of Illinois' Salem Plateau - IDEALS @ Illinois - University of Illinois at ...

2 downloads 0 Views 1MB Size Report
Dec 20, 2000 - ILLINOIS DEPARTMENT OF NATURAL RESOURCES. 524 SOUTH SECOND STREET. LINCOLN TOWER PLAZA. SPRINGFIELD, IL 62701- ...
I L L I N 0 I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

PRODUCTION NOTE University of Illinois at Urbana-Champaign Library Large-scale Digitization Project, 2007.

iZi,~JH5 (3(00 ~J9CO W

Natural History Survey Library

SUBTERRANEAN AMPHIPODA (CRUSTACEA) OF ILLINOIS' SALEM PLATEAU: SPATIAL AND TEMPORAL COMPONENTS OF MICRODISTRIBUTION

Steven J. Taylor and Donald W. Webb Illinois Natural History Survey 607 East Peabody Drive Champaign, IL 61820 (217) 333-6846

20 December 2000 Illinois Natural History Survey Center for Biodiversity Technical Report 2000(27)

PREPARED FOR ATTN: C2000 COORDINATOR OFFICE OF REALTY AND ENVIRONMENTAL PLANNING ILLINOIS DEPARTMENT OF NATURAL RESOURCES 524 SOUTH SECOND STREET LINCOLN TOWER PLAZA SPRINGFIELD, IL 62701-1787

Executive Summary This report presents results of a quantitative field study of amphipods and other invertebrates found in four cave streams in Illinois' Salem Plateau. We conducted field experiments in Illinois Caverns which indicated that Gammarus troglophilus Hubricht and Mackin (Amphipoda: Gammaridae) and Gammarus acherondytes Hubricht and Mackin, the federally endangered Illinois Cave Amphipod, both preferred larger (12.7 to F that was >0.05, we considered the subsequent variables in the model to be of little additional value in explaining variance. The same regression techniques were used to examine the value of gravel metrics and time (expressed as increasing monthly integers from 1 (April 1999) to 12 (March 2000) in predicting amphipod size (as measured by head length) for each species in each cave. These analyses were only conducted when sample size for a species in a cave was >20. Although the regression analyses (above) are fairly robust relative to violations of assumptions, our data do not meet all assumptions and results should be interpreted with some caution. We examined species diversity using the Shannon-Wiener diversity index, H' (Shannon 1948). The value of this popular index has been questioned, and Boyle et al. (1990) recommend that diversity indices be used only in concert with other metrics. Because H' is affected by both the distribution of the data and by the number of categories, many users prefer to use a related measure, evenness (J') (Pielou 1966), which corrects for the number of categories (Zar 1984). Therefore, we computed both H' and J' for our samples. We also examined variations in species richness and a potential tool for assessing community health, the Gammarus : troglophilic Caecidotearatio (Whitehurst 1991la, b). Data analyses, including correlation, regression and general linear models procedures, were conducted using SAS (SAS Institute 1988) and Splus (MathSoft 1999). Results of statistical tests are considered significant at P 2x2 cm, or >0.0004 m2), but may be roughly comparable to their riffle samples. Culver and Fong (1991) found that co-occurence of taxa was generally higher than expected in riffle samples, but it was generally low for individual stones. Our results, therefore, appear to be in agreement with Culver and Fong (1991) in that co-occurence in samples generally was found more often than expected (as for their riffle samples). Their work, and earlier studies by Culver (1970, 1971) suggests that we should not expect amphipod taxa to co-occur under individual stones because of antagonistic interactions (competition and/or predator prey relationships). Weakly positive associations of species observed in our samples might reflect commensal realtionships, proximity of predator and prey, or concentrations of competing animals associated with limited resources (e.g., food [organic debris or other taxa] or shelter [suitable substrate]) (Culver and Fong 1991). It would be most interesting to follow up this work by examining crustacean species assemblages under individual stones in the caves streams in our study area.

