history curves of the platform  waves are shown in the Table 3. For example, the experimental time history curves of the platform under the R2 in the 0 degree direction are shown in Figure 10. According to the RAO definition, the  under the R2 in the 0 degree direction are shown in Figure 10. According to the RAO definition, the RAO is calculated as the ratio between the wave frequency motion amplitude and the wave height.  RAO is calculated as the ratio between the wave frequency motion amplitude and the wave height. However, the motions in the test contains the low frequency motion and wave frequency motion. As  However, the motions in the test contains the low frequency motion and wave frequency motion. As ? . The wave frequency  the ratio between the amplitude and STD value of the harmonic motion is  the ratio between the amplitude and STD value of the harmonic motion is 22. The wave frequency motion amplitude in experiment RAOs calculations is calculated in frequency domain as shown in  motion amplitude in experiment RAOs calculations is calculated in frequency domain as shown in Equation (21).  Equation (21). ? ωşj 2j2 b RRij “ 2 SijSijpωqdω  d ij  2 ω j1 (21)  j1 ` ˘ Rij   (3)  RAOi ω j R“ ij Aj



RAOi  j  

A

j where, Rij and Sij are the wave frequency motion amplitude and response power spectrum on the st st i DOF motion under the j regular wave; and ω and A are the frequency amplitude of on  the j ı amplitude  j where,  Rij   and  S ij   are  the  wave  frequency  motion  and  response and power  spectrum  ” st j regular wave; the frequency stinterval to only cover the wave frequency ω j1 ω j2 is designed ist   DOF motion under the  the  j   regular wave; and   j   and  A j   are the frequency and amplitude  motion in the frequency domain. In this study, they are defined as of  the  j st   regular  wave;  the  frequency  interval   j1  j 2    is  designed  to  only  cover  the  wave  ω j1 “ 0.8ω j , ω j2 “ 1.2ω j (22) frequency motion in the frequency domain. In this study, they are defined as 

 j , the 1.2 j   (4)  j 1  0.8and j 2 experiment The RAO curves of the numericalmodel model are compared in Figure 11. The results indicate that the precision of the numerical model is acceptable, which indicates the The RAO curves of the numerical model and the experiment model are compared in Figure 11.  similar trends of each DOF motion RAO curve, although there are still differences between two curves, The  results  indicate  that  the  precision  of  the  numerical  model  is  acceptable,  which  indicates  the  especially the pitch motion under high-frequency waves. similar  trends  of  each  DOF  motion  RAO  curve,  although  there  are  still  differences  between  two  curves, especially the pitch motion under high‐frequency waves.   

Energies 2016, 9, 82

11 of 22 11 of 22  11 of 22  Surge [m] [m] Surge

Energies 2016, 9, 82  Energies 2016, 9, 82  2

Experiment

21

Experiment

10 0 -1 -1 0

200

400

0

200

400

600 Time 600 [s] Time (a) [s]

800

1000

1200

800

1000

1200  

 

Heave [m] [m] Heave

(a) 

Experiment

1

Experiment

10 0 -1 -1

0

200

400

0

200

400

600 Time 600 [s] (b) [s] Time

1000 1000

1200 1200  

 

(b) 

2 Pitch [deg] Pitch [deg]

800 800

Experiment

21

Experiment

10 0 -1 -1

0

200

400

0

200

400

600 Time 600[s] Time (c)  [s]

800

1000

1200

800

1000

1200  

  (c)  Figure 10. (a) Surge motion of the platform under the R2 in the 0 degree direction; (b) heave motion  Figure 10. (a) Surge motion of the platform under the R2 in the 0 degree direction; (b) heave motion of Figure 10. (a) Surge motion of the platform under the R2 in the 0 degree direction; (b) heave motion  of the platform under the RW2 in the 0 degree direction; (c) pitch motion of the platform under the  the platform under the RW2 in the 0 degree direction; (c) pitch motion of the platform under the R1 in of the platform under the RW2 in the 0 degree direction; (c) pitch motion of the platform under the  R1 in the 0 degree direction.  the 0R1 in the 0 degree direction.  degree direction. 0.8

RAORAO of Heave [m/m] of Heave [m/m]

RAORAO of Surge [m/m] of Surge [m/m]

0.5

0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1

Experiment RAO Simulation RAO RAO Experiment Simulation RAO

0.5

0.8 0.7

0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1

0.4 0.4

0.5 0.5

0.6 0.7 0.8 0.9 Frequency [rad/s] 0.6 0.7 0.8 0.9 Frequency [rad/s]

1 1

1.1 1.1

1.2

0.4

1.2

0.4

(a)  (a) 

0.6 0.7 0.8 0.9 Frequency [rad/s] 0.6 0.7 0.8 0.9 Frequency (b) [rad/s]

Experiment RAO Simulation RAO Experiment RAO

0.6 RAORAO of Pitch [deg/m] of Pitch [deg/m]

0.5 0.5

0.6 0.5

1 1

1.1 1.1

1.2 1.2

(b)

Simulation RAO

0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1

0.4 0.4

0.5 0.5

0.6 0.7 0.8 0.9 Frequency [rad/s] 0.6 0.7 0.8 0.9 Frequency (c) [rad/s]

1 1

1.1 1.1

1.2 1.2

(c)

Figure 11. (a) Surge RAO curves of the scale model test and numerical simulation of the platform;    Figure 11. (a) Surge RAO curves of the scale model test and numerical simulation of the platform;    (b) heave RAO curves of the scale model test and numerical simulation of the platform; (c) pitch RAO  Figure 11. (a) Surge RAO curves of the scale model test and numerical simulation of the platform; (b) heave RAO curves of the scale model test and numerical simulation of the platform; (c) pitch RAO  curves of the scale model test and numerical simulation of the platform.  (b) heave RAO curves of the scale model test and numerical simulation of the platform; (c) pitch RAO curves of the scale model test and numerical simulation of the platform. 

curves of the scale model test and numerical simulation of the platform.

