ON GENERALIZATION OF K-WRIGHT FUNCTIONS AND ITS PROPERTIES KULDEEP SINGH GEHLOT AND JYOTINDRA C. PRAJAPATI
Dedicated to great mathematician Srinivasa Ramanujan on his 125th birthday Abstract. In present paper, authors discuss about generalized K-Write Function p Ψkq (z) with its convergence condition. We obtain functional relation between generalized K-Wright function and generalized Wright function, recurrence relation, and integral representation. Some special cases have also been discussed.
1. Introduction Generalized K-Gamma Function Γk (x) defined as (Diaz and Pariguan [1]) x
− 1
n! k n (nk) k Γk (x) = lim n→∞ (x)n,k
, k > 0, x ∈ C\kZ− ,
(1)
where (x)n,k is the k-Pochhammer symbol and is given by (x)n,k = x (x + k) (x + 2k) . . . . . . . . . . . . (x + (n − 1) k) ,
x ∈ C, k ∈ R, n ∈ N+ (2)
For Re(x) > 0, Γk (x) is defined as the integral Z∞ Γk (x) =
tx−1 e
−tk k
dt
(3)
0
It is easy to prove following results x
Γk (x) = k k −1 Γ
x k
Γk (x + k) = xΓk (x) γ (γ)r,k = (k)r k r (γ)r,k =
Γk (γ + rk) Γk (γ)
(4) (5) (6) (7)
rk(x)r−1,k = (x)r,k − (x − k)r,k
(8)
(δ)n+j,k = (δ)j,k (δ + jk)n,k
(9)
2000 Mathematics Subject Classification. 26A33, 33B15, 33C20, 33E12. Key words and phrases. Generalized K-Wright function, K-Gamma function, Mittag-Leffler function. 1
2
KULDEEP SINGH GEHLOT AND JYOTINDRA C. PRAJAPATI
2. Generalized K-Wright Function Generalized K- Wright Function is defined as p Ψkq (z) for k ∈ R+ ; z ∈ C, αi , βj ∈ R(αi , βj 6= 0; i = 1, 2, ..., p; j = 1, 2, ..., q) and (ai + αi n), (bj + βj n) ∈ C\kZ− ,
k p Ψq
(z) =
k p Ψq
(ai , αi )1,p z = (bj , βj )1,q
∞ X n=0
p Q
Γk (ai + αi n)z n
i=1 q Q
(10) Γk (bj + βi n)n!
j=1
We use following notations for describing convergence condition, β X X q q p p p −αi q j X X Y αi bj ai p − q βj αi k Y βj k ; µ = − ;δ = − + . ∆= k k k k k k 2 j=1 j=1 i=1 i=1 j=1 i=1
Theorem 2.1. For k ∈ R+ ; z ∈ C, αi , βj ∈ R(αi , βj 6= 0; i = 1, 2, ..., p; j = 1, 2, ..., q) and (ai + αi n), (bj + βj n) ∈ C\kZ− , (a) if ∆ > −1 then series (10) is absolutely convergent for all z ∈ C and Generalized K-Wright function p Ψkq (z) is an entire function of z. (b) if ∆ = −1 then series (10) is absolutely convergent for all |z| < δ and of |z| = δ, Re(µ) > 21 . Above theorem can prove easily by using results of Diaz and Pariguan [1], Kilbas [4].