17

Several studies have shown that using a Gammarus'Asellus ratio as an index for assessing organic enrichment is useful in epigean lowland rivers (e.g., Whitehurst 1991a, b; Whitehurst and Lindsey 1990). Our data (Tables 1, 11, 13; Figure 30) suggest that there are differences between caves in the proportions of gammarids and isopods. A Gammarus:troglophilicCaecidotea ratio was calculated and was found to differ among caves (Table 11). In spite of this significant difference, the ratio was fairly variable within each cave (Figure 30). Also, it was not always possible to calculate this ratio (that is, when the denominator, troglophilic Caecidotea,was zero), which is reflected in the reduced sample sizes for this ratio relative to other parameters in Table 11. Because of these two problems (1: high within-site variability in the ratio; and 2: it was not always possible to calculatethe ratio), this ratio does not seem like a particularly useful management tool for assessing organic pollution in cave streams of the Salem Plateau.

Conclusions This study highlights the importance of substrate, seasonality, and interactions with other taxa in explaining the distribution and abundance of amphipods in the karst groundwater of Illinois' Salem Plateau. Our results point towards organic enrichment, pH, and oxygen levels as being among the potentially important influences on community structure. Although much remains to be learned about crustacean communities in these cave streams, management actions which serve to improve or maintain karst groundwater quality are thus likely to be in the best interests of the cave stream communities.

Acknowledgements We thank the following individuals for assistance with field work: Ginny Adams (Southern Illinois University at Carbondale), Julie Angel (Illinois State Water Survey), Lisa Brennan (Southern Illinois University at Carbondale), R. Edward DeWalt (Illinois Natural History Survey), Barb Capocy (Indiana Karst Conservancy), Rick Haley, Chris Hespin (Illinois Department of Natural Resources), Joe Kath (Illinois Department of Natural Resources, Endangered Species Project Manager), Suzanna Langowski (formerly US Army Construction Engineering Research Laboratories), Cindy Lee (Southern Illinois University at Carbondale), Dave Mahon (Mark Twain Grotto), Brenda MolanoFlores (Illinois Natural History Survey), Philip Moss (Ozark Underground Laboratory), Sammuel V. Panno (Illinois State Geological Survey), Gary Resch (Little Egypt Grotto), Jeanne Roberts (Southern Illinois University at Carbondale), Genie and Geoff Schropp (Little Egypt Grotto), Heidi Stuck (University of Illinois), Jack Taylor, Diane Tecic (Illinois Department of Natural Resources, Heritage Biologist), Marc Tiritilli (Near Normal Grotto), Rick Toomey (Illinois State Museum), Kelly Victory (Illinois Department of Natural Resources), Jeff Walaszek (US Army Construction Engineering Research Laboratories), C. Pius Weibel (Illinois State Geological Survey), Mark J. Wetzel (Illinois Natural History Survey), Father Paul Wightman and Richard Young (Little Egypt/SEMO Grotto). University of Illinois (Urbana-Champaign) students Wendy Borchert, Bogdan Ciuca, Anne Dennett, Alexandra Santau-Sodhi, Heidi Stuck and Mike Wallace assisted with laboratory work. We thank Matt Nelson (The Nature Conservancy), Philip Moss, and Drs. John Holsinger (Department of Biological Sciences, Old Dominion University), Jerry Lewis, Daniel Fong (Department of Biology, American University) and Horton Hobbs III (Department of Biology, 18

