On Abelian and Related Fuzzy Subsets of Groupoids

0 downloads 0 Views 492KB Size Report
Sep 15, 2013 - Malik [3] published a remarkable book, Fuzzy commutative algebra, presented a fuzzy ideal theory of commutative rings, and applied theΒ ...
Hindawi Publishing Corporation The Scientific World Journal Volume 2013, Article ID 476057, 5 pages http://dx.doi.org/10.1155/2013/476057

Research Article On Abelian and Related Fuzzy Subsets of Groupoids Seung Joon Shin,1 Hee Sik Kim,2 and J. Neggers3 1

Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea 3 Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487-0350, USA 2

Correspondence should be addressed to Hee Sik Kim; [email protected] Received 12 August 2013; Accepted 15 September 2013 Academic Editors: M. Aiguier and M. I. Ali Copyright Β© 2013 Seung Joon Shin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We introduce the notion of abelian fuzzy subsets on a groupoid, and we observe a variety of consequences which follow. New notions include, among others, diagonal symmetric relations, several types of quasi orders, convex sets, and fuzzy centers, some of whose properties are also investigated.

1. Introduction

(𝑋, βˆ—) and (𝑋, βˆ™) of Bin(𝑋), define a product β€œβ—»β€ on these groupoids as follows:

The notion of a fuzzy subset of a set was introduced by Zadeh [1]. His seminal paper in 1965 has opened up new insights and applications in a wide range of scientific fields. Rosenfeld [2] used the notion of a fuzzy subset to set down corner stone papers in several areas of mathematics. Mordeson and Malik [3] published a remarkable book, Fuzzy commutative algebra, presented a fuzzy ideal theory of commutative rings, and applied the results to the solution of fuzzy intersection equations. The book included all the important work that has been done on 𝐿-subspaces of a vector space and on 𝐿subfields of a field. Kim and Neggers [4] introduced the notion of Bin(𝑋) and obtained a semigroup structure. Fayoumi [5] introduced the notion of the center 𝑍Bin(𝑋) in the semigroup Bin(𝑋) of all binary systems on a set 𝑋 and showed that a groupoid (𝑋, βˆ™) ∈ 𝑍Bin(𝑋) if and only if it is a locally zero groupoid. In this paper, we introduce the notion of abelian fuzzy subgroupoids on a groupoid and discuss diagonal symmetric relations, convex sets, and fuzzy centers on Bin(𝑋).

Let 𝑍Bin(𝑋) denote the collection of elements (𝑋, βˆ™) of Bin(𝑋) such that (𝑋, βˆ—) β—» (𝑋, βˆ™) = (𝑋, βˆ™) β—» (𝑋, βˆ—), for all (𝑋, βˆ—) ∈ Bin(𝑋); that is, 𝑍Bin(𝑋) = {(𝑋, βˆ™) ∈ Bin(𝑋) | (𝑋, βˆ—) β—» (𝑋, βˆ™) = (𝑋, βˆ™) β—» (𝑋, βˆ—), for all (𝑋, βˆ—) ∈ Bin(𝑋)}. We call 𝑍Bin(𝑋) the center of the semigroup Bin(𝑋).

2. Preliminaries

Proposition 2 (see [5]). If (𝑋, βˆ™) ∈ 𝑍𝐡𝑖𝑛(𝑋), then π‘₯ βˆ™ π‘₯ = π‘₯ for all π‘₯ ∈ 𝑋.

Given a nonempty set 𝑋, we let Bin(𝑋) denote the collection of all groupoids (𝑋, βˆ—), where βˆ— : 𝑋 Γ— 𝑋 β†’ 𝑋 is a map and βˆ—(π‘₯, 𝑦) is written in the usual product form. Given elements

Proposition 3 (see [5]). Let (𝑋, βˆ™) ∈ 𝑍𝐡𝑖𝑛(𝑋). If π‘₯ =ΜΈ 𝑦 in 𝑋, then ({π‘₯, 𝑦}, βˆ™) is either a left-zero-semigroup or a right-zerosemigroup.

(𝑋, βˆ—) β—» (𝑋, βˆ™) = (𝑋, β—») ,

(1)

π‘₯ β—» 𝑦 = (π‘₯ βˆ— 𝑦) βˆ™ (𝑦 βˆ— π‘₯)

(2)

where

for any π‘₯, 𝑦 ∈ 𝑋. Using that notion, Kim and Neggers proved the following theorem. Theorem 1 (see [4]). (𝐡𝑖𝑛(𝑋), β—») is a semigroup; that is, the operation β€œβ—»β€ as defined in general is associative. Furthermore, the left-zero-semigroup is the identity for this operation.