3. Special Cases For the appropriate values of the parameters, authors obtain some special cases of Generalized K-Wright function p Ψkq (z) in terms of family of Mittag-Leffler function defined as [2], [3], [5], [6], [8], [9] and [10]. ∞ P (γ, k) (γ)n,k z n γ k k z = (i) 1 Ψ2 (z) = 1 Ψ2 Γk (nα+β)(n!) = Ek,α,β (z) (β, α), (γ, 0) n=0 ∞ P (γ, rk) (γ)nr,k z n γ,r (ii) 1 Ψk2 (z) = 1 Ψk2 z = Γ (nα+β)(n!) = GEk,α,β (z) k (β, α), (γ, 0) n=0 ∞ P (1, 1) 1 1 zn (iii) 1 Ψ2 (z) = 1 Ψ2 z = Γ(nα+1) = Eα (z) (1, α), (γ, 0) n=0 ∞ P (γ, 1) (γ)n z n γ 1 1 (iv) 1 Ψ2 (z) = 1 Ψ2 z = Γ(nα+β)(n!) = Eα,β (z) (β, α), (γ, 0) n=0 ∞ P (γ, r) (γ)nr z n γ,r (v) 1 Ψ12 (z) = 1 Ψ12 z = = Eα,β (z) Γ(nα+β)(n!) (β, α), (γ, 0) n=0 ∞ P (1, 1) zn z = (vi) 1 Ψ12 (z) = 1 Ψ12 Γ(nα+β) = Eα,β (z) (β, α), (γ, 0) n=0 (ai , αi )1,p 1 1 (vii) p Ψq (z) = p Ψq z = p Ψq (z) (bj , βj )1,q
ON GENERALIZATION OF K-WRIGHT FUNCTIONS AND ITS PROPERTIES
3
4. Recurrence relations Theorem 4.1. The relationship between generalized K-Wright function and generalized Wright function is given by the relation
k p Ψq
p P i=1
k (ai , αi )1,p z = (bj , βj )1,q
q P ai − bj j=1 k
p Ψq
k p−q
ai k , bj (k,
αi k 1,p βj k )1,q
p P i=1
ai −
zk
q P j=1
bj
(11)
k
or counterpart q P
p Ψq
k (ai , αi )1,p z = (bj , βj )1,q
j=1
!
p P
bj −
ai
i=1
k p Ψq
k q−p
(kai , kαi )1,p zk (kbj , kβj )1,q
q P
βj −
j=1
p P
αi
!
i=1
(12)
Proof: Using definition of generalized K-Wright function (10), we have p Q X Γk (ai + αi n)z n ∞ (ai , αi )1,p i=1 k k z = , A ≡ p Ψq (z) = p Ψq q Q (bj , βj )1,q n=0 Γk (bj + βi n)n! j=1
using the equation (4), we get
A≡
∞ X n=0
p Q
k
ai +αi n −1 k
Γ
i=1 q Q
k
bj +βj n −1 k
Γ
ai +αi n k
j=1
zn
bj +βj n k
n!
This reduces to
A≡
p P i=1
k
q P ai − bj j=1 k
k p−q
p Q ∞ X
Γ
i=1
ai k
n=0
+
αi n k
q Q
Γ
zk
j=1
bj k
+
p P i=1
ai −
q P j=1
bj
k
βj n k
n
n!
Finally, we arrived at
A≡
k
q P ai − bj i=1 j=1 k p P
k p−q
p Ψq
ai k , bj (k,
αi k 1,p βj k )1,q
zk
q p P P ai − bj i=1 j=1 k
Counterpart (12) can be proving in similar manner. Theorem 4.2. Let k ∈ R+ ; z ∈ C; ai , bj ∈ C; αi , βj , β ∈ R (αi , βj 6= 0, i = 1, 2, ..., p; j = 1, 2, ..., q) then (ai , αi )1,p k z = p Ψq+1 (b j , βj )1,q , (b, β) (ai , αi )1,p (ai , αi )1,p k k d b p Ψq+1 z + (βz) dz p Ψq+1 z (13) (bj , βj )1,q , (b + k, β) (bj , βj )1,q , (b + k, β)
4
KULDEEP SINGH GEHLOT AND JYOTINDRA C. PRAJAPATI
Proof: Using the definition of generalized K-Wright function (10), we have p p Q Q n Γk (ai + αi n)z n Γ (a + α n)z ∞ ∞ k i i X d X i=1 i=1 B≡b + (βz) , q q Q dz n=0 Q n=0 Γk (bj + βj n)Γk (b + k + βn)n! Γk (bj + βj n)Γk (b + k + βn)n! j=1
j=1
using equation (5), we get
B≡
p Q
∞ X n=0
Γk (ai + αi n)(b + βn)z n
i=1 q Q
Γk (bj + βj n)(b + βn)Γk (b + βn)n!