Wittenberg University) for helpful discussions. We thank the Illinois Speleological Survey, The Nature Conservancy, the National Speleological Society, Little Egypt Grotto, Mark Twain Grotto, and Near Normal Grotto for their cooperation and assistance. Diane Tecic and Debbie Newman (Natural Areas Preservation Specialist) were particularly helpful in arranging permission to access the caves. We thank Homer and Loretta Stemler and Cletus and Sharon Kelley for their generosity in allowing us to visit their caves. Joan Bade (Illinois Department of Natural Resources), Chris Hespin, Joe Kath, Gerry Bade (U.S. Fish and Wildlife Service), Harry Hendrickson (Illinois Department of Natural Resources, Division of Energy and Environmental Assessment) and Randy Heidorn (Illinois Department of Natural Resources) helped with various issues associated with this study. Jocelyn Aycrigg, Tom Kompare, and Diane Szafoni (all Illinois Natural History Survey) assisted with various computer-related issues. The Illinois Department of Transportation and the Illinois Natural History Survey provided some logistical support. Barb Capocy provided helpful editorial comments on an earlier draft of this manuscript. We thank Chris Philips, Larry Page, and Geoff Levin (all Illinois Natural History Survey) for allowing SJT to commit time to this study.

19

Table 1. Comparison of potentially important parameters among caves where Gammarus acherondytes appears to differ in 'success' as measured by average density of individuals per m 2 (histogram bars). Mean values of N=12 (N=1 1 for some metrics in Stemler Cave) or more monthly sampling periods, except cave length and basin area. Fogelpole Cave

Parameter Gammarus

8

L % ,, d..

6

cnerunuytes

density (individuals oer m 2)

Illinois Caverns

Krueger-Dry Run Cave

Stemler Cave

i

I

4 2 0

_________________R_________I

G. troglopilus density (individuals per m2 )

39.17

4.10

3.68

21.82

C. forbesi density (individuals per m2)

0.38

0.26

3.53

2.72

Isopoda1 dominance (% in samples)

52.77

33.28

82.89

29.51

Gravel Metrics 2: D16

52.92

10.82

6.98

10.95

Median grain diameter (D5 0 )

130.81

26.20

20.30

45.43

D84

198.75

54.16

40.65

99.22

98.76

23.26

16.51

31.16

107.71

23.95

17.65

34.93

2.41 -0.162

2.62 -0.247

3.57 -0.247

Geometric mean diameter(dg) Graphic mean diameter (mg) Geometric sorting index (sg) Skewness (sk) Fecal coliform bacteria 3 (cfu/100 ml H20O)

2.23 -0.340

>1074.92

382.17

20

>1161.75

770.17

Table 1. Continued. Foglepole Cave

Parameter Gammarus S1-_

achneronaytes density (individuals2 pner I

m )/

8

6

Illinois Caverns

Krueger-Dry Run Cave

Stemler Cave

i .-----

I

4 2 0 -

Water Chemistry 3:

pH

8.12

8.08

8.11

7.61

Specific Conductivity (plS/cm)

578.13

543.53

652.35

678.77

Dissoloved Oxygen (mg/L)

9.48

9.07

9.07

7.81

Turbidity (FTU)

69.47

38.44

44.68

39.22

Nitrate Nitrogen (ppm)

2.42

4.03

2.84

2.81

(°C)

12.87

13.15

13.64

13.55

Alkalinity (as CaCO3)

219.92

199.82

242.82

243.82

Total Dissolved Solids (ppm)

284.08

273.17

355.75

378.08

Phosphate (PO4)(ppm)

0.41

0.53

0.61

0.91

(SO4- 2)(ppm)

40.92

27.83

57.33

60.92

Chloride (Cl-) (ppm)

24.17

27.08

29.58

33.17

Water Temperature

Sulfate

21

Table 1. Continued. Foglepole Cave

Parameter Gammarus 77 acneronaytes density (individuals ner nm2

Illinois Caverns

Krueger-Dry Run Cave

Stemler Cave

8

I

6

4 2

0

Drainage Basin Size4 (km 2) Cave Length5 (km)

18.51

5.44

13.99

24+

8.8

-11

1Primarily

18.51 1.8

Caecidoteabrevicauda Gravel metrics (D 16 , Dso, D84, dg, mg, sg, sk) are not representative of entire cave, only of sampling site, and the same may be true of the invertebrate samples, as they were collected only in one area in each cave 3Taylor et al. (2000) 4Aley et al. (2000), includes entire basin from resurgence springs 5Webb et al. (1998) 2