Energies 2016, 9, 82

12 of 22

Table 3. Regular wave parameters used in the tests. The Real Wave States No. R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Amplitude Frequency (mm) (rad/s) 3500 3500 3500 3500 3500 3500 3500 1400 1400 1400

0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20

The Aim Wave States in Tests

Period (s)

Amplitude Frequency (mm) (rad/s)

20.94 15.71 12.57 10.47 8.98 7.85 6.98 6.28 5.71 5.24

50.00 50.00 50.00 50.00 50.00 50.00 50.00 20.00 20.00 20.00

2.51 3.35 4.18 5.02 5.86 6.69 7.53 8.37 9.20 10.04

Period (s) 2.50 1.88 1.50 1.25 1.07 0.94 0.83 0.75 0.68 0.63

The Real Wave States in Tests Amplitude (mm) 49.00 50.00 49.50 49.30 46.20 50.30 40.60 16.90 18.60 21.60

Period (s) 2.50 1.88 1.50 1.25 1.07 0.94 0.83 0.75 0.68 0.63

5. Parameter Study of the THPEH System Although the optimal parameters of the tuned mass damper for tall buildings has already been fully investigated [11], the parameter study of the THPEH is still needed to investigate the motion performances of the semi-submersible, which is quite different from tall buildings’ performance, and the environment loads. The key to designing the tuned heave plate system is to determine the size, tuned period and damping ratio of the THPEH system. The main aim of the THPEH system is reducing the motion of the platform. In this paper, as only the x-axis-direction wave is adopted, the motions in the surge, heave and pitch are considered in the study, and the motion reduction ratio is introduced to evaluate the performance of the THPEH system. ri “

std pxiu q ´ std pxic q , i “ 1, 3, 5 std pxiu q

(23)

where xic and xiu are the motion of the platform with and without the THPEH system, respectively. The operator std is the standard deviation calculation, and ri is the motion reduction ratio. Another feature of the THPEH system is generating power, and the capture width is introduced to represent the energy absorption efficiency, which is already widely used in the wave energy field. The capture width is the ratio between the absorption power and the wave energy per wave front length of the incident wave. For irregular waves, the average wave energy power per wave front length is estimated by Ptotal “ 490.6Hs2 Tp (24) where Tp and Hs are the peak period and the significant wave height of the irregular wave, respectively. The unit of Ptotal is watt. Thereby, the capture width and the absorption power of the THPEH system are defined as P λc “ (25) Ptotal where λc is the capture width under irregular waves, and P is the average capture power of the THPEH system under irregular waves, defined as żT P“

.T .

CPTO zr zr dt{T 0

.

where zr is the relative velocity between the platform and plates.

(26)

Energies 2016, 9, 82 

13 of 22 

may experience in its designed service life. These wave parameters are presented in Table 4. For each  wave condition, a 3000‐s‐long history of the wave elevation is generated for the motion calculation.  Energies 2016, 9, 82 13 of 22 The wave exciting force of the platform includes 1st‐order wave forces and 2nd‐order wave forces  and  is  calculated  in  AQWA.  The  modified  numerical  model  in  the  last  section  is  used  for  the  numerical simulation. The wave exciting force on the THPEH system is ignored, assuming the heave  In this parameter study, seven irregular wave conditions, including three extreme waves, two plates are placed deeply enough. Sixteen different side lengths between 5 and 35 meters, 28 different  working wave conditions and two average conditions, in the Gulf of Mexico (GM), the South China tuned periods between 1 and 60 s and 28 different damping ratios between 1% and 60% are selected  Sea (SCS) and the North Sea (NS) are adopted to represent all of the wave conditions the platform for this parameter study.  may experience in its designed service life. These wave parameters are presented in Table 4. For each wave condition,Table 4. Characteristic wave parameters of seven irregular wave sea states.  a 3000-s-long history of the wave elevation is generated for the motion calculation. The wave exciting force of the platform includes 1st-order wave forces and 2nd-order wave forces and Wave Condition   is calculated in AQWA. The modified numerical model in i the last section isi used for the numerical  i  H si   (m)   p   (rad/s)  T p   (s)  Name  Descriptions  simulation. The wave exciting force on the THPEH system is ignored, assuming the heave plates are IRW‐1  100‐year in GM  12.20  0.45 5 and 35 meters, 14.00  28 different 2.00 tuned placed deeply enough. Sixteen different side lengths between IRW‐2 between 1100‐year in SCS  13.30  ratios between 0.41  1% and15.50  3.30  periods and 60 s and 28 different damping 60% are selected for this IRW‐3  study. 10‐year in SCS  11.10  0.46  13.60  2.00  parameter IRW‐4  Working condition in GM  3.96  0.70  9.00  2.00  Table 4. Characteristic wave parameters irregular wave sea states. IRW‐5  Working condition in SCS  6.00  of seven0.56  11.20  2.00  IRW‐6  Average condition in GM  2.40  0.82  7.70  2.00  Wave Condition i i i IRW‐7  Average condition in NS  1.88 Hsi (m) 0.86  7.28  2.00  ωp (rad/s) Tp (s) γ Name

Descriptions

5.1. Parameter Study of the Size of the Tuned Heave Plates in the THPEH System  IRW-1 100-year in GM 12.20 0.45 14.00

2.00 IRW-2 100-year in SCS 13.30 0.41 15.50 3.30 The size of the heave plate determines the added mass of the THPEH system, which dominates  IRW-3 10-year in SCS 11.10 0.46 13.60 2.00 the mass ratio between the THPEH and the platform. To investigate the effect of the heave plate’s  IRW-4 Working condition in GM 3.96 0.70 9.00 2.00 IRW-5 Working condition in SCS 6.00 0.56 11.20 2.00 size, for each size plate under each wave condition, the motion performance for different damping  IRW-6 Average condition in GM 2.40 0.82 7.70 2.00 ratios and tuned periods are calculated. For every size of the plates, the maximum motion reduction  IRW-7 Average condition in NS 1.88 0.86 7.28 2.00

ratio  and  maximum  capture  width  under  different  wave  conditions  are  selected  to  represent  the  optimal condition with this size of the plate. The optimal motion reduction ratio in the surge, heave  5.1. Parameter Study of the Size of the Tuned Heave Plates in the THPEH System and pitch motion and the capture width of the THPEH system with different sizes of the plate under  seven wave conditions are shown in Figure 12.  The size of the heave plate determines the added mass of the THPEH system, which dominates The result indicates that the reduction ratio for the three motions increases with the size of the  the mass ratio between the THPEH and the platform. To investigate the effect of the heave plate’s size, THP plate for each sea state. However, for the capture width, there is an optimal size under each  for each size plate under each wave condition, the motion performance for different damping ratios wave condition, and the optimal side lengths are distributed in the interval of 15–20 m. If motion  and tuned periods are calculated. For every size of the plates, the maximum motion reduction ratio reduction is adopted as the prime goal of the THPEH system, a large heave plate should be chosen.  and maximum capture width under different wave conditions are selected to represent the optimal However, in this study, as the side of the column is 17 meters long, considering the installation and  condition with this size of the plate. The optimal motion reduction ratio in the surge, heave and pitch the efficiency of capturing power, the size of the heave plates in the THPEH system in paper is set to  motion and the capture width of the THPEH system with different sizes of the plate under seven wave 17 meters long.  conditions are shown in Figure 12. 0.7