2

The Scientific World Journal

3. Abelian Fuzzy Groupoids Let (𝑋, βˆ—) ∈ Bin(𝑋). A map πœ‡ : 𝑋 β†’ [0, 1] is said to be abelian fuzzy if πœ‡(π‘₯ βˆ— 𝑦) = πœ‡(𝑦 βˆ— π‘₯) for all π‘₯, 𝑦 ∈ 𝑋. Example 4. Let (𝑋, βˆ—) be a left-zero-semigroup; that is, π‘₯βˆ—π‘¦ = π‘₯ for all π‘₯, 𝑦 ∈ 𝑋. Let πœ‡ : 𝑋 β†’ [0, 1] be an abelian fuzzy subset of 𝑋. Then, πœ‡(π‘₯) = πœ‡(π‘₯ βˆ— 𝑦) = πœ‡(𝑦 βˆ— π‘₯) = πœ‡(𝑦) for all π‘₯, 𝑦 ∈ 𝑋. It follows that πœ‡ is a constant map. Similarly, every abelian fuzzy subset of a right-zerosemigroup is also a constant function. Proposition 5. If (𝑋, βˆ—) ∈ 𝑍𝐡𝑖𝑛(𝑋), then every abelian fuzzy subset on (𝑋, βˆ—) is a constant function. Proof. Assume that πœ‡ is an abelian fuzzy subset of (𝑋, βˆ—). Then, πœ‡(π‘₯ βˆ— 𝑦) = πœ‡(𝑦 βˆ— π‘₯) for all π‘₯, 𝑦 ∈ 𝑋. Let (𝑋, βˆ—) ∈ 𝑍Bin(𝑋). By Proposition 3, if π‘₯ =ΜΈ 𝑦 in 𝑋, then ({π‘₯, 𝑦}, βˆ—) is either a left-zero-semigroup or a right-zero-semigroup. It follows that either π‘₯βˆ—π‘¦ = π‘₯, π‘¦βˆ—π‘₯ = 𝑦 or π‘₯βˆ—π‘¦ = 𝑦, π‘¦βˆ—π‘₯ = π‘₯. In either cases, we obtain πœ‡(π‘₯) = πœ‡(𝑦) for all π‘₯, 𝑦 ∈ 𝑋, proving that πœ‡ is a constant function. Given a groupoid (𝑋, βˆ—) ∈ Bin(𝑋), we denote the set of all abelian fuzzy subgroupoids on (𝑋, βˆ—) by 𝐴(𝑋, βˆ—). Proposition 6. Let (𝑋, βˆ—) ∈ 𝐡𝑖𝑛(𝑋). Then, (𝑋, βˆ—) is commutative if and only if 𝐴(𝑋, βˆ—) = [0, 1]𝑋 . Proof. Assume that (𝑋, βˆ—) is not commutative; that is, there exist π‘₯, 𝑦 ∈ 𝑋 such that π‘₯βˆ—π‘¦ =ΜΈ π‘¦βˆ—π‘₯. If we let 𝛼 := π‘₯βˆ—π‘¦ and let πœ‡ := πœ’π›Ό be the characteristic function of 𝛼, then πœ‡(π‘₯ βˆ— 𝑦) = 1, πœ‡(𝑦 βˆ— π‘₯) = 0, proving that πœ‡ is not an abelian fuzzy subset of (𝑋, βˆ—). The converse is straightforward. Given (𝑋, βˆ—) ∈ Bin(𝑋), we define a fuzzy subset πœ‡π›Ό : 𝑋 β†’ [0, 1] by πœ‡π›Ό (π‘₯) := 𝛼 for all π‘₯ ∈ 𝑋, where 𝛼 ∈ [0, 1]. Denote by 𝐢(𝑋, βˆ—) := {πœ‡π›Ό |𝛼 ∈ [0, 1]}. Then, 𝐢(𝑋, βˆ—) βŠ† 𝐴(𝑋, βˆ—) for all groupoids (𝑋, βˆ—) whatsoever. Thus, the extreme of noncommutativity is the situation 𝐢(𝑋, βˆ—) = 𝐴(𝑋, βˆ—). Proposition 7. Let πœ‡ ∈ 𝐴(𝑋, βˆ—). If πœ‡ is one-one, then (𝑋, βˆ—) is commutative. Proof. If πœ‡ ∈ 𝐴(𝑋, βˆ—), then πœ‡(π‘₯ βˆ— 𝑦) = πœ‡(𝑦 βˆ— π‘₯) for all π‘₯, 𝑦 ∈ 𝑋. Since πœ‡ is one-one, we have π‘₯ βˆ— 𝑦 = 𝑦 βˆ— π‘₯ for all π‘₯, 𝑦 ∈ 𝑋. Given (𝑋, βˆ—) ∈ Bin(𝑋), we define a set (𝑋, βˆ—)π‘Ž := {(π‘₯, 𝑦) ∈ 𝑋 Γ— 𝑋 | π‘₯ βˆ— 𝑦 = 𝑦 βˆ— π‘₯}. Note that (π‘₯, 𝑦) ∈ (𝑋, βˆ—)π‘Ž implies (𝑦, π‘₯) ∈ (𝑋, βˆ—)π‘Ž as well. If we let ] := πœ’(𝑋,βˆ—)π‘Ž be the characteristic function of (𝑋, βˆ—)π‘Ž , then ] is an abelian fuzzy subgroupoid on 𝑋 Γ— 𝑋. Proposition 8. Let πœ‡ : 𝑋 β†’ [0, 1] be a fuzzy subset of 𝑋. If we define (𝑋, βˆ—)πœ‡π‘Ž := {(π‘₯, 𝑦) ∈ 𝑋 Γ— 𝑋 | πœ‡(π‘₯ βˆ— 𝑦) = πœ‡(𝑦 βˆ— π‘₯)}, then (i) (𝑋, βˆ—)π‘Ž βŠ†

