Numerical Solution for High-Order Linear Complex ...

1 downloads 0 Views 610KB Size Report
May 23, 2017 - Faruk DÜŞÜNCELİ1, Ercan ÇELİK2. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi. Iğdır University Journal of the Institute of Science and T.
Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi Iğdır University Journal of the Institute of Science and Technology

Araştırma Makalesi / Research Article

Iğdır Üni. Fen Bilimleri Enst. Der. / Iğdır Univ. J. Inst. Sci. & Tech. 7(4): 189-201, 2017

Numerical Solution for High-Order Linear Complex Differential Equations By Hermite Polynomials Faruk DÜŞÜNCELİ1, Ercan ÇELİK2 ABSTRACT: In this paper, the numerical solutions of complex differential equations are provided by the Hermite Polynomials and carried on two problems. As a result, the exact solutions and numerical one’s have compared by tables and graphs that the method is practical, reliable and functional. Keywords: Hermite polynomials, linear complex differential equations, numerical solution

Yüksek Mertebeden Lineer Kompleks Diferansiyel Denklemlerin Hermite Polinomları ile Nümerik Çözümleri ÖZET: Bu makalede lineer kompleks diferansiyel denklemleri hermite polinomları vasıtasıyla nümerik çözümünü sağladık ve iki test problemine uyguladık. Tam çözümler ile nümerik çözümleri tablo ve grafikler ile karşılaştırdık. Sonuç olarak metodumuzun güvenilir, pratik ve kullanışlı olduğunu gördük.

ISSN: 2146-0574, e-ISSN: 2536-4618 DOI:

Cilt/Volume: 7, Sayı/Issue: 4, Sayfa/pp: 189-201, 2017

Anahtar Kelimeler:Hermite polinomları, lineer kompleks diferansiyel denklemler, nümerik çözüm

Faruk DÜŞÜNCELİ (0000-0002-2368-7963), Mardin Artuklu Üniversitesi, Mimarlık Fakültesi, Mimarlık Bölümü, Mardin, Türkiye Ercan ÇELİK (0000-0002-1402-1457), Atatürk Üniversitesi, Fen Fakültesi, Matematik Bölümü, Erzurum, Türkiye Sorumlu yazar/Corresponding Author: Faruk DÜŞÜNCELİ, [email protected] 1 2

Geliş tarihi / Received: 23.05.2017 Kabul tarihi / Accepted: 19.07.2017

20

Different type

21

Yalçınbaş, 2009), Bessel (Yüzbaşı et al., 2011), laguerre (Gülsu et al., 2011), hermite

22 23

of differential equations have been solved with taylor (Sezer and

Faruk DÜŞÜNCELİ ve Ercan ÇELİK

(Yüzbaşı et al., 2011), legendre (Tohidi, 2012; Düşünceli and Çelik, 2015) and Fibonacci polynomials (Düşünceli and Çelik, 2017).Düşünceli and Çelik, 2015) and Fibonacci polynomials INTRODUCTION

(Düşünceli and Çelik, 2017). In this paper, the matrix Different type of differential equations have been between the Hermite and their 24 solved In this the matrix operates between Hermite polynomials andpolynomials their with paper, taylor (Sezer and Yalçınbaş, 2009), Bessel theoperates derivatives, we utilized the Hermite method to solve (Yüzbaşı et al., 2011), laguerre (Gülsu et al., 2011), 25 hermite derivatives, we utilized the Hermite method to solvecomplex linear differential complex equation. differential (Yüzbaşı et al., 2011), legendre (Tohidi, 2012; linear

26

equation. (𝑛𝑛) ∑𝑚𝑚 (𝑧𝑧) = 𝑔𝑔(𝑧𝑧) 𝑛𝑛=0 𝑃𝑃𝑛𝑛 (𝑧𝑧)𝑓𝑓

(1)

𝑓𝑓 (𝑡𝑡) (𝛼𝛼) = 𝜗𝜗𝑡𝑡 𝑡𝑡 = 0,1, … . , 𝑚𝑚 − 1

(2)

27 28

with the initial conditions

29

31

We accept 𝑓𝑓(𝑧𝑧) is unknown function,𝑃𝑃𝑛𝑛 (𝑧𝑧) and 𝑔𝑔(𝑧𝑧) are analytical functions in the

32

appropriate complex or real constant.

33

Suppose that the solution of (1) under the initial conditions (2) is approximated

30

circular

domain

𝑓𝑓(𝑧𝑧) = ∑𝑁𝑁 𝑛𝑛=0 𝑎𝑎𝑛𝑛 𝐻𝐻𝑛𝑛 (𝑧𝑧), 𝑧𝑧 ∈ 𝐷𝐷

34 35 36

which𝐷𝐷 = {𝑧𝑧 = 𝑥𝑥 + 𝑖𝑖𝑖𝑖, 𝑧𝑧 ∈ 𝐶𝐶, |𝑧𝑧| ≤ 𝑟𝑟, 𝑟𝑟 ∈ 𝑅𝑅 + };

(3)

Hermite coefficients to be determined.Hermite polynomials defined by 𝑛𝑛 2

𝐻𝐻𝑛𝑛 (𝑧𝑧) = 𝑛𝑛! ∑

𝑚𝑚=0

Where[ 2] = 𝑛𝑛

𝑛𝑛 2

if 𝑛𝑛 is even and [ 2] = 𝑛𝑛

𝑟𝑟

𝑖𝑖𝑖𝑖

(−1)𝑚𝑚 (2𝑧𝑧)𝑛𝑛−2𝑚𝑚 𝑚𝑚! (𝑛𝑛 − 2𝑚𝑚)!