0.14

0.1 0.08

0.6 Heave motion reduction ratio

Surge motion reduction ratio

0.12

IRW-1 IRW-2 IRW-3 IRW-4 IRW-5 IRW-6 IRW-7

0.06 0.04 0.02 0 5

0.5 0.4

IRW-1 IRW-2 IRW-3 IRW-4 IRW-5 IRW-6 IRW-7

0.3 0.2 0.1

10

15

20 25 Side length[m]

30

35

0 5

(a) 

10

15

20 25 Side length[m]

(b) Figure 12. Cont.

30

35

Energies 2016, 9, 82 Energies 2016, 9, 82 

14 of 22 14 of 22 

0.7

0.5 0.4 0.3 0.2

25 20 15 10

0.1 0 5

IRW-1 IRW-2 IRW-3 IRW-4 IRW-5 IRW-6 IRW-7

30 Capture width[m]

Pitch motion reduction ratio

0.6

35

IRW-1 IRW-2 IRW-3 IRW-4 IRW-5 IRW-6 IRW-7

10

15

20 25 Side length[m]

30

5 5

35

10

15

(c) 

20 25 Side length[m]

30

35

(d)

Figure 12. (a) The surge motion reduction ratio with optimal connection parameters with different  Figure 12. (a) The surge motion reduction ratio with optimal connection parameters with different sizes sizes  the  (b) plate;  the motion heave  motion  reduction  ratio  with  connection optimal  connection  parameters  with  of theof  plate; the(b)  heave reduction ratio with optimal parameters with different different sizes of the plate; (c) the pitch motion reduction ratio with optimal connection parameters  sizes of the plate; (c) the pitch motion reduction ratio with optimal connection parameters with plate;  (d)  the width capture  width  reduction  ratio  with  optimal parameters connection  with  different  of  the (d) different sizes ofsizes  the plate; the capture reduction ratio with optimal connection parameters with different sizes of the plate.  with different sizes of the plate.

TPTO [s]

TPTO [s]

The result indicates that the reduction ratio for the three motions increases with the size of the 5.2. Parameter Study of the Tuned Period of the Tuned Heave Plate  THP plate for each sea state. However, for the capture width, there is an optimal size under each wave Generally,  the  conventional  TMDs  in  tall  buildings  for  suppressing  wind‐induced  condition, and the optimal side lengths areused  distributed in the interval of 15–20 m. Ifthe  motion reduction vibration  tuned  to goal the  1st‐order  natural  frequency  the  structure,  as be the  natural  frequency  is adoptedare  as the prime of the THPEH system, a largeof  heave plate should chosen. However, in motion is dominated under wide‐band frequency environment loads. However, compared to wind  this study, as the side of the column is 17 meters long, considering the installation and the efficiency of loads, the wave loads have a narrow band frequency, and the natural frequency of a well‐designed  capturing power, the size of the heave plates in the THPEH system in paper is set to 17 meters long. semi‐submersible platform for all motion is set far away from the peak frequency of waves. Especially  5.2. Parameter of the Period of the Tunedplatforms,  Heave Platethe  wave  frequency  motion  is  always  for  the  heave Study motion  of Tuned the  semi‐submersible  dominated  compared  to  the  low  frequency  motion  in  the  natural  period.  As  a  result,  in  order  to  Generally, the conventional TMDs used in tall buildings for suppressing the wind-induced achieve optimal control efficiency, the effect of the tuned period  TPT O   of the THPEH system needs  vibration are tuned to the 1st-order natural frequency of the structure, as the natural frequency to be investigated. The side length of the plates is set to 17 meters.  motion is dominated under wide-band frequency environment loads. However, compared to wind Figure 13 presents the contour maps of the heave motion reduction ratio under IRW‐1 and the  loads, the wave loads have a narrow band frequency, and the natural frequency of a well-designed capture width of the THPEH system under IRW‐6. Motion reduction under severe wave conditions  semi-submersible platform for all motion is set far away from the peak frequency of waves. Especially and energy absorption under average wave conditions are the two prime goals of the THPEH system.  for the heave motion of the semi-submersible platforms, the wave frequency motion is always Figure  13a compared indicates  to that    for  in heave  motion period. suppression  under inIRW‐1  is  TPTO dominated thethe  lowoptimal  frequency motion the natural As a result, order to approximately 7–10 s, and the damping coefficient of the PTO system has a small effect on the heave  achieve optimal control efficiency, the effect of the tuned period TPTO of the THPEH system needs to motion control. The maximum capture width of the THPEH system under IRW‐6 is achieved for the  be investigated. The side length of the plates is set to 17 meters. parameters with  and   PTOmaps .  the heave motion reduction ratio under IRW-1 and the TPTO  the 7 s  contour  0.1of Figure 13 presents capture width of the THPEH system under IRW-6. Motion reduction under severe wave conditions 60 22 60 0.18 and energy 0 absorption under average wave conditions are the two prime goals of the THPEH system. 20 0.16 heave motion suppression under IRW-1 is approximately Figure 13a indicates that the optimal TPTO for 0.02 50 0.04 0.06 18 50 0.14 7–10 s, and the damping coefficient of the PTO system has a small effect on the heave motion control. 16 2 the parameters 0.12 40 14 with The maximum capture width of the THPEH system under 40 IRW-6 is achieved for 0.08 0.1 12 TPTO “ 307s and ξ PTO “ 0.1. 30 10 0.08 0.1 4 To investigate the effect of TPTO on motion suppression and energy harvesting, the performance 8 0.06 20 20 of the THPEH system with ξ PTO0.12 “ 0.1 is analyzed. Figure 14 shows the diagrams 6 of the surge motion 6 0.14 0.04 8 reduction, and capture width under different 4 wave 10 heave motion reduction, pitch motion reduction 10 16 14 0.02 0.18 22 20 2 conditions with the0.16 tuned period ratio, defined as 0.1

0.2

0.3



PTO

(a) 

0.4

0.5

0.6

0

0.1

λiT

T “ PTO Tpi

0.2

0.3



0.4

0.5

0.6

PTO

(b)

Figure 13. (a) The heave motion reduction ratio under IRW‐1 with different   PTO   and  TPTO ; (b) the  capture width under IRW‐6 with different   PTO   and  TPTO . 