(𝑋, βˆ—)πœ‡π‘Ž ,

(ii) if πœ‡ is one-one, then (𝑋, βˆ—)π‘Ž = (𝑋, βˆ—)πœ‡π‘Ž ,

(iii) if πœ‡ is constant, then (𝑋, βˆ—)πœ‡π‘Ž = 𝑋 Γ— 𝑋. Proof. It is straightforward.

Theorem 9. If (𝑋, βˆ—) ∈ 𝐡𝑖𝑛(𝑋), then there exists a fuzzy subset πœ‡ of 𝑋 such that (𝑋, βˆ—)π‘Ž = (𝑋, βˆ—)πœ‡π‘Ž . Proof. Assume that there exists (𝑋, βˆ—) ∈ Bin(𝑋) such that (𝑋, βˆ—)π‘Ž =ΜΈ (𝑋, βˆ—)πœ‡π‘Ž for any fuzzy subset πœ‡ of 𝑋. Then, there exists an element (π‘₯, 𝑦) ∈ (𝑋, βˆ—)πœ‡π‘Ž \ (𝑋, βˆ—)π‘Ž . It follows that πœ‡(π‘₯ βˆ— 𝑦) = πœ‡(𝑦 βˆ— π‘₯), but π‘₯ βˆ— 𝑦 =ΜΈ 𝑦 βˆ— π‘₯ for some π‘₯, 𝑦 ∈ 𝑋. If we let 𝛼 := π‘₯ βˆ— 𝑦 and let πœ‡ := πœ’π›Ό be the characteristic function of 𝛼, then πœ‡(π‘₯ βˆ— 𝑦) = 1, but πœ‡(𝑦 βˆ— π‘₯) = 0, which proves that (π‘₯, 𝑦) βˆ‰ (𝑋, βˆ—)πœ‡π‘Ž . Proposition 10. Let (𝑋, βˆ—) ∈ 𝐡𝑖𝑛(𝑋) and let β‹… be the usual product on the set of real numbers. If πœ‡ : (𝑋, βˆ—) β†’ ([0, 1], β‹…) is a homomorphism, then πœ‡ ∈ 𝐴(𝑋, βˆ—) and (𝑋, βˆ—)πœ‡π‘Ž = 𝑋 Γ— 𝑋. Proof. If πœ‡ : (𝑋, βˆ—) β†’ ([0, 1], β‹…) is a homomorphism, then πœ‡(π‘₯ βˆ— 𝑦) = πœ‡(π‘₯) β‹… πœ‡(𝑦) = πœ‡(𝑦) β‹… πœ‡(π‘₯) = πœ‡(𝑦 βˆ— π‘₯) for all π‘₯, 𝑦 ∈ 𝑋; that is, πœ‡ ∈ 𝐴(𝑋, βˆ—). If (π‘₯, 𝑦) ∈ 𝑋 Γ— 𝑋, then πœ‡(π‘₯ βˆ— 𝑦) = πœ‡(π‘₯) β‹… πœ‡(𝑦) = πœ‡(𝑦 βˆ— π‘₯), proving that (π‘₯, 𝑦) ∈ (𝑋, βˆ—)πœ‡π‘Ž . Example 11. Let (𝑋, βˆ—) ∈ Bin(𝑋). Define a binary operation β€œβ‹†β€ on [0, ∞) by π‘₯ ⋆ 𝑦 := (1/2)(π‘₯ + 𝑦) for all π‘₯, 𝑦 ∈ [0, ∞). If πœ‡ : (𝑋, βˆ—) β†’ ([0, ∞), ⋆) is a homomorphism, then πœ‡(π‘₯ βˆ— 𝑦) = πœ‡(π‘₯) ⋆ πœ‡(𝑦) = (1/2)(π‘₯ + 𝑦) = πœ‡(𝑦 βˆ— π‘₯) for all π‘₯, 𝑦 ∈ 𝑋, which proves that πœ‡ ∈ 𝐴(𝑋, βˆ—) and (𝑋, βˆ—)πœ‡π‘Ž = 𝑋 Γ— 𝑋.