𝑛𝑛−1 2

if 𝑛𝑛 is odd and we use the collocation points 3

𝑧𝑧𝑝𝑝𝑝𝑝 = 𝑁𝑁 𝑝𝑝𝑒𝑒 𝑁𝑁 𝑝𝑝 , 0 < 𝜃𝜃 ≤ 2𝜋𝜋, 𝑟𝑟 ∈ 𝑅𝑅 + , 𝑝𝑝 ∈ 0,1, … , 𝑁𝑁

38 39

MATERIAL AND METHOD

40

We can write the desired solution 𝑓𝑓(𝑧𝑧) of Equation (3)

190

41

𝜗𝜗𝑡𝑡 is

which is the Hermite series of the unknown function 𝑓𝑓(𝑧𝑧), where all of 𝑎𝑎𝑛𝑛 are the [ ]

37

𝛼𝛼 ∈ 𝐷𝐷,

(4)

Iğdır Üni. Fen Bilimleri Enst. Der. / Iğdır Univ. J. Inst. Sci. & Tech.

𝑓𝑓(𝑧𝑧) = 𝐻𝐻(𝑧𝑧)𝐴𝐴

(5)

37

Where[ 2] = 𝑛𝑛

𝑛𝑛 2

if 𝑛𝑛 is even and [ 2] = 𝑛𝑛

𝑛𝑛−1 2

𝑖𝑖𝑖𝑖

if 𝑛𝑛 is odd and we use the collocation points

Solution Hermite Polynomials 𝑧𝑧𝑝𝑝𝑝𝑝 = 𝑁𝑁 𝑝𝑝𝑒𝑒 𝑁𝑁 𝑝𝑝 Numerical , 0 < 𝜃𝜃 ≤ 2𝜋𝜋, 𝑟𝑟for∈High-Order 𝑅𝑅 + , 𝑝𝑝 ∈ Linear 0,1, …Complex , 𝑁𝑁 Differential Equations By (4) 𝑟𝑟

38 39

MATERIAL AND METHOD

40

We can write the desired solution 𝑓𝑓(𝑧𝑧) of Equation (3)

41 42

43

44 45 46

47

where

𝐴𝐴 = [𝑎𝑎0

𝑎𝑎1

… 𝐻𝐻𝑁𝑁 (𝑧𝑧)]

… 𝑎𝑎𝑁𝑁 ]𝑇𝑇

The Hermite polynomials𝐻𝐻𝑛𝑛 (𝑧𝑧) can be formed in matrix form as

𝑍𝑍(𝑧𝑧) = [1

and whether N is odd,

[

(6)

𝐻𝐻(𝑧𝑧) = 𝑍𝑍(𝑧𝑧)𝐵𝐵𝑇𝑇

where

=

49

𝐻𝐻(𝑧𝑧) = [𝐻𝐻0 (𝑧𝑧) 𝐻𝐻1 (𝑧𝑧)

and

𝐵𝐵

48

(5)

𝑓𝑓(𝑧𝑧) = 𝐻𝐻(𝑧𝑧)𝐴𝐴

0!

(−1)0 0 2 0! 0!

2!

(−1)1 0 2 1! 0!

4!

(−1)2 0 2 2! 0! ⋮

0

0

0

1! 3!

𝑛𝑛!

0

(−1)0 0! 1! 0

(−1)1 1! 1! 0 ⋮

(−1)( (

𝑛𝑛−1 2

21 21

𝑛𝑛−1 ) 2

) ! 1!

21

𝑧𝑧 2

𝑧𝑧

0

0

2!

(−1)0 2 2 0! 2!

4!

(−1)1 2 2 1! 2! ⋮

0

0



𝑧𝑧 𝑁𝑁 ]

0

0

0

0

0

3!

(−1)0 0! 3! 0 ⋮

(−1)(

23

𝑛𝑛−3 ) 2

𝑛𝑛! 4 𝑛𝑛−3 23 ( ) ! 3! 2

4!



0



0

0



0



(−1)0 4 2 0! 4! ⋮ 0

⋯ ⋱

0

0

0 ⋮

(−1)0 𝑛𝑛 ⋯ 𝑛𝑛! 2 0! 𝑛𝑛!

whether N is even,

191

Cilt / Volume: 7, Sayı / Issue: 4, 2017

0!

(−1)0 0 2 0! 0!