22

Table 2. Descriptive statistics used in the analysis of substrate size class data from Hess and Surber samples (Folk 1980, Inman 1952, Kondolf 1997, Kondolf and Li 1992, Vanoni 1975). Statistic

Description

D50

Median grain diameter (mm)

84,DI6

Grain diameter (mm) at which 84% (D84) and 16% (D16 ) of the grain diameters are smaller.

dg

Geometric mean diameter (mm) = (D16 * D84) 0 '5

mg

Graphic mean diameter (mm) = 0.33 3 (D16 * Do * D84)

sg

sk

5 Geometric sorting index = (D8 4 / D16)°' This index reflects how well sorted the grains are. A high sg value indicates poorly sorted material.

Skewness = log(dg / D5o) / log(sg) This index reflects how symetrical the distribution of grain sizes is around the median.

Table 3. Mean head lengths (mm) and precentages of individuals selecting each gravel size class in choice experiment. Gravel Size Class (mm) Species

2.36 to 50.8

r

r2

0.9144 0.9638 0.9987 0.9818 0.9781 0.9852

0.8361 0.9289 0.9974 0.9639 0.9566 0.9707

Count r

r2

0.9145 0.9637 0.9228 0.5829 0.9817 0.6586

0.8363 0.9288 0.8515 0.3398 0.9638 0.4337

P 0.0039 0.0005 X 2 Differences

Stemler Cave

Test Value

0.246 77 A B

42.151

0.0000

Yes

Evenness (J')

0.222 84 A

0.088 84 B

0.123 84 A

0.189 77 A

42.163

0.0000

Yes

Species Richness (n)

2.714 84 A

1.250 84 B

2.250 84 A

2.169 77 A

49.026

0.0000

Yes

0.179 64 A

0.642 75

0.503 59 A

0.558 34 A B

20.4131

0.0001

Yes

Gammarus : troglophilic CaecidoteaRatio

B

29

Table 12. Comparison of levels of community parameters in relation to the presence or absence of Gammarus acherondytes and Gammarus troglophilus.

Mean Value N Species

Parameter

Cave

Species Absent

Species Present

df

Test Statistic'

P

Significant Difference

Gammarus troglophilus Fogelpole Cave Species Diversity

(H')

0.121 27

0.368 57

82

-8.4211

0.0000

Yes

0.093 27

0.283 57

82

-8.4268

0.0000

Yes

1.519 27

3.281 57

82

-6.7547

0.0000

Yes

0.004 43

0.537 21

62

-5.4865

0.0000

Yes

0.079 67

0.254 17

82

-3.7447

0.0003

Yes

0.060 67

0.195 17

82

-3.7482

0.0003

Yes

0.970 67

2.353 17

82

-4.5694

0.0000

Yes

0.096 23

0.883 52

73

-2.6700

0.0093

Yes

Evenness

(J') Species Richness

(n)

Gammarus: troglophilic Caecidotea Ratio Illinois Caverns Species Diversity

(H') Evenness (J') Species Richness

(n) Gammarus : troglophilic CaecidoteaRatio 2

30

Table 12. Continued. Mean Value N Species

Parameter

Cave

Species Absent

Species Present

df

Test Statistic'

P

Significant Difference

Gammarus troglophilus Krueger-Dry Run Cave Species Diversity

(H')

0.122 64

0.283 20

82

-3.8659

0.0002

Yes

0.094 64

0.218 20

82

-3.8663

0.0002

Yes

1.797 64

3.700 20

82

-5.2442

0.0000

Yes

0.032 36

1.234 23

57

-4.9980

0.0000

Yes

0.129 33

0.334 44

75

-4.4521

0.0000

Yes

0.099 33

0.257 44

75

-4.4557

0.0000

Yes

1.424 33

2.727 44

75

-4.2208

0.0001

Yes

0.005 20

1.348 14

-5.3337

0.0000

Yes

Evenness

(J') Species Richness

(n) Gammarus : troglophilic CaecidoteaRatio Stemler Cave Species Diversity

(H') Evenness

(J') Species Richness

(n) Gammarus : troglophilic CaecidoteaRatio

31

Table 12. Continued. Mean Value N Species

Parameter

Cave

Species Absent

Species Present df

Test Statistic'