4. Diagonal Symmetric Relations Given (𝑋, βˆ—) ∈ Bin(𝑋), we denote β–³(𝑋) := {(π‘₯, π‘₯) | π‘₯ ∈ 𝑋}. Then, β–³(𝑋) βŠ† (𝑋, βˆ—)π‘Ž . In particular, if (𝑋, βˆ—) is a left-zerosemigroup, then β–³(𝑋) = (𝑋, βˆ—)π‘Ž . Let 𝑋 := R be the set of all real numbers, and let β€œβˆ’β€ be the usual subtraction on 𝑋. Then, (𝑋, βˆ’)π‘Ž = {(π‘₯, 𝑦) | π‘₯ βˆ’ 𝑦 = 𝑦 βˆ’ π‘₯} = {(π‘₯, 𝑦)|π‘₯ = 𝑦} = β–³(𝑋). Let 𝑋 := R be the set of all real numbers, and let (𝑋, βˆ—, 𝑓) be a leftoid; that is, π‘₯ βˆ— 𝑦 := 𝑓(π‘₯) for all π‘₯, 𝑦 ∈ 𝑋, where 𝑓 : R β†’ R is an even function. If we denote β–³σΈ€  (𝑋) := {(π‘₯, βˆ’π‘₯) | π‘₯ ∈ 𝑋}, then π‘₯ βˆ— (βˆ’π‘₯) = 𝑓(π‘₯) = 𝑓(βˆ’π‘₯) = βˆ’π‘₯ βˆ— π‘₯ for all π‘₯ ∈ 𝑋. It follows that β–³σΈ€  (𝑋) βŠ† (𝑋, βˆ—, 𝑓). Let 𝑋 be a nonempty set, and let 𝑆 βŠ† 𝑋 Γ— 𝑋 such that β–³(𝑋) βŠ† 𝑆. 𝑆 is said to be diagonal symmetric if (π‘₯, 𝑦) ∈ 𝑆, then (𝑦, π‘₯) ∈ 𝑆 as well. If (𝑋, βˆ—) ∈ Bin(𝑋), then (𝑋, βˆ—)π‘Ž is diagonal symmetric. Define a map Ξ¦π‘Ž : Bin(𝑋) β†’ 𝑃(𝑋 Γ— 𝑋) by Ξ¦π‘Ž (𝑋, βˆ—) := (𝑋, βˆ—)π‘Ž . Proposition 12. If 𝑆 is a diagonal symmetric relation on 𝑋, then there exists (𝑋, βˆ—) ∈ 𝐡𝑖𝑛(𝑋) such that Ξ¦π‘Ž (𝑋, βˆ—) = 𝑆. Proof. Let 𝑆 be a diagonal symmetric relation on 𝑋. Define a binary operation β€œβˆ—β€ on 𝑋 by π‘₯ π‘₯ βˆ— 𝑦 := { 𝑧

if (π‘₯, 𝑦) βˆ‰ 𝑆, otherwise,

(3)