0

]𝑁𝑁+1xN+1

0

0



0

0

48 49

0

[

𝑛𝑛!

(−1)( (

𝑛𝑛−1 2

𝑛𝑛−1 ) 2

) ! 1!

1

2

0

𝑛𝑛!

Faruk DÜŞÜNCELİ ve Ercan ÇELİK

[

0!

(−1)0 0 2 0! 0!

2!

(−1)1 0 2 1! 0!

4!

(−1)2 0 2 2! 0! ⋮

𝑛𝑛!

0

0

𝑛𝑛 2

( )

(−1) 𝑛𝑛

( ) ! 0! 2

20

the

1! 3!

0

(−1)0 1 2 0! 1! 0

(−1)1 1! 1! 0

21



0

relation

2!

(−1)0 2 2 0! 2!

4!

(−1)1 2 2 1! 2! ⋮

𝑛𝑛!

(−1) (

𝑛𝑛−2 2

(

0

0



0

0



0

0

⋯ 𝑛𝑛!

3!

22

between

the



0

(−1)0 0! 3! 0

23



0

0

]𝑁𝑁+1xN+1

where 0 1 0 0 𝐾𝐾 = 0 0 ⋮ 0 [0

0 0 2 0 0 0 ⋮ 0 0

0 0 0 3 0 0 ⋮ 0 0

0 0 05 0 4 0 ⋮ 0 0

0 0 0 0 0 5 ⋮ 0 0

0



0

0







⋯ ⋯ 𝑛𝑛!

matrix

0

(−1)0 0! 𝑛𝑛!

𝐻𝐻(𝑧𝑧)

𝐻𝐻 ′ (𝑧𝑧) = 𝐻𝐻(𝑧𝑧)𝐾𝐾 𝑇𝑇 𝐻𝐻 (2) (𝑧𝑧) = 𝐻𝐻(𝑧𝑧)(𝐾𝐾 𝑇𝑇 )2 ⋮ 𝐻𝐻 (𝑛𝑛) (𝑧𝑧) = 𝐻𝐻(𝑧𝑧)(𝐾𝐾 𝑇𝑇 )𝑛𝑛

52

0

2𝑛𝑛

0

]𝑁𝑁+1xN+1

and

its

(7)

… 0 ⋯ 0 ⋯ 0 ⋯ 0 ⋯ 0 ⋯ 0 ⋱ ⋮ ⋯ 𝑁𝑁 ⋯ 0 ]𝑁𝑁+1xN+1

By using the relations (6) and (7) we obtain the relation

𝑓𝑓 (𝑛𝑛) (𝑧𝑧) = 𝐻𝐻 (𝑛𝑛) (𝑧𝑧)𝐾𝐾 𝑇𝑇 𝐴𝐴 = 𝐻𝐻(𝑧𝑧)(𝐾𝐾 𝑇𝑇 )𝑛𝑛 𝐴𝐴 = 𝑍𝑍(𝑧𝑧)𝐵𝐵 𝑇𝑇 (𝐾𝐾 𝑇𝑇 )𝑛𝑛 𝐴𝐴

55

59

𝑛𝑛−2 ) 2

) ! 2!

derivatives𝐻𝐻 ′ (𝑧𝑧), 𝐻𝐻 (2) (𝑧𝑧), … , 𝐻𝐻 (𝑛𝑛) (𝑧𝑧)are

58

) ! 3!

(−1)0 𝑛𝑛 2 0! 𝑛𝑛!

23

0

0

51

57

2

0

Then,

56

𝑛𝑛−3

0

50

54

(

𝑛𝑛−3 ) 2

whether N is even,

𝐵𝐵 =

53

(−1)(

(8)

By changing the collocation points 𝑧𝑧 = 𝑧𝑧𝑝𝑝𝑝𝑝 into the relation (8), we get the following matrix equations 192

Iğdır Üni. Fen Bilimleri Enst. Der. / Iğdır Univ. J. Inst. Sci. & Tech.

𝑓𝑓 (𝑛𝑛) (𝑧𝑧𝑝𝑝𝑝𝑝 ) = 𝑍𝑍(𝑧𝑧𝑝𝑝𝑝𝑝 )𝐵𝐵𝑇𝑇 (𝐾𝐾 𝑇𝑇 )𝑛𝑛 𝐴𝐴, 𝑝𝑝 ∈ 0,1, … , 𝑁𝑁

For 𝑝𝑝 = 0,1, . . . , 𝑁𝑁, we can write the relation (9)

(9)