P

Significant Difference

0.245 64

0.429 20

82

-4.7330

0.0000

Yes

0.188 64

0.330 20

82

-4.7354

0.0000

Yes

2.313 64

4.000 20

82

-5.5444

0.0000

Yes

0.181 62

0.106 2

-1.3669

0.1717

No

0.088 68

0.224 16

82

-2.7539 0.0073

Yes

0.068 68

0.172 16

82

-2.7548 0.0072

Yes

1.029 68

2.188 16

82

-3.5924

0.0006

Yes

0.539 64

1.238 11

73

-1.7735

0.0803

No

Gammarus acherondytes Fogelpole Cave Species Diversity

(H') Evenness

(J') Species Richness

(n) Gammarus: troglophilic CaecidoteaRatio Illinois Caverns Species Diversity (H') Evenness

(J') Species Richness

(n) Gammarus : troglophilic Caecidotea Ratio 2

32

Table 12. Continued. Mean Value N

Species

Cave

Parameter

Species Absent

Species Present

df

Test Statistic 1

P

Significant Difference

57

-5.2567

0.0000

Yes

Gammarus acherondytes Krueger-Dry Run Cave 2 Species Diversity (H')

0.143 77

0.350 7

0.110 77

0.269 7

2.104 77

3.857 7

0.147 44

1.547 15

Evenness

(J') Species Richness

(n) Gammarus : troglophilic CaecidoteaRatio Stemler Cave 2' 3 1Two-Sample

t-Test with t statistic given, except that for Gammarus troglophilusin Stemler Cave and Gammarus acherondytes in Fogelpole Cave, the Gammarus:troglophilicCaecidoteaRatio a Wilcoxon rank-sum test was used with Z statistic given 2Not tested, inadequate sample size 3 No Gammarus acherondytes present

33

Table 13. Average number of animals per m2 (N=7 samples/month/cave) for all taxa in cave stream substrate. Cave Taxon