(27)

to be investigated. The side length of the plates is set to 17 meters.  Figure 13 presents the contour maps of the heave motion reduction ratio under IRW‐1 and the  capture width of the THPEH system under IRW‐6. Motion reduction under severe wave conditions  and energy absorption under average wave conditions are the two prime goals of the THPEH system.  Energies 82 15 of 22 Figure 2016, 13a 9, indicates  that  the  optimal  TPTO   for  heave  motion  suppression  under  IRW‐1  is  approximately 7–10 s, and the damping coefficient of the PTO system has a small effect on the heave  motion control. The maximum capture width of the THPEH system under IRW‐6 is achieved for the  where λiT is the tuned period ratio between the tuned period of the THPEH and the ist wave condition’s parameters with  TPTO  7 s   and   PTO  0.1 .  peak period. 60

0.02

0.04

TPTO [s]

50

16

0.08

0.1 0.08

0.1

2

40

0.12

30

18

0.14

40

Energies 2016, 9, 82 

22 20

0.16

0.06

TPTO [s]

50

60

0.18

0

14 12 15 of 22 

30

10

4

8 0.06 0.12 To investigate the effect of  TPTO   on motion suppression and energy harvesting, the performance  20 20

6

0.14

6

0.04 8 of the THPEH system with   PTO  0.1   is analyzed. Figure 14 shows the diagrams of the surge motion  4 10

10

0.02

20

14

16

0.18 22 2 reduction, heave motion reduction, pitch motion reduction and capture width under different wave  0.16 0 0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6 conditions with the tuned period ratio, defined as   

PTO

 Ti

(a) 



TP T O

PTO

(b)

 

(9) 

T pi Figure 13. (a) The heave motion reduction ratio under IRW‐1 with different   PTO   and  TPTO ; (b) the  Figure 13. (a) The heave motion reduction ratio under IRW-1 with different ξ PTO and TPTO ; (b) the st   and  capture width under IRW‐6 with different  where  the under tuned IRW-6 period  ratio  between  tuned  TPTO  PTOthe   Ti   is  capture width with different ξ PTO and TPTO . . period  of  the  THPEH  and  the  i   wave 

condition’s peak period.  0.04

0.03 0.025

IRW-1 IRW-2 IRW-3 IRW-4 IRW-5 IRW-6 IRW-7

0.16 Heave motion reduction ratio

Surge motion reduction ratio

0.18

IRW-1 IRW-2 IRW-3 IRW-4 IRW-5 IRW-6 IRW-7

0.035

0.02 0.015 0.01 0.005

0.14 0.12 0.1 0.08 0.06 0.04 0.02 0

0 0

1

2 3 Tuned period ratio

4

5

0

 

1

(a)  30

IRW-1 IRW-2 IRW-3 IRW-4 IRW-5 IRW-6 IRW-7

0.16

5

0.14

IRW-1 IRW-2 IRW-3 IRW-4 IRW-5 IRW-6 IRW-7

25 Capture width [m]

Pitch motion reduction ratio

4

(b)

0.18

0.12 0.1

20 15 10 5

0.08

0

2 3 Tuned period ratio

1

2 3 4 Tuned period ratio

(c) 

5

6

0

1

2 3 4 Tuned period ratio

5

6

(d)

Figure  14.  (a)  wave  Figure 14. (a) The  The surge  surge motion  motion reduction  reduction ratio  ratio with  with the  the tuned  tuned period  period ratio  ratio under  under different  different wave conditions with   PTO  0.1 ; (b) the heave motion reduction ratio with the tuned period ratio under  conditions with ξ PTO “ 0.1; (b) the heave motion reduction ratio with the tuned period ratio different  wave  conditions;  (c)  the (c) pitch  reduction  ratio  with  tuned  ratio  under  under different wave conditions; themotion  pitch motion reduction ratiothe  with the period  tuned period ratio different  wave  conditions;  (d)  the  capture  width  with  the  tuned  period  ratio  under  different  under different wave conditions; (d) the capture width with the tuned period ratio under different   wave conditions.  wave conditions.

Figure 14a shows that the tuned period has a small effect on surge motion suppression, as the  major contributor of the THPEH to the surge motion is the additional mass of the plates. For heave  motion  reduction  and  pitch  motion  reduction  analysis,  Figure  14b,c  indicate  that  for  sever  wave  conditions IRW‐1~3, the optimal tuned period ratio is approximately 0.7, which is not far from 1. This 