The Scientific World Journal

3

where 𝑧 is an element of 𝑋 satisfying 𝑧 = π‘₯ βˆ— 𝑦 = 𝑦 βˆ— π‘₯. Then, (𝑋, βˆ—)π‘Ž = 𝑆. In fact, if (π‘₯, 𝑦) ∈ 𝑆, then π‘₯ βˆ— 𝑦 = 𝑦 βˆ— π‘₯, and hence, (π‘₯, 𝑦) ∈ (𝑋, βˆ—)π‘Ž . Assume that (π‘₯, 𝑦) ∈ (𝑋, βˆ—)π‘Ž \ 𝑆. Then, since 𝑆 is symmetric diagonal, we have π‘₯ βˆ— 𝑦 = π‘₯ and (𝑦, π‘₯) βˆ‰ 𝑆. It follows that π‘₯ βˆ— 𝑦 = π‘₯, 𝑦 βˆ— π‘₯ = 𝑦. Since (π‘₯, 𝑦) ∈ (𝑋, βˆ—)π‘Ž , we have π‘₯ = π‘₯ βˆ— 𝑦 = 𝑦 βˆ— π‘₯ = 𝑦, proving that (π‘₯, 𝑦) = (π‘₯, π‘₯) ∈ β–³(𝑋) βŠ† 𝑆, a contradiction. Hence, Ξ¦π‘Ž (𝑋, βˆ—) = (𝑋, βˆ—)π‘Ž = 𝑆. If 𝑆 and 𝑇 are diagonal symmetric relations on 𝑋, then the same is true for 𝑆 ∩ 𝑇 and for 𝑆 βˆͺ 𝑇, while β–³(𝑋) itself is also a diagonal symmetric relation on 𝑋. In the latter case, the left-zero-semigroup is among the possible groupoids for which Ξ¦π‘Ž (𝑋, βˆ—) = (𝑋, βˆ—)π‘Ž = β–³(𝑋). Proposition 13. Let (𝑋, βˆ—), (𝑋, βˆ™) ∈ 𝐡𝑖𝑛(𝑋). If (𝑋, β—») = (𝑋, βˆ—) β—» (𝑋, βˆ™), then (𝑋, βˆ—)π‘Ž βŠ† (𝑋, β—»)π‘Ž . Proof. If (π‘₯, 𝑦) ∈ (𝑋, βˆ—)π‘Ž , then π‘₯ βˆ— 𝑦 = 𝑦 βˆ— π‘₯, and hence, π‘₯ β—» 𝑦 = (π‘₯ βˆ— 𝑦) βˆ™ (𝑦 βˆ— π‘₯) = (𝑦 βˆ— π‘₯) β—» (π‘₯ βˆ— 𝑦) = 𝑦 β—» π‘₯. Hence, (π‘₯, 𝑦) ∈ (𝑋, β—»)π‘Ž . Thus, if (𝑋, βˆ—) and (𝑋, β—») are given and the question comes up whether (𝑋, β—») = (𝑋, βˆ—) β—» (𝑋, βˆ™) for some (𝑋, βˆ™), then (𝑋, βˆ—)π‘Ž βŠ† (𝑋, β—»)π‘Ž is a necessary precondition for this to be the case. For example, if β–³(𝑋) = (𝑋, β—»)π‘Ž , then (𝑋, βˆ—)π‘Ž = β–³(𝑋) as well. Thus, we find that in (Bin(𝑋), β—»), β€œthe product does not decrease commutativity” as a general principle. Proposition 14. Let (𝑋, βˆ—) ∈ 𝐡𝑖𝑛(𝑋). If (𝐴, βˆ—) is a subgroupoid of (𝑋, βˆ—), then (𝑋, βˆ—)π‘Ž ∩ (𝐴 Γ— 𝐴) = (𝐴, βˆ—)π‘Ž . Proof. The proof is straightforward. Proposition 15. Let (𝑋, βˆ—), (𝑋, βˆ™) ∈ 𝐡𝑖𝑛(𝑋). If (𝑋, β—») = (𝑋, βˆ—) β—» (𝑋, βˆ™), then 𝐴(𝑋, βˆ™) βŠ† 𝐴(𝑋, β—»). Proof. If πœ‡ ∈ 𝐴(𝑋, βˆ™), then πœ‡(π‘₯ βˆ™ 𝑦) = πœ‡(𝑦 βˆ™ π‘₯) for all π‘₯, 𝑦 ∈ 𝑋. It follows that πœ‡ (π‘₯ β—» 𝑦) = πœ‡ ((π‘₯ βˆ— 𝑦) βˆ™ (𝑦 βˆ— π‘₯)) = πœ‡ ((𝑦 βˆ— π‘₯) βˆ™ (π‘₯ βˆ— 𝑦)) = πœ‡ (𝑦 β—» π‘₯) .