Sep

Oct Nov

Dec

Jan

Feb

Mar Avg

Jun

Jul Aug

166.11 284.05 192.69

58.37 32.26

46.08 121.35

50.69 36.87

64.52 62.98 30.72 95.56

43.01

30.72 52.23

21.51

6.14

12.29

29.19

1.54 39.17

Apr May

Fogelpole Cave Isopoda' G. troglophilus Oligochaeta

2

23.26

41.53 201.00

131.23 107.97

34.88

7.68

18.43 62.98

6.14

3.07

12.29

19.97

4.61

1.54

15.36 34.87

24.58

3.07

1.54

1.54

0.00

0.00

0.00

1.54

0.00 6.56

G. acherondytes

0.00

3.32 43.19

C.forbesi

0.00

0.00

0.00

1.54

3.07

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.38

B. brachycaudus

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

Amphipoda 3

3.32

0.00

0.00

9.22

0.00

0.00

1.54

0.00

1.54

0.00

1.54

0.00

Chironomidae

1.66

4.98

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.55

Nematoda

1.66

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.14

Coleoptera

0.00

1.66

3.32

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.42

Turbellaria

0.00

1.66

1.66

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.28

Ephemeroptera

0.00

1.66

0.00

0.00

1.54

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.27

Hirudinea

0.00

3.32

3.32

1.54

0.00

0.00

3.07

0.00

0.00

0.00

0.00

0.00 0.94

Decapoda

0.00

0.00

0.00

1.54

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.13

Gastropoda

0.00

0.00

0.00

0.00

1.54

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.13

Bivalvia

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

Tipulidae

0.00

0.00

0.00

0.00

0.00

1.54

0.00

0.00

0.00

0.00

0.00

0.00 0.13

Ceratopogonidae

0.00

0.00

1.66

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.14

Trichoptera

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Other Diptera

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

34

1.43

0.00

Table 13. Continued. Cave Taxon

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Jan

Feb

Mar Avg

0.00 71.43

6.64

18.43

7.68

0.00

4.61

4.61

0.00

9.22

3.07

6.14 10.99

3.32

16.61

1.66

9.22

0.00

4.61

0.00

1.54

1.54

3.07

6.14

1.54 4.10

11.63

54.82

9.97

4.61

6.14

0.00

3.07

0.00

1.54

6.14

6.14

3.07 8.93

G. acherondytes

0.00

1.66

0.00 21.51

4.61

4.61

6.14

7.68

3.07

3.07

0.00

0.00 4.36

C.forbesi

0.00

0.00

0.00

0.00

1.54

0.00

0.00

0.00

0.00

1.54

0.00

0.00 0.26

B. brachycaudus

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

Amphipoda 3

0.00

29.90

4.98

1.54

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.54 3.16

Chironomidae

0.00

3.32

1.66

1.54

0.00

0.00

0.00

0.00

0.00

1.54

0.00

0.00 0.67

Nematoda

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

Coleoptera

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

Turbellaria

0.00

0.00

0.00

1.54

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Ephemeroptera

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

Hirudinea

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

Decapoda

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

Gastropoda

4.98

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.42

Bivalvia

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

Tipulidae

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

Ceratopogonidae

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

Trichoptera

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

Other Diptera

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

Apr May

Illinois Caverns Isopoda' G. troglophilus Oligochaeta

2

35

0.13

Table 13. Continued. Cave Taxon

Apr May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Jan

Feb

Mar Avg

75.27 132.10 130.57 242.70 116.74

58.37171.16

Krueger-Dry Run Cave Isopoda'

1.66 290.70 137.87 413.21 347.16 107.53

13.29

0.00

1.54

4.61

1.54

0.00

0.00

1.54

7.68

6.14

6.14 3.68

1.66 59.80

3.32

32.26

4.61

0.00

3.07

1.54

1.54

6.14

6.14

0.00 10.01

G. acherondytes

3.32

1.66

0.00

0.00

0.00

0.00

0.00

0.00

4.61

1.54

0.00

1.54

C.forbesi

0.00

11.63

0.00

3.07

1.54

1.54

1.54

3.07

16.90

1.54

1.54

0.00 3.53

0.00

4.98

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.42

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.54

0.00

0.00

0.00

0.00 0.13

Chironomidae

0.00 39.87

0.00

0.00

3.07

3.07

1.54

0.00

0.00

0.00

1.54

0.00 4.09

Nematoda

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

Coleoptera

0.00

8.31

0.00

13.82

3.07

3.07

3.07

1.54

1.54

3.07

0.00

0.00 3.12

Turbellaria

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

Ephemeroptera

0.00

88.04

4.98

1.54

0.00

0.00

0.00

3.07

0.00

0.00

0.00

0.00 8.14

Hirudinea

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

Decapoda

0.00

0.00

1.66

0.00

0.00

1.54

1.54

0.00

0.00

0.00

0.00

0.00 0.39

Gastropoda

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

Bivalvia

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

Tipulidae

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

Ceratopogonidae

0.00

1.66

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.14

Trichoptera

0.00

0.00

0.00

0.00

0.00

3.07

0.00

1.54

0.00

0.00

0.00

0.00 0.38

Other Diptera

0.00

0.00

0.00

0.00

0.00

3.07

0.00

0.00

0.00

0.00

0.00

0.00 0.26

G. troglophilus Oligochaeta

2

B. brachycaudus Amphipoda

3

1.66

36

1.06

Table 13. Continued. Cave Taxon

Apr May

Jun

Jul

Aug

Sep

Oct Nov

Dec

Jan

Feb

Mar Avg

. 127.91

49.83 47.62 35.33

15.36

1.54

6.14

12.29

27.65

19.97

13.82 29.79

. 93.02

18.27

15.36

9.22

6.14 13.82

10.75 21.51

12.29 21.82 16.90 34.96

Stemler Cave 4 Isopoda' G. troglophilus Oligochaeta

2

. 162.79 124.58

27.65 33.79 12.29

19.97

0.00

0.00

3.07

3.07

9.22 67.59

G. acherondytes

.