Energies 2016, 9, 82

16 of 22

Energies 2016, 9, 82 

16 of 22 

Figure 14a shows that the tuned period has a small effect on surge motion suppression, as the its  maximum  value  under  wave isconditions  while  mass the  tuned  majorachieves  contributor of the THPEH to the different  surge motion the additional of theperiod  plates.ratio  Foris  heave approximately 1, which means the THPEH system is tuned to the wave peak period.  motion reduction and pitch motion reduction analysis, Figure 14b,c indicate that for sever wave safety the is  the  prime  consideration,  the is parameters  should 0.7, be which chosen isaccording  to  the  conditionsWhen  IRW-1~3, optimal tuned period ratio approximately not far from 1. This maximum heave motion under severe wave conditions. In this paper, the tuned period of the THPEH  result indicates that the THPEH system should be tuned near the wave peak period to achieve the is set to 9 s because of the maximum heave motion reduction under IRW‐1.  maximum control effect under these harsh wave conditions. For smaller waves IRW-4~7, there are two peaks5.3. Parameter Study of the Damping Coefficient of the Power Take‐Off System (PTO)  for the tuned period ratio; one is approximately 1, and another is approximately 2~3 for heave motion reduction and 4~7 for pitch motion reduction. This result indicates that the THPEH system can Although the damping ratio of the PTO system has a small effect on the motion control of the  be tuned near the wave peak period or natural period to achieve the maximum control effect under platform, it is the key factor for energy absorption and relative motion between the heave plate and  thesethe platform. The relations between the motion reduction ratio, the relative motion between Plate 1  calm wave conditions. For energy absorption efficiency analysis, the capture width achieves its maximum value under different wave conditions while the tuned period ratio is approximately 1, and the platform, the capture width and the PTO damping ratio are shown in Figure 15.  which means the15a  THPEH is tuned to the wave Figure  shows system that  the  PTO  damping  ratio peak   has  a  small  effect  on  surge  motion   PTO period. When safety is the prime consideration, the parameters should be chosen according to the suppression. For heave motion reduction and pitch motion reduction analysis, Figures 15b,c indicate  maximum heave motion under severe wave conditions. In this paper, the tuned period of the THPEH that for wave conditions IRW‐1~5, the motion reduction ratios decrease with increasing damping.  for  the  wave  condition  IRW‐6~7,  the  relations  between  is setHowever,  to 9 s because ofaverage  the maximum heave motion reduction under IRW-1.the  reduction  ratio  and  damping  are  opposite.  The  maximum  relative  displacement  between  Plate  1  and  the  platform  is  shown in Figure 15d, which illustrates that the amplitude of the relative displacement decreases with  5.3. Parameter Study of the Damping Coefficient of the Power Take-Off System (PTO) increasing PTO damping ratio. As shown in Figure 15e, there is an optimal PTO damping ratio for 

Although the damping ratio of the PTO system has a small effect on the motion control of the each wave condition to achieve maximum energy absorption. Although the optimal value depends  platform, it is the key factor for energy absorption and relative motion between the heave plate and on the wave condition, the optimal PTO damping ratio can be chosen according to the curve of the  the platform. The relations between the motion reduction ratio, the relative motion between Plate 1 capture width and damping ratio under IRW‐6 and IRW‐7. In this paper, the optimal PTO damping  and the platform, the capture width and the PTO damping ratio are shown in Figure 15. ratio is set to 0.2.  0.3 IRW-1 IRW-2 IRW-3 IRW-4 IRW-5 IRW-6 IRW-7

0.02

0.015

0.01

0.005

0

Heave motion reduction ratio

Surge motion reduction ratio

0.025

IRW-1 IRW-2 IRW-3 IRW-4 IRW-5 IRW-6 IRW-7

0.25 0.2 0.15 0.1 0.05

0.1

0.2

0.3

PTO

0.4

0.5

0

0.6

0.1

0.2

(a) 

0.2 0.15 0.1 0.05

0.2

0.3

PTO

0.4

0.5

0.6

Maximum relative displacement [m]

IRW-1 IRW-2 IRW-3 IRW-4 IRW-5 IRW-6 IRW-7

0.1

0.5

0.6

(b)

0.25 Pitch motion reduction ratio

0.4

7

0.3

0

0.3

PTO

IRW-1 IRW-2 IRW-3 IRW-4 IRW-5 IRW-6 IRW-7

6 5 4 3 2 1 0 0

(c) 

0.1

0.2

0.3



0.4 PTO

(d) Figure 15. Cont.

0.5

0.6

0.7

Energies 2016, 9, 82 Energies 2016, 9, 82 

17 of 22 17 of 22  25

IRW-1 IRW-2 IRW-3 IRW-4 IRW-5 IRW-6 IRW-7

Capture width [m]

20

15

10

5

0

0.1

0.2

0.3

PTO

0.4

0.5

0.6

(e) Figure 15. (a) The surge motion reduction ratio with the PTO damping ratio under different wave  Figure 15. (a) The surge motion reduction ratio with the PTO damping ratio under different wave conditions with  TPTO “  99s; s ; (b) the surge motion reduction ratio with the PTO damping ratio under  conditions with T (b) the surge motion reduction ratio with the PTO damping ratio under PTO

different wave conditions with  s ; (c) the pitch motion reduction ratio with the PTO damping  different wave conditions with TTPTO “ 99s; (c) the pitch motion reduction ratio with the PTO damping PTO  ratio under with TPTO the the  maximum relative displacement of Plate ratio  under different different wave wave conditions conditions  with  TPTO“ 9s;9 s(d) ;  (d)  maximum  relative  displacement  of  1 with the PTO damping ratio under different wave conditions with TPTO “ 9s ;  (e)9the capture width Plate 1 with the PTO damping ratio under different wave conditions with  TPTO s ; (e) the capture  with the PTO damping ratio under different wave conditions with TPTO “ T9s.  9 s .  width with the PTO damping ratio under different wave conditions with  PTO

Figure 15a shows that the PTO damping ratio ξ PTO has a small effect on surge motion suppression. 6. Results and Discussion  For heave motion reduction and pitch motion reduction analysis, Figure 15b,c indicate that for wave According  to  the  parameter  study  of  the  THPEH  system  in  the  last  section,  the  optimal  conditions IRW-1~5, the motion reduction ratios decrease with increasing damping. However, for the parameters of the THPEH system are selected. The side length of the plate is 17 meters, the tuned  average wave condition IRW-6~7, the relations between the reduction ratio and damping are opposite. period of the THPEH system is 9 s, and the damping ratio of the PTO system is 20%. Under these  The maximum relative displacement between Plate 1 and the platform is shown in Figure 15d, which conditions, the connection parameters are  illustrates that the amplitude of the relative displacement decreases with increasing PTO damping 5 K P15e, 6 .8 7 2is 3 an 1 0 optimal N / m , CPTO 3 .9 3 7 5  1ratio 0 5 k g for / s   each wave condition ratio. As shown in Figure to (10)  T O there P T O damping achieve maximum energy absorption. Although the optimal value depends on the wave condition, the The  performance  of  the  THPEH  on  the  semi‐submersible  platform  under  different  wave  optimal PTO damping ratio can be chosen according to the curve of the capture width and damping conditions is analyzed. The results include the heave motion response, the pitch response and capture  ratio under IRW-6 and IRW-7. In this paper, the optimal PTO damping ratio is set to 0.2. power, shown in Table 5. The THPEH system could reduce up to 20% of the heave motion and 10%  of the pitch motion under severe wave conditions and provide up to 40 kW power under average  6. Results and Discussion wave  conditions.  Moreover,  the  system  could  theoretically  capture  more  than  1000  kW  of  power  According to the parameter study of the THPEH system in the last section, the optimal parameters under 100‐year wave conditions in the South China Sea.  of the THPEH system are selected. The side length of the plate is 17 meters, the tuned period of the THPEH system is 9 s, and of  thethe  damping of the PTO system is 20%. Under these conditions, Table  5.  Performances  THPEH ratio system  working  on  the  semi‐submersible  platform  under  the connection parameters are different wave conditions.  Heave Motion Response  Wave  Name 