(4)

Proposition 16. Let (𝑋, βˆ—) ∈ 𝐡𝑖𝑛(𝑋) satisfy the condition: for any π‘Ž, 𝑏 ∈ 𝑋, there exist π‘₯, 𝑦 ∈ 𝑋 such that π‘Ž = π‘₯βˆ—π‘¦, 𝑏 = π‘¦βˆ—π‘₯. If (𝑋, β—») = (𝑋, βˆ—) β—» (𝑋, βˆ™), then 𝐴(𝑋, βˆ™) = 𝐴(𝑋, β—»). Proof. If πœ‡ ∈ 𝐴(𝑋, β—»), then πœ‡(π‘₯ β—» 𝑦) = πœ‡(𝑦 β—» π‘₯) for all π‘₯, 𝑦 ∈ 𝑋. Given π‘Ž, 𝑏 ∈ 𝑋, by assumption, we have π‘₯, 𝑦 ∈ 𝑋 such that π‘Ž = π‘₯ βˆ— 𝑦, 𝑏 = 𝑦 βˆ— π‘₯. It follows that πœ‡ (π‘Ž βˆ™ 𝑏) = πœ‡ ((π‘₯ βˆ— 𝑦) βˆ™ (𝑦 βˆ— π‘₯)) (5)

= πœ‡ ((𝑦 βˆ— π‘₯) βˆ™ (π‘₯ βˆ— 𝑦)) = πœ‡ (𝑏 βˆ™ π‘Ž) . Hence, πœ‡ ∈ 𝐴(𝑋, βˆ™); that is, 𝐴(𝑋, β—») Proposition 15, we prove the proposition.

βŠ†

Proposition 17. The relation ≀ is a quasi order on 𝐡𝑖𝑛(𝑋). Proof. Since (𝑋, βˆ—)πœ‡π‘Ž βŠ† (𝑋, βˆ—)πœ‡π‘Ž for any fuzzy subset πœ‡ : 𝑋 β†’ [0, 1], we have (𝑋, βˆ—) ≀ (𝑋, βˆ—) for all (𝑋, βˆ—) ∈ Bin(𝑋). If (𝑋, βˆ—) ≀ (𝑋, βˆ™) and (𝑋, βˆ™) ≀ (𝑋, ⋆), then (𝑋, βˆ—)πœ‡π‘Ž βŠ† (𝑋, βˆ™)πœ‡π‘Ž and (𝑋, βˆ™)πœ‡π‘Ž βŠ† (𝑋, ⋆)πœ‡π‘Ž , and hence, (𝑋, βˆ—)πœ‡π‘Ž βŠ† (𝑋, ⋆)πœ‡π‘Ž , for any fuzzy subset πœ‡ : 𝑋 β†’ [0, 1]. It follows that (𝑋, βˆ—) ≀ (𝑋, ⋆). Note that the relation ≀ described in Proposition 17 need not be a partial order on Bin(𝑋), since (𝑋, βˆ—)πœ‡π‘Ž = (𝑋, βˆ™)πœ‡π‘Ž for any fuzzy subset πœ‡ : 𝑋 β†’ [0, 1] does not imply (𝑋, βˆ—) = (𝑋, βˆ™). Given (𝑋, βˆ—) ∈ Bin(𝑋), we define [(𝑋, βˆ—)] := {(𝑋, βˆ™) ∈ Bin (𝑋) | (𝑋, βˆ—)πœ‡π‘Ž = (𝑋, βˆ™)πœ‡π‘Ž ,

βˆ€πœ‡ : fuzzy subset of 𝑋} .

(6)

Let ⟨Bin(𝑋)⟩ := {[(𝑋, βˆ—)] | (𝑋, βˆ—) ∈ Bin(𝑋)}. If we define a relation β‰€π‘ž on ⟨Bin(𝑋)⟩ by [(𝑋, βˆ—)] β‰€π‘ž [(𝑋, βˆ™)] ⇐⇒ (𝑋, βˆ—) ≀ (𝑋, βˆ™) .