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

C.forbesi

.

4.98

0.00

6.14

4.61

0.00

1.54

1.54

1.54

1.54

4.61

6.14

2.72

.

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

. 54.82 41.53

0.00

0.00

0.00

0.00

1.54

0.00

0.00

9.22

0.00 8.92

Chironomidae

.

6.64

1.66

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.54

0.00

0.82

Nematoda

.

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Coleoptera

.

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Turbellaria

.

1.66

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.14

Ephemeroptera

.

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Hirudinea

.

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Decapoda

.

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Gastropoda

.

0.00

6.64

0.00

3.07

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.81

Bivalvia

.

8.31

3.32

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.97

Tipulidae

.

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Ceratopogonidae

.

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Trichoptera

.

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Other Diptera

.

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

B. brachycaudus Amphipoda

3

2 'Isopoda are almost exclusively Caecidotea brevicauda; Values for Oligochaeta represent counts of whole individuals 4 plus fragments, so this group may be less dominant than is suggested here; 3 Undtermined individuals; No sampling was done in April, 1999, in Stemler Cave

37

Table 14. Co-occurence of amphipod and isopod taxa in quantitative cave stream samples in four caves across one year sampling period. When expected co-occurence frequency could be calculated, it is given in parentheses, and when the observed value was less than expected, these numbers are in bold italics. Frequency of Occurrence by Cave 2 Species Pair1 Gammarus troglophilus

0 0 1 1

FOG P 3

Gammarus acherondytes 25 0 2 1 39 0 1 (1.2)18

ILC

56

0 0 1 1

Crangonyx forbesi 0 1 0

27 0 54 3

0.2980

0 0 1 1

Isopoda 4 0 3 24 1 3 0 (12.0)54 1 0.3808

Gammarus acherondytes

0 0 1 1

Crangony.x forbesi 62 0 1 2 19 0 1 (0.5)1

0 0 1 1

Isopoda 4 4 0 1 60 2 0 1 (20)18

Crangonyx forbesi

0 0 1 1

Isopoda 4 0 1 0 1

6 58 2 (14.5)18 1.0000 1.0000 64 13 5 (0.9)2

44 24 11 (4.8)5

6 0 3 1.0000

0.0930

28 49 0 0

(8.8)6 1.0000

0.5173

25 36 3 (3.9)13

8 61 0 15 0.1165

16 17 12 (7.3)32

61 16 0 0

7 70

54 27 0 2

75

0.3974

0.6030

0.0344

0.6249

28 5 33 (2.7)11 0.1769

68 0 14 2 0.5627

Gammarus acherondytes

33 0 44 0

55 9 14 (1.8)6 0.3657

44 23 11 (4.6)6

STM P 3

0.0520

66 1 16 ((0.2)1 0.5478

Gammarus troglophilus

KDR P 3

61 3 16 (5.1)4

11 12 (1.9)5 0.0151

Gammarus troglophilus

P3

0.3401

0.1454

'l=present, 0=absent; 2FOG=Fogelpole Cave (n=84), ILC=Illinois Caverns (n=84), KDR=Krueger-

Dry Run Cave (n=84), STM=Stemler Cave (n=77); 3Fisher's Exact Test, two tailed (not tested for species pairs in Stemler Cave that include Gammarus acherondytes); significant results are in bold and underlined, near-significant results are underlined; 4 Primarily Caecidotea brevicauda

S 3Kilometers Kilometers

Figure 1. Location of study sites (from Taylor et al. [2000]). Cave drainage basins are from Aley et al. (2000), sinkhole areas (shaded) are from Panno et al. (1999).