𝑓𝑓

55 56 57

60

61

𝑓𝑓 (𝑛𝑛) (𝑧𝑧𝑝𝑝𝑝𝑝 ) = 𝑍𝑍(𝑧𝑧𝑝𝑝𝑝𝑝 )𝐵𝐵𝑇𝑇 (𝐾𝐾 𝑇𝑇 )𝑛𝑛 𝐴𝐴, 𝑝𝑝 ∈ 0,1, … , 𝑁𝑁

66

67 68

𝑓𝑓 (𝑛𝑛) (𝑧𝑧00 ) = 𝑍𝑍(𝑧𝑧00 )𝐵𝐵 𝑇𝑇 (𝐾𝐾 𝑇𝑇 )𝑛𝑛 𝐴𝐴 𝑓𝑓 (𝑛𝑛) (𝑧𝑧11 ) = 𝑍𝑍(𝑧𝑧11 )𝐵𝐵 𝑇𝑇 (𝐾𝐾 𝑇𝑇 )𝑛𝑛 𝐴𝐴 ⋮ (𝑛𝑛) 𝑓𝑓 (𝑧𝑧𝑁𝑁𝑁𝑁 ) = 𝑍𝑍(𝑧𝑧𝑁𝑁𝑁𝑁 )𝐵𝐵 𝑇𝑇 (𝐾𝐾 𝑇𝑇 )𝑛𝑛 𝐴𝐴

where

𝑍𝑍0 (𝑧𝑧00 ) 𝑍𝑍00 𝑍𝑍 𝑍𝑍 (𝑧𝑧 ) 𝑍𝑍 = [ 11 ] = [ 0 11 ⋮ ⋮ 𝑍𝑍𝑁𝑁𝑁𝑁 𝑍𝑍0 (𝑧𝑧𝑁𝑁𝑁𝑁 )

71 72

𝑍𝑍1 (𝑧𝑧00 ) 𝑍𝑍1 (𝑧𝑧11 ) ⋮ 𝑍𝑍1 (𝑧𝑧𝑁𝑁𝑁𝑁 )

𝑍𝑍2 (𝑧𝑧00 ) 𝑍𝑍2 (𝑧𝑧11 ) ⋮ 𝑍𝑍2 (𝑧𝑧𝑁𝑁𝑁𝑁 )

Let us modify the collocation points (4) into equation(1),

⋯ ⋯ ⋮ ⋯

𝑍𝑍𝑁𝑁 (𝑧𝑧00 ) 𝑍𝑍𝑁𝑁 (𝑧𝑧11 ) ] ⋮ 𝑍𝑍𝑁𝑁 (𝑧𝑧𝑁𝑁𝑁𝑁 ) (10)

(𝑛𝑛) ∑𝑚𝑚 (𝑧𝑧𝑝𝑝𝑝𝑝 )𝐴𝐴 = 𝑔𝑔(𝑧𝑧𝑝𝑝𝑝𝑝 ) 𝑛𝑛=0 𝑃𝑃𝑛𝑛 (𝑧𝑧𝑝𝑝𝑝𝑝 )𝑓𝑓

We attain the basic matrix equation of the relations (8)–(10),

where

(11)

𝑁𝑁 𝑁𝑁 𝑇𝑇 𝑇𝑇 𝑛𝑛 ∑𝑚𝑚 𝑛𝑛=0 ∑𝑝𝑝=0 𝑃𝑃𝑛𝑛 (𝑧𝑧𝑝𝑝𝑝𝑝 )𝑍𝑍(𝑧𝑧𝑝𝑝𝑝𝑝 )𝐵𝐵 (𝐾𝐾 ) A = ∑𝑝𝑝=0 𝐺𝐺𝑝𝑝

𝑃𝑃𝑛𝑛 (𝑧𝑧00 ) 0 𝑃𝑃𝑛𝑛 = [ ⋮ 0

6

0 𝑃𝑃𝑛𝑛 (𝑧𝑧11 ) ⋮ 0

⋯ ⋯ ⋮ ⋯

0 𝑔𝑔(𝑧𝑧00 ) 0 𝑔𝑔(𝑧𝑧11 ) ]and𝐺𝐺𝑝𝑝 = [ ] ⋮ ⋮ 𝑃𝑃𝑛𝑛 (𝑧𝑧𝑁𝑁𝑁𝑁 ) 𝑔𝑔(𝑧𝑧𝑁𝑁𝑁𝑁 )

Since the A is unknown and should be determined that the matrix equation (11) could be rewritten in the subsequent form:

69 70

where,

𝑊𝑊𝑊𝑊 = 𝐺𝐺or[𝑊𝑊; 𝐺𝐺] = [𝑤𝑤𝑝𝑝𝑝𝑝 ; 𝑔𝑔𝑝𝑝 ] 𝑝𝑝, 𝑞𝑞 = 0,1, … , 𝑁𝑁

𝑁𝑁 𝑇𝑇 𝑇𝑇 𝑛𝑛 𝑎𝑎 𝑊𝑊 = ∑𝑚𝑚 𝑛𝑛=0 ∑𝑝𝑝=0 𝑃𝑃𝑛𝑛 (𝑧𝑧𝑝𝑝𝑝𝑝 )𝑍𝑍(𝑧𝑧𝑝𝑝𝑝𝑝 )𝐵𝐵 (𝐾𝐾 ) and𝐴𝐴 = [ 0

𝑎𝑎1



𝑎𝑎𝑁𝑁 ]𝑇𝑇

We write the matrix shape of the initial conditions (2) by the aid of (8), Cilt / Volume: 7, Sayı / Issue: (𝑡𝑡)4, 2017