Pitch Motion Response  KPTO “ 6.8723 ˆ 105 N{m, CPTO “ 3.9375 ˆ 105 kg{s

Energy Harvesting 

(28)

without  with  without  with  c     Reduction  Reduction  P   THPEH    THPEH    THPEH  THPEH  Ratio  Ratio  The performance of the THPEH on the semi-submersible platform under different wave conditions (kW)  (m)  (m)  (m)  (Degree)  (Degree)  is analyzed. The results include motion4.34  response, 3.86  the pitch 11.03%  response and capture1.02  power, IRW‐1  1.99  1.62  the heave 18.25%  1040.5  IRW‐2  1.98 system 13.96%  4.85  4.30 of the heave 11.43% motion 972.11  0.72  shown in Table2.31  5. The THPEH could reduce up to 20% and 10% of the IRW‐3  1.72  severe wave 1.42  conditions 17.24%  and provide 3.86  910.27  1.11  pitch motion under up3.44  to 40 kW10.96%  power under average wave IRW‐4  0.16  0.14  9.73%  0.75  0.70  7.20%  130.64  1.89  conditions. Moreover, the system could theoretically capture more than 1000 kW of power under IRW‐5  0.57  0.51  10.74%  1.67  1.51  9.42%  367.95  1.86  100-year in 0.05  the South China IRW‐6  wave conditions 0.05  5.26%  Sea. 0.29  0.28  4.64%  39.63  1.82  0.04  the time 3.30%  0.20  power0.19  1.97  IRW‐7  Figures 16 0.04  and 17 illustrate histories and spectra of2.94%  the heave24.88  motion and pitch

motion under IRW-1. They show that the THPEH could reduce the amplitude for both the heave Figures 16 and 17 illustrate the time histories and power spectra of the heave motion and pitch  motion and the pitch motion. For the heave and pitch motions, the wave frequency motion and low motion  under  IRW‐1.  They  that  the  THPEH the could  reduce  the  amplitude  both  the  heave  natural frequency motion areshow  suppressed, although THPEH system is tuned to for  the wave frequency. motion and the pitch motion. For the heave and pitch motions, the wave frequency motion and low  natural  frequency  motion  are  suppressed,  although  the  THPEH  system  is  tuned  to  the  wave 

Energies 2016, 9, 82

18 of 22

The reduction effect of the low natural frequency motion is more significant compared to the wave frequency motion. Table 5. Performances of the THPEH system working on the semi-submersible platform under different wave conditions. Heave Motion Response Wave Name

with THPEH (m)

without THPEH (m)

Pitch Motion Response

Reduction Ratio

without THPEH (Degree)

with THPEH (Degree)

Reduction Ratio

Energy Harvesting P (kW)

λc (m)

IRW-1 1.99 1.62 18.25% 4.34 3.86 11.03% 1040.5 1.02 IRW-2 2.31 1.98 13.96% 4.85 4.30 11.43% 972.11 0.72 IRW-3 1.72 1.42 17.24% 3.86 3.44 10.96% 910.27 1.11 IRW-4 0.16 0.14 9.73% 0.75 0.70 7.20% 130.64 1.89 Energies 2016, 9, 82  18 of 22  IRW-5 0.57 0.51 10.74% 1.67 1.51 9.42% 367.95 1.86 IRW-6 0.05 0.05 5.26% 0.29 0.28 4.64% 39.63 1.82 IRW-7 0.04 0.04 3.30% 0.20 0.19 2.94% 24.88 1.97 frequency. The reduction effect of the low natural frequency motion is more significant compared to 

the wave frequency motion. 

Heave motion [m]

10

Without THPEH With THPEH

5 0 -5 -10 0

500

1000

1500 Time [s]

2000

2500

3000

 

(a) Without THPEH With THPEH

PSD of heave [m2.s/rad]

35 30 25 20 15 10 5 0

0.5

1

1.5 Frequency [rad/s]

2

2.5

3

 

(b) Figure 16. (a) The time histories of the heave motion with and without the THPEH system under IRW‐ Figure 16. (a) The time histories of the heave motion with and without the THPEH system under 1; (b) the power spectra of the heave motion with and without the THPEH system under IRW‐1.  IRW-1; (b) the power spectra of the heave motion with and without the THPEH system under IRW-1.

Pitch motion [Degree]

The traces of the 20 control force against the displacement and velocity in the heave and pitch THPEH motions are shown in Figures 18 and 19. This result indicates that theWithout control forces in the heave and With THPEH pitch motions both have a damping force characteristic and a slight negative stiffness characteristic. 10 The damping force characteristic is the reason why the motion reduction effect on the low natural frequency motion is more significant and is due to the power spectrum figures. The negative stiffness 0 forces make the natural period farther away from the peak period of the waves. -10 -20 0

500

1000

1500 Time [s]

2000

2500

3000

 

(a) 0.04 0.035

Without THPEH With THPEH

PSD of heav

20 15 10 5

Energies 2016, 9, 82

0

0.5

1

1.5 Frequency [rad/s]

2

2.5

19 of 22

3

  (b) Figure 20 shows the time histories of the relative motions of the plates, the instant power and the capture energy of the THPEH system under IRW-1. This result indicates that the THPEH system could Figure 16. (a) The time histories of the heave motion with and without the THPEH system under IRW‐ 1; (b) the power spectra of the heave motion with and without the THPEH system under IRW‐1.  harvest considerable power while suppressing the motion of the platform.