39

100 9080s 70 60 50 4C 3C 2(

)ole Cave Cave j Run Cave

r

-3

Figure 2. Percent of maximum cave stream stage during monthly (1999 - 2000) sampling at four caves. From Taylor et al. (2000). A

__

30

20 10

0

B

30

It

20

I-

A r%..

10

II 0.46

0.86

777 1.26

1.66 2.06 Head Length (mm)

2.46

2.86

3.26

Figure 3. Frequency distribution of head sizes of amphipods used in gravel choice experiment at Illinois Caverns. A, Gammarus troglophilus; B, Gammarus acherondytes.

40

Fogelpole Cave

-1

I

0 A.YW-Tý 200400 .Y W

0 200400

.w

Illinois Caverns

I n

5 10w

/

D16 400= 200

D50

u:

-100 -u

p

^_

U-

c)

200 0

0

0 20040

0

) 2004 0

8

__-

D50

10

0

D16

0

.....

*C

0 10 20

-0.0100SDG 80

MG-40

4

0

0 100200

0

I

40 80

100 -50 =0 SG

U

10 5 0 SK-0.0

4

r

0 501( 10

31002C10

0

1

-1 -0

DS0

D84 DG

5 10

•.'

°

L..

00

-100 =0 'nnU

MG

0 100200

10 0

IF i%,2-i%-ý F Lrt

317 >o

--1 1

0

-1

0 50100

-0.5 0.0 0.5

0 1002( 0

1

S

200 ="

o

je

3 1002( 0

00

0

DG

S1002 J 1002w

) 20

0

50-

c I

SK

0 200

01

0uu -100 00

MG

-1 0 4

0

0 50100

40 80

Dof6

80 40

SK

1 -0 -1

7w-i

D84

1 10 50-

SG

)* 0 1002110

-n *u

100 50U-

-400 200 -0

MG

-4U -20

D50

-Ann

CA 3

0-

i,I

10

5

0

100

50

2UU

DG

o

105-

0

00200

D16

I II= dtUU

F LAV

1

0

-

100-

D84

400] 200

i

C-200

L

00

SG SKIi :.0 *^ *. 111 1 a

0 100200

-1

0

Stemler Cave

Krueger-Dry Run Cave

Figure 4. Correlations among the various gravel metrics (Table 2) by cave across all sample replicates and months (April 1999-March 2000). N=84 samples for all caves, except that for Stemler Cave N=77.

41

B

A

0

0

40

-44

E 020

0

0 0

5

2500

>32

D

C 0

•,

)

0

E220

-

.

0

Boom --.

tl'

4ou

E

0

0

>160

1700

1300 count

900

7500

t

500

700

900

500

700 count

900

0

0

>350 I

I

115

I

130 count

145

2.0 count

3.5

E

L

0600 E 6300

500 (D E 6200

I

0

0

0

11

0

22 count

0.5

33

Figure 5. Correlation between gravel volume and gravel counts. Gravel size classes (mm): A, 2.36 to 4.75 to 12.7 to 25.4 to 50.8. B

A 40

0

0

50

-

0

E =3

0

E30

"520

>30 44 grams

22

160

84 grams

106

-

0

-3 -

310

420

530

310

420 grams

530

>350

-

720

840

960

720

840 grams

960

F

E

600

oo E

106

E

E220 -

5300

84

D 450

0600 o

0

62 62

66

C_________

>160

0

-

C)

L

E -200

0 -

II

0 0

500

1000 grams

--

.I

200

1500

-

.i

500 grams

800

Figure 6. Correlation between gravel volume and gravel weight. Gravel size classes (mm): A, 2.36 to 4.75 to 12.7 to 25.4 to

Suggest Documents