73

(9)

For 𝑝𝑝 = 0,1, . . . , 𝑁𝑁, we can write the relation (9)

64 65

(8)

Numerical Solution for High-Order Linear Complex Differential Equations By Hermite Polynomials

matrix equations

62 63

(𝑧𝑧)𝐾𝐾 𝐴𝐴 = 𝐻𝐻(𝑧𝑧)(𝐾𝐾 ) 𝐴𝐴 = 𝑍𝑍(𝑧𝑧)𝐵𝐵 (𝐾𝐾 ) 𝐴𝐴

By changing the collocation points 𝑧𝑧 = 𝑧𝑧𝑝𝑝𝑝𝑝 into the relation (8), we get the following

58 59

(𝑧𝑧) = 𝐻𝐻

𝑓𝑓

(𝛼𝛼) = 𝐻𝐻(𝛼𝛼)(𝐾𝐾 𝑇𝑇 )𝑡𝑡 𝐴𝐴 = 𝜗𝜗𝑡𝑡 𝑡𝑡 = 0,1, … . , 𝑚𝑚 − 1

In another hand the matrix shape of the initial conditions could be reformed as

(12)

or real constant. 193

69 70 71 72

73

74

75

where,

78 79 80

𝑁𝑁 𝑇𝑇 𝑇𝑇 𝑛𝑛 𝑎𝑎 𝑊𝑊 = ∑𝑚𝑚 𝑛𝑛=0 ∑𝑝𝑝=0 𝑃𝑃𝑛𝑛 (𝑧𝑧𝑝𝑝𝑝𝑝 )𝑍𝑍(𝑧𝑧𝑝𝑝𝑝𝑝 )𝐵𝐵 (𝐾𝐾 ) and𝐴𝐴 = [ 0

In another hand the matrix shape of the initial conditions could be reformed as

87 88 89

𝑈𝑈𝑡𝑡 𝐴𝐴 = 𝜗𝜗𝑡𝑡 𝑡𝑡 = 0,1, … . , 𝑚𝑚 − 1

where

𝑈𝑈𝑡𝑡 = 𝐻𝐻(𝛼𝛼)(𝐾𝐾 𝑇𝑇 )𝑡𝑡 𝑡𝑡 = 0,1, … . , 𝑚𝑚 − 1

the augmented form of these equations are

[𝑈𝑈𝑡𝑡 ; 𝜗𝜗𝑡𝑡 ] = [𝑢𝑢𝑡𝑡0 , 𝑢𝑢𝑡𝑡1 , … , 𝑢𝑢𝑡𝑡𝑡𝑡 ; 𝜗𝜗𝑡𝑡 ] 𝑡𝑡 = 0,1, … . , 𝑚𝑚 − 1

(13)

Finally, to find the unknown Hermite coefficients𝑎𝑎𝑛𝑛 , 𝑛𝑛 = 0, 1, . . . , 𝑁𝑁,connected to the

approximate solution of the problem (1) under the initial conditions (2), we require to

Finally, to find the unknown Hermite require to replace the𝑚 rows of (13) by the last 𝑚 rows coefficientsconnected to the approximate solution of the augmented matrix (12) hence we have new replace the𝑚𝑚 rows of (13) by the last 𝑚𝑚 rows of theofaugmented matrix (12) andand hence the problem (1) under the initial conditions (2), we augmented matrix

we have new augmented matrix

̃ ; 𝐺𝐺̃ ] = [𝑊𝑊

𝑤𝑤00 𝑤𝑤10 ⋮

𝑤𝑤𝑁𝑁−𝑚𝑚 0 𝑢𝑢00 𝑢𝑢10 ⋮ [ 𝑢𝑢𝑚𝑚−1 0

𝑤𝑤01 𝑤𝑤11 ⋮

𝑤𝑤𝑁𝑁−𝑚𝑚 1 𝑢𝑢01 𝑢𝑢11 ⋮ 𝑢𝑢𝑚𝑚−1 1

⋯ 𝑤𝑤0𝑁𝑁 ⋯ 𝑤𝑤1𝑁𝑁 ⋮7 ⋮ ⋯ 𝑤𝑤𝑁𝑁−𝑚𝑚 𝑁𝑁 ⋯ 𝑢𝑢0𝑁𝑁 ⋯ 𝑢𝑢1𝑁𝑁 ⋯ ⋮ ⋯ 𝑢𝑢𝑚𝑚−1 𝑁𝑁

; 𝑔𝑔0 ; 𝑔𝑔1 ⋮ ⋮ ; 𝑔𝑔𝑁𝑁 ; 𝜗𝜗0 ; 𝜗𝜗1 ⋮ ⋮ ; 𝜗𝜗𝑚𝑚−1 ]