Pitch motion [Degree]

20

Without THPEH With THPEH

10 0 -10 -20 0

500

1000

1500 Time [s]

2000

2500

3000

 

(a) Without THPEH With THPEH

0.04

Energies 2016, 9, 82 

PSD of pitch [rad.s]

0.035 0.03 0.025

19 of 22 

0.02 0.015

The  traces  of  the  control  force  against  the  displacement  and  velocity  in  the  heave  and  pitch  0.01 motions are shown in Figures 18 and 19. This result indicates that the control forces in the heave and  0.005 pitch motions both have a damping force characteristic and a slight negative stiffness characteristic.  0 0.5 1 1.5 2 2.5 3 The damping force characteristic is the reason why the motion reduction effect on the low natural  Frequency [rad/s]   frequency motion is more significant and is due to the power spectrum figures. The negative stiffness  (b) The power spectra of the pitch motions  forces make the natural period farther away from the peak period of the waves.  Figure 17. (a) The time histories of the pitch motion with and without the THPEH system under IRW‐1;  Figure 20 shows the time histories of the relative motions of the plates, the instant power and  Figure 17. (a) The time histories of the pitch motion with and without the THPEH system under IRW-1; (b) the power spectra of the pitch motion with and without the THPEH system under IRW‐1.  the capture energy of the THPEH system under IRW‐1. This result indicates that the THPEH system  (b) the power spectra of the pitch motion with and without the THPEH system under IRW-1. could harvest considerable power while suppressing the motion of the platform.  7

7

1

x 10

1

x 10

Control force Control force in heave [N]

Control force in heave [N]

Control force 0.5

0

-0.5

-1 -6

-4

-2 0 2 4 Heave displacement [m]

0.5

0

-0.5

-1 -3

6

-2

(a) 

-1 0 1 Heave velocity [m/s]

2

3

(b)

Figure 18. (a) The relation between the control force in the heave motion from the THPEH system and  Figure 18. (a) The relation between the control force in the heave motion from the THPEH system and the heave displacement of the platform; (b) the relation between the control force in the heave motion  the heave displacement of the platform; (b) the relation between the control force in the heave motion from the THPEH system and the heave velocity of the platform.  from the THPEH system and the heave velocity of the platform. 8

7

x 10

Control moment 2

0

-2

1 ntrol moment in pitch [N.m]

ntrol moment in pitch [N.m]

4

x 10

Control moment 0.5

0

-0.5

-1 -6

-4

-2 0 2 4 Heave displacement [m]

-1 -3

6

-2

(a) 

-1 0 1 Heave velocity [m/s]

2

3

(b)

Figure 18. (a) The relation between the control force in the heave motion from the THPEH system and  Energies 2016, 9,the heave displacement of the platform; (b) the relation between the control force in the heave motion  82

20 of 22

from the THPEH system and the heave velocity of the platform.  8

7

x 10

1

Control moment

Control moment in pitch [N.m]

Control moment in pitch [N.m]

4

2

0

-2

-4 -0.2

-0.1 0 0.1 0.2 Pitch displacement [rad]

x 10

Control moment 0.5

0

-0.5

-1 -3

0.3

-2

(a) 

-1 0 1 Pitch velocity [rad/s]

2

3

(b)

Figure 19. (a) The relation between the control force in the pitch motion from the THPEH system and 

Figure 19. (a) The relation between the control force in the pitch motion from the THPEH system and the pitch displacement of the platform; (b) the relation between the control force in the pitch motion  the pitchfrom the THPEH system and the pitch velocity of the platform.  displacement of the platform; (b) the relation between the control force in the pitch motion from the THPEH system and the pitch velocity of the platform. Energies 2016, 9, 82  20 of 22 

Relative Displacement [m]

6 Plate 1 Plate 3

4 2 0 -2 -4 -6 0

500

1000

1500 Time [s]

2000

2500

3000

 

(a) 7000 Capture instant power [kW]

Power 6000 5000 4000 3000 2000 1000 0 0

500

1000

1500 Time [s]

2000

2500

3000

 

(b) 6

3.5

x 10

Power

Capture energy [kJ]

3 2.5 2 1.5 1 0.5 0 0

500

1000

1500 Time [s]

2000

2500

3000

 

(c) Figure 20. (a) The relative displacement of Plate1 and Plate3 under IRW‐1; (b) the captured instant 

Figure 20. (a) The relative displacement of Plate1 and Plate3 under IRW-1; (b) the captured instant power of the THPEH system under IRW‐1; (c) the captured energy of the THPEH system under IRW‐1.  power of the THPEH system under IRW-1; (c) the captured energy of the THPEH system under IRW-1. 7. Conclusions  This paper presents a tuned heave plate system (THPEH) used on a semi‐submersible platform  for  suppressing  the  platform’s  motions  and  harvesting  energy  from  the  wave‐induced  response.  Based on the numerical model of the platform, which is modified and testified by a 1:70 scale model  test, parameters including the size, the tuned period and the damping ratio of the THPEH system are  studied  systematically.  The  effects  of  the  THPEH  system  on  motion  suppression  and  energy 

Energies 2016, 9, 82

21 of 22

7. Conclusions This paper presents a tuned heave plate system (THPEH) used on a semi-submersible platform for suppressing the platform’s motions and harvesting energy from the wave-induced response. Based on the numerical model of the platform, which is modified and testified by a 1:70 scale model test, parameters including the size, the tuned period and the damping ratio of the THPEH system are studied systematically. The effects of the THPEH system on motion suppression and energy harvesting under different wave conditions are investigated. The results show the following: 1. 2.

3.

4.

5.

6.

By introducing a viscous damping matrix to the numerical model, the precision of the numerical model is acceptable compared to the wave tank tests. For the reasonable plate size range, the control performance of the platform motion increases with the growth of the plate size. However, there is an optimal size of the plate under each wave condition for energy harvesting. The novel THPEH system could significantly reduce the motions of the semi-submersible platform. The optimal tuned natural period of the THPEH depends on the wave condition. For normal severe wave conditions in the South China Sea, the optimal tuned period is approximately 9 s. For different wave conditions, in order to achieve the maximum energy absorption, the damping ratio of the THPEH system is approximately 20%. The damping ratio has significant impacts on the relative motion range. Moreover, the optimal tuned natural period for energy harvesting is near the wave peak frequency. With optimal parameters, the control forces in the heave and pitch motions have both a damping force characteristic and a slight negative stiffness characteristic, which are all positive for motion suppression. The novel tuned heave plate energy harvesting system could reduce the motion of a semi-submersible platform and generate considerable power, which makes the THPEH system have broad application prospects.