(7)

then it is easy to see that (⟨Bin(𝑋), β‰€π‘ž ⟩) is a partially ordered set. For partially ordered sets, we refer to [6]. Proposition 18. If [(𝑋, βˆ—)] = [(𝑋, βˆ™)] in βŸ¨π΅π‘–π‘›(𝑋)⟩, then 𝐴(𝑋, βˆ—) = 𝐴(𝑋, βˆ™). Proof. Assume that [(𝑋, βˆ—)] = [(𝑋, βˆ™)]. Then, (𝑋, βˆ—)πœ‡π‘Ž = (𝑋, βˆ™)πœ‡π‘Ž for any fuzzy subset πœ‡ : 𝑋 β†’ [0, 1]. It follows that πœ‡ ∈ 𝐴 (𝑋, βˆ—) ⇐⇒ πœ‡ (π‘₯ βˆ— 𝑦) = πœ‡ (𝑦 βˆ— π‘₯)

βˆ€π‘₯, 𝑦 ∈ 𝑋

⇐⇒ (𝑋, βˆ—)πœ‡π‘Ž = 𝑋 Γ— 𝑋 = (𝑋, βˆ™)πœ‡π‘Ž ⇐⇒ πœ‡ (π‘₯ βˆ™ 𝑦) = πœ‡ (𝑦 βˆ™ π‘₯)

(8)

βˆ€π‘₯, 𝑦 ∈ 𝑋

⇐⇒ πœ‡ ∈ 𝐴 (𝑋, βˆ™) ,

Hence, πœ‡ ∈ 𝐴(𝑋, β—»).

= πœ‡ (π‘₯ β—» 𝑦) = πœ‡ (𝑦 β—» π‘₯)

Let (𝑋, βˆ—), (𝑋, βˆ™) ∈ Bin(𝑋). Define a relation β€œβ‰€β€ on Bin(𝑋) by (𝑋, βˆ—) ≀ (𝑋, βˆ™) if and only if (𝑋, βˆ—)πœ‡π‘Ž βŠ† (𝑋, βˆ™)πœ‡π‘Ž for any fuzzy subset πœ‡ : 𝑋 β†’ [0, 1].

𝐴(𝑋, βˆ™). By

proving that 𝐴(𝑋, βˆ—) = 𝐴(𝑋, βˆ™).

5. Convex Sets Proposition 19. Let πœ‡, ] be fuzzy subsets of (𝑋, βˆ—). If πœ† := π‘‘πœ‡ + (1 βˆ’ 𝑑)], where 𝑑 ∈ [0, 1], then (𝑋, βˆ—)πœ‡π‘Ž ∩ (𝑋, βˆ—)]π‘Ž βŠ† (𝑋, βˆ—)πœ†π‘Ž . Proof. If (π‘₯, 𝑦) ∈ (𝑋, βˆ—)πœ‡π‘Ž ∩ (𝑋, βˆ—)]π‘Ž , then πœ‡(π‘₯ βˆ— 𝑦) = πœ‡(𝑦 βˆ— π‘₯) and ](π‘₯ βˆ— 𝑦) = ](𝑦 βˆ— π‘₯) for all π‘₯, 𝑦 ∈ 𝑋. It follows that πœ† (π‘₯ βˆ— 𝑦) = π‘‘πœ‡ (π‘₯ βˆ— 𝑦) + (1 βˆ’ 𝑑) ] (π‘₯ βˆ— 𝑦) = π‘‘πœ‡ (𝑦 βˆ— π‘₯) + (1 βˆ’ 𝑑) ] (𝑦 βˆ— π‘₯) = πœ† (𝑦 βˆ— π‘₯) , proving that (π‘₯, 𝑦) ∈ (𝑋, βˆ—)πœ†π‘Ž .

(9)

4

The Scientific World Journal

In Proposition 19, the equality does not hold in general. See the following example. Example 20. Let 𝑋 := [0, 1]. Define a binary operation β€œβˆ—β€ on 𝑋 by π‘₯ βˆ— 𝑦 := π‘₯ for all π‘₯, 𝑦 ∈ 𝑋; that is, (𝑋, βˆ—) is a left-zero-semigroup. Define two fuzzy subsets πœ‡, ] on 𝑋 by πœ‡(π‘₯) := π‘₯, ](π‘₯) := 1 βˆ’ π‘₯ for all π‘₯ ∈ 𝑋. Then, πœ‡ and ] are oneone mappings. Let ∈ be a real number such that 0