(14)

or the matrix equation ̃ 𝐴𝐴 = 𝐺𝐺̃ 𝑊𝑊

84

86

… 𝑎𝑎𝑁𝑁 ]𝑇𝑇

𝑓𝑓 (𝑡𝑡) (𝛼𝛼) = 𝐻𝐻(𝛼𝛼)(𝐾𝐾 𝑇𝑇 )𝑡𝑡 𝐴𝐴 = 𝜗𝜗𝑡𝑡 𝑡𝑡 = 0,1, … . , 𝑚𝑚 − 1

82

85

𝑎𝑎1

We write the matrix shape of the initial conditions (2) by the aid of (8),

81

83

(12)

Faruk DÜŞÜNCELİ ve Ercan ÇELİK

76 77

𝑊𝑊𝑊𝑊 = 𝐺𝐺or[𝑊𝑊; 𝐺𝐺] = [𝑤𝑤𝑝𝑝𝑝𝑝 ; 𝑔𝑔𝑝𝑝 ] 𝑝𝑝, 𝑞𝑞 = 0,1, … , 𝑁𝑁

(15)

̃ ) ≠ 0 can rewrite (15) in the form 𝐴𝐴 = 𝑊𝑊 ̃ −1 𝐺𝐺̃ and the Ais uniquely set. The If 𝑑𝑑𝑑𝑑𝑑𝑑(𝑊𝑊 solution is given by the Hermite series are determined. And so on, the 𝑚𝑚th order linear

If can rewrite (15) in the form and the Ais uniquely an approximated. We can control the precision of set. The solution is given by theunder Hermite the acquired Since We the can Hermite series are complex differential equation theseries initialare conditions has an solutions. approximated. determined. And so on, the 𝑚th order linear complex numerical solution of (1). So the equation should be control theequation precision of the solutions. the Hermiteefficient series for are numerical differential under the acquired initial conditions hasSince approximately

solution of (1). So the equation should be approximately efficient for Iğdır Üni. Fen Bilimleri Enst. Der. / Iğdır Univ. J. Inst. Sci. & Tech.

194

𝑧𝑧 = 𝑧𝑧𝑗𝑗 ∈ 𝐷𝐷, 𝑗𝑗 = 0, 1, 2, . ..

87

complex differential equation under the initial conditions has an approximated. We can

88

control the precision of the acquired solutions. Since the Hermite series are numerical

89

solution of (1). So the equation should be approximately efficient for

Numerical Solution for High-Order Linear Complex Differential Equations By Hermite Polynomials

𝑧𝑧 = 𝑧𝑧𝑗𝑗 ∈ 𝐷𝐷, 𝑗𝑗 = 0, 1, 2, . ..

(𝑛𝑛) 𝐸𝐸(𝑧𝑧𝑗𝑗 ) = |∑𝑚𝑚 (𝑧𝑧𝑗𝑗 ) − 𝑔𝑔(𝑧𝑧𝑗𝑗 )| ≅ 0 𝑛𝑛=0 𝑃𝑃𝑛𝑛 (𝑧𝑧𝑗𝑗 )𝑓𝑓

90 91

or

92

𝐸𝐸(𝑧𝑧𝑗𝑗 ) ≤ 10−𝑙𝑙𝑗𝑗 (𝑙𝑙𝑗𝑗 is any positive integer).

(16)

94

If 𝑚𝑚𝑚𝑚𝑚𝑚10−𝑙𝑙𝑗𝑗 = 10−𝑙𝑙 is described, then the truncation limit N is put on until the values

95

𝐸𝐸(𝑧𝑧𝑗𝑗 ) at eachof the points 𝑧𝑧𝑗𝑗 becomes smaller than the prescribed 10−𝑙𝑙 . RESULTS AND DISCUSSION

96

In this part, two examples are given to illustrate the accuracy and effectiveness of the

97

proposed way and all of them are complemented on a computer by using programs

98

typed in Matlab. Therefore, we have recorded in tables, the values of the exact solution

93

𝑓𝑓(𝑥𝑥, 𝑦𝑦) = 𝑥𝑥(573/9223372036854775808 + (21𝑖𝑖)/144115188075855872) + 𝑦𝑦(− 21/144115188075855872

+ (573𝑖𝑖)/9223372036854775808) 8

+ (𝑥𝑥 + 𝑦𝑦𝑦𝑦)2 (− 18014398509481987/36028797018963968

+ (53𝑖𝑖)/576460752303423488)

+ (𝑥𝑥 + 𝑦𝑦𝑦𝑦)3 (− 159/2305843009213693952

− (7𝑖𝑖)/36028797018963968)

+ (𝑥𝑥 + 𝑦𝑦𝑦𝑦)4 (1485316528861191/36028797018963968 − (11906580003201𝑖𝑖)/36028797018963968)

+ (𝑥𝑥 + 𝑦𝑦𝑦𝑦)5 (1666248956492659/2305843009213693952

− (41586247975829𝑖𝑖)/36028797018963968)