Acknowledgments: The research was financially supported by the National Natural Science Foundation of China (the Grant No.: 50921001) and the National Major Fundamental Research Program (973 Plan, the Grant No.: 2011CB013705). Author Contributions: Kun Liu carried out most of the work presented here, Jinping Ou was the supervisors of this work, and Haizhi Liang had a relevant contribution with the wave tank experiment and the numerical simulations. Conflicts of Interest: The authors declare no conflict of interest.

References 1. 2.

3. 4. 5.

Polinder, H.; Damen, M.E.; Gardner, F. Linear PM generator system for wave energy conversion in the AWS. IEEE Trans. Energy Convers. 2004, 19, 583–589. [CrossRef] Brekken, T.K.; von Jouanne, A.; Han, H.Y. Ocean wave energy overview and research at Oregon State University. In Proceedings of the 2009 IEEE Power Electronics and Machines in Wind Applications, Lincoln, NE, USA, 24–26 June 2009. Yeung, R.W.; Peiffer, A.; Tom, N.; Matlak, T. Design, analysis, and evaluation of the UC-Berkeley wave-energy extractor. J. Offshore Mech. Arct. Eng. 2012, 134, 021902. [CrossRef] Mavrakos, S.A. Hydrodynamic coefficients in heave of two concentric surface-piercing truncated circular cylinders. Appl. Ocean Res. 2004, 26, 84–97. [CrossRef] Falcão, A.F.O.; Cândido, J.; Justino, P.; Henriques, J. Hydrodynamics of the IPS buoy wave energy converter including the effect of non-uniform acceleration tube cross section. Renew. Energy 2012, 41, 105–114. [CrossRef]

Energies 2016, 9, 82

6.

7.

8. 9. 10. 11. 12. 13.

14.

15. 16. 17. 18. 19.

20. 21. 22. 23. 24. 25. 26.

27.

22 of 22

Cermelli, C.; Roddier, D.; Busso, C. MINIFLOAT: A novel concept of minimal floating platform for marginal field development. In Proceedings of the Fourteenth International Offshore and Polar Engineering Conference, Toulon, France, 23–28 May 2004. Murray, J.J.; Yang, C.; Cheng, C.; Nah, E. Two dry tree semisubmersible designs for ultra deep water post-Katrina Gulf of Mexico. In Proceedings of the ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering, Estoril, Portugal, 15–20 June 2008. Chakrabarti, S.; Barnett, J.; Kanchi, H.; Mehta, A.; Yim, J. Design analysis of a truss pontoon semi-submersible concept in deep water. Ocean Eng. 2007, 34, 621–629. [CrossRef] Mills, T.; Chen, C.Y. Deep Draft Semi-Submersible Offshore Floating Structure. U.S. Patent 20070224000 A1, 27 September 2007. Frahm, H. Device for Damping Vibrations of Bodies. U.S. Patent 989958 A, 18 April 1911. Soong, T.T.; Dargush, G.F. Passive Energy Dissipation Systems in Structural Engineering; Wiley: Hoboken, NJ, USA, 1997. Spencer, B., Jr.; Nagarajaiah, S. State of the art of structural control. J. Struct. Eng. 2003, 129, 845–856. [CrossRef] Housner, G.W.; Bergman, L.; Caughey, T.; Chassiakos, A.; Claus, R.; Masri, S.; Skelton, R.; Soong, T.; Spencer, B.; Yao, J.; et al. Structural control: Past, present, and future. J. Eng. Mech. 1997, 123, 897–971. [CrossRef] Xu, H.; Zhang, C.; Li, H.; Ou, J. Real-time hybrid simulation approach for performance validation of structural active control systems: A linear motor actuator based active mass driver case study. Struct. Control Health Monit. 2014, 21, 574–589. [CrossRef] Kourakis, I. Structural Systems and Tuned Mass Dampers of Super-Tall Buildings: Case Study of Taipei 101; Massachusetts Institute of Technology: Cambridge, MA, USA, 2007. Xu, H.B.; Zhang, C.; Li, H.; Tan, P.; Ou, J.; Zhou, F. Active mass driver control system for suppressing wind-induced vibration of the Canton Tower. Smart Struct. Syst. 2014, 13, 281–303. [CrossRef] Zhu, S.; Shen, W.A.; Xu, Y.L. Linear electromagnetic devices for vibration damping and energy harvesting: Modeling and testing. Eng. Struct. 2012, 34, 198–212. [CrossRef] Ali, S.F.; Adhikari, S. Energy harvesting dynamic vibration absorbers. J. Appl. Mech. 2013, 80, 041004. [CrossRef] Tang, X.; Zuo, L. Simulation and experiment validation of simultaneous vibration control and energy harvesting from buildings using tuned mass dampers. In Proceedings of the 2011 American Control Conference (ACC), San Francisco, CA, USA, 29 June–1 July 2011. Liu, K.; Zhu, H.; Ou, J. Application of TMD in heave response control of semi-submersible platforms. Eng. Mech. 2011, 28, 205–210. Zhu, H.; Ou, J.; Zhai, G. Conceptual design of a deep draft semi-submersible platform with a moveable heave-plate. J. Ocean Univ. China 2012, 11, 7–12. [CrossRef] Cummins, W. The impulse response function and ship motions. Schiffstechnik 1962, 47, 101–109. Hals, J.; Falnes, J.; Moan, T. Constrained optimal control of a heaving buoy wave-energy converter. J. Offshore Mech. Arct. Eng. 2011, 133, 011401. [CrossRef] Tao, L.; Cai, S. Heave motion suppression of a Spar with a heave plate. Ocean Eng. 2004, 31, 669–692. [CrossRef] Tao, L.; Dray, D. Hydrodynamic performance of solid and porous heave plates. Ocean Eng. 2008, 35, 1006–1014. [CrossRef] Zhang, F.; Yang, J.; Li, R.; Hu, Z. Effects of heave plate on the hydrodynamic behaviors of cell spar platform. In Proceedings of the 25th International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany, 4–9 June 2006. Prislin, I.; Blevins, R.; Halkyard, J. Viscous damping and added mass of solid square plates. In Proceedings of the 17th International Conference on Offshore Mechanics and Arctic Engineering, Lisbon, Portugal, 15–19 June 1998. © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

Suggest Documents