+ 144115188075855857/144115188075855872 110

For N=10,

− (19𝑖𝑖)/2305843009213693952

Cilt / Volume: 7, Sayı / Issue: 4, 2017

195

Faruk DÜŞÜNCELİ ve Ercan ÇELİK

𝑓𝑓(𝑥𝑥, 𝑦𝑦) = 𝑥𝑥(13882071/147573952589676412928

− (6532991𝑖𝑖)/18446744073709551616) + 𝑦𝑦(6532991/18446744073709551616

+ (13882071𝑖𝑖)/147573952589676412928)

+ (𝑥𝑥 + 𝑦𝑦𝑦𝑦)2 (− 2305843009202906759/4611686018427387904

− (3280233𝑖𝑖)/2305843009213693952)

+ (𝑥𝑥 + 𝑦𝑦𝑦𝑦)3 (− 1814333/18446744073709551616 + (735701𝑖𝑖)/2305843009213693952)

+ (𝑥𝑥 + 𝑦𝑦𝑦𝑦)4 (47986826942415845/1152921504606846976 + (38497718388899𝑖𝑖)/576460752303423488)

+ (𝑥𝑥 + 𝑦𝑦𝑦𝑦)5 (23264094237931/18446744073709551616 − (34829294771𝑖𝑖)/2305843009213693952)

+ (𝑥𝑥 + 𝑦𝑦𝑦𝑦)6 (− 792491809524217/576460752303423488 − (2823403318151𝑖𝑖)/288230376151711744)

+ (𝑥𝑥 + 𝑦𝑦𝑦𝑦)7 (248913431329/4611686018427387904

− (159064944217𝑖𝑖)/576460752303423488)

+ (𝑥𝑥 + 𝑦𝑦𝑦𝑦)8 (13170887529351/576460752303423488 + (378968311233𝑖𝑖)/288230376151711744)

+ (𝑥𝑥 + 𝑦𝑦𝑦𝑦)9 (− 658775106425/9223372036854775808

+ (4512177617𝑖𝑖)/1152921504606846976)

+ (𝑥𝑥 + 𝑦𝑦𝑦𝑦)10 (− 29038783659/288230376151711744 − (23378868389𝑖𝑖)/144115188075855872)

+ 9223372036851657523/9223372036854775808

+ (1994837𝑖𝑖)/4611686018427387904 196

11

Iğdır Üni. Fen Bilimleri Enst. Der. / Iğdır Univ. J. Inst. Sci. & Tech.

Numerical Solution for High-Order Linear Complex Differential Equations By Hermite Polynomials

111

The solutions of the linear complex differential equation for N = 3,5 and 10 are

112

obtained. The absolute errors shown in Tables 1,2 and in Figures 1,2.

113

Table 1 Comparison of real parts of the exact solution and numerical one’s for some values 𝑧𝑧𝑗𝑗

114 115 116

-.9(1+i) -.8(1+i) -.7(1+i) -.6(1+i) -.5(1+i) -.4(1+i) -.3(1+i) -.2(1+i) -.1(1+i) 0(1+i) .1(1+i) .2(1+i) .3(1+i) .4(1+i) .5(1+i) .6(1+i) .7(1+i) .8(1+i) .9(1+i)

.8908207824 .9317999001 .9600062080 .9784066646 .9895848832 .9957335935 .9986500259 .9997333347 .9999833333 1 .9999833333 .9997333347 .9986500259 .9957335935 .9895848832 .978406646 .960006208 .931799900 .890820782

N=3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

N=5

.6216215573 .6966493057 .7647768674 .8252866747 .8775540316 .9210479812 .9553321731 .9800657301 .9950041154 1 .9950041298 .9800661925 .9553356851 .9210627805 .8775991953 .8253990566 .7650197690 .6971228821 .6224749574

N=10

.8908892455 .9318501705 .9600393451 .9895949000 .9895949000 .9957378882 .9986514289 .9997336172 .9999833512 1 .9999833511 .9997336139 .9986514034 .9957377771 .9895945485 .9784252442 .9600372394 .9318457566 .8908805837

Table 2 Comparison of imaginer parts of the exact solution and numerical one’s for some

values 𝑧𝑧𝑗𝑗

-.9(1+i)

117

Exact solution(Real)

-.8(1+i) -.7(1+i) -.6(1+i) -.5(1+i) -.4(1+i) -.3(1+i) -.2(1+i) -.1(1+i) 0(1+i) .1(1+i) .2(1+i) .3(1+i) .4(1+i) .5(1+i) .6(1+i) .7(1+i) .8(1+i) .9(1+i)

Exact solution(Im.) -.8040981746

-.6370882357 - .4886930379 - .3594816533 - .2498263975 - .1599544898 - .0899919000 - .0399992888 - .0099999888 0 -.0099999888 -.0399992888 -.0899919000 -.1599544898 -.2498263975 -.3594816533 -.4886930379 -.6370882357 -.8040981746

Cilt / Volume: 7, Sayı / Issue: 4, 2017

N=3

N=5

N=10

-.81

-.8101521967

-.8043179038

-.64 -.49 - .36 - .25 - .16 - .09 - .04 - .01 0 -.01 -.04 -.09 -.16 -.25 -.36 -.49 -.64 -.81

12

- .6400242974 - .4899727890 - .3599629365 - .2499713353 - .1599838390 - .0899934881 - .0399984374 - .0099998850 0 -.009999850 -.0399973324 -.0899850972 -.1599484800 -.2498634277 -.3596944279 -.4893924366 -.6388928054 -.8081132113

-.6372208337 - .4887680105 - .3595206898 - .2498445938 - .1599617215 - .0899941321 - .0399997218 - .0100000001 0 -.0100000000 -.0399997251 -.0899941575 -.1599618328 -.2498449507 -.3595216345 -.4887702076 -.6372254971 -.8043271515

197

Faruk DÜŞÜNCELİ ve Ercan ÇELİK

118 119

Figure 1. The real parts of the absolute errors functions

120

121 122 123

Figure 2. The imaginer parts of the absolute errors functions Example 2:Finally, consider the linear complex differential equation 198

13

Iğdır Üni. Fen Bilimleri Enst. Der. / Iğdır Univ. J. Inst. Sci. & Tech.

Numerical Solution for High-Order Linear Complex Differential Equations By Hermite Polynomials

𝑓𝑓 ′′ (𝑧𝑧) + 2𝑓𝑓 ′ (𝑧𝑧) + 𝑧𝑧𝑧𝑧(𝑧𝑧) = z 3 + 𝑒𝑒 𝑧𝑧 (𝑧𝑧 + 3) + 6𝑧𝑧 + 2

125

with initial conditions 𝑓𝑓(0) = 3

126

𝑒𝑒 𝑧𝑧 (𝑧𝑧 + 3) + 6𝑧𝑧 + 2. The next step of our method, we obtain the numerical solution for N

= 3,5,10. The values of the numerical solution in the issue of N = 3,5,10 for both parts

127

of real and imaginary together with the exact solution and absolute errors are supported

128

in figures 3,4,5,6 as follows.

124

129 130 131

, 𝑓𝑓 ′ (0) = 1. The exact solution is 𝑓𝑓(𝑧𝑧) = 𝑧𝑧 2 +

Figure 3. The real parts of the exact solution and numerical one’s

Cilt / Volume: 7, Sayı / Issue: 4, 2017

14

199

Faruk DÜŞÜNCELİ ve Ercan ÇELİK

132 133

Figure 4. The imaginer parts of the exact solution and numerical one’s

134 135

136 137

Figure 5. The real parts of the absolute errors functions 200

15

Iğdır Üni. Fen Bilimleri Enst. Der. / Iğdır Univ. J. Inst. Sci. & Tech.

Numerical Solution for High-Order Linear Complex Differential Equations By Hermite Polynomials

138

139 140 141 142

Figure 6. The imaginer parts of the absolute errors functions CONCLUSIONS

CONCLUSIONS is righteous. It may be concluded that the method is an 143 This way is established on reckoning the coefficients in the Hermite numerical series extension efficient way to discover solutionsoffor linear This way is established on reckoning the coefficients complex differential equations. On the other hand, the in144 the Hermite series extension of the solution of a linear equations the solution of a linear complex differential providing the circular domain is results are quite reliable and good-agreement with the complex differential equations providing the circular 145 isidentified is righteous. It may be concluded domain identifiedby by the the functions functions 𝑃𝑃 and . . and This𝐺𝐺(𝑧𝑧). way . This exactway solutions. 𝑛𝑛 (𝑧𝑧)

146

that the method is an efficient way to discover numerical solutions for linear complex

REFERENCES 147 differential equations. On the other hand, the results are quite reliable and good-

Tohidi E, 2012. Legendre approximation for solving linear HPDEs and comparison with Taylor and Bernoulli matrix methods. Applied Mathematics, 3:410–416.

Düşünceli F, Çelik E, 2015. An effective tool: Numerical solutions polynomials forexact high-order linear complex 148by Legendre agreement with the solutions. differential equations. British Journal of Applied Science &Technology, 8(4): 348-355.

Yüzbaşı S, Aynıgül M, Sezer M, 2011.A collocation method using Hermite polynomials for approximate solution of pantograph equations.Journal of the Franklin Institute, 348:1128–1139.

149 Düşünceli F, Çelik E, 2017. Fibonacci matrix polynomial method for linear complex differential equations. Asian Journal of Mathematics and ComputerResearch, 15(3): 229-238.

Yüzbası S, Şahin N, Gülsu M, 2011. A collocation approach for solving a class of complex differential equations in elliptic domains.Journal of Numerical Mathematics, 19: 225–246.

Gülsu M, Gürbüz B, Öztürk Y, Sezer M, 2011.Laguerre polynomial approach for solving linear delay difference equations.Applied Mathematics and Computation, 217:6765–6776. Sezer M, Yalçınbaş S, 2009.A collocation method to solve higher order linear complex differential equations in rectangular domains.Numerical Methods for Partial Differential Equations, 26:596–611.

Cilt / Volume: 7, Sayı / Issue: 4, 2017

16 201

Suggest Documents