j=1
This immediately leads to k p Ψq+1
(ai , αi )1,p z (bj , βj )1,q , (b, β)
Theorem 4.3. Let k ∈ R+ ; z ∈ C; a, ai , bj ∈ C; α, αi , βj , β ∈ R (αi , βj 6= 0, i = 1, 2, ..., p; j = 1, 2, ..., q) then (ai , αi )1,p , (a + k, αk) (ai , αi )1,p , (a, αk) k z − p+1 Ψkq+1 z p+1 Ψq+1 (bj , βj )1,q , (a + k, 0) (bj , βj )1,q , (a, 0) (ai + αi , αi )1,p , (a + ak, αk) k = zak(a + k)α−1,k p+1 Ψq+1 z (14) (bj + βj , βj )1,q , (a + αk, 0) Proof: Using the definition of generalized K-Wright function (10), we have p Q ∞ X i=1 Γk (ai + αi n) z n Γk (a + k + akn) Γk (a + akn) { − }, D≡ q Q n! Γk (a + k) Γk (a) n=0 Γk (bj + βj n) j=1
using equations (7) and (8), we get
D≡
∞ X n=0
p Q i=1 q Q
Γk (ai + αi n) Γk (bj + βj n)
zn {αnk(a + k)αn−1,k }. n!
j=1
This yield
D≡
∞ X n=0
p Q i=1 q Q
Γk (ai + αi (n + 1)) Γk (bj + βj (n + 1))
z n+1 {αk(a + k)αn+(α−1),k }. n!
j=1
This leads to
D≡
∞ X n=0
p Q i=1 q Q j=1
Γk (ai + αi (n + 1)) Γk (bj + βj (n + 1))
z n+1 {αk(a + k)α−1,k (a + k + (α − 1)k)αn,k }. n!
ON GENERALIZATION OF K-WRIGHT FUNCTIONS AND ITS PROPERTIES
5
Finally, using (7), we arrived at
D
≡ zak(a + k)α−1,k
∞ X
p Q
Γk (ai + αi + αi n) Γk (a + αk + αkn)
i=1
n=0
q Q
Γk (bj + βj + βj n) Γk (a + αk)
zn n!
j=1
≡ zak(a +
k)α−1,k p+1 Ψkq+1
(ai + αi , αi )1,p , (a + ak, αk) z (bj + βj , βj )1,q , (a + αk, 0)
5. Integral representations Theorem 5.1. For k ∈ R+ ; z ∈ C, ai , bj ∈ C; αi , βj ∈ R (αi , βj 6= 0, i = 1, 2, ..., p; j = 1, 2, ..., q) and (ai + αi n), (bj + βj n) ∈ C\kZ− , then k p Ψq
(ai , kαi )1,p z = (bj , kβj )1,q
p Q i=1 q Q
βj Γk (ai ) Q αi Q Γk (bj ) r=1 s=1
1 B(µr ,ϑs −µr )
j=1 (kαi )αi tz β (kβj ) j
R1
tµr −1 (1 − t)ϑs −µr −1 e dt, ai bj k +r−1 k +s−1 where = µ and = ϑs r αi βj ×
(15)
0
Proof: Using the definition of generalized K-Wright function (10), we have p Q Γk (ai + kαi n) n ∞ X zn z (ai , kαi )1,p i=1 k z = D , Ψ = (16) p q q Q (bj , kβj )1,q n! n! n=0 Γk (bj + kβj n) j=1
where
p Q
D≡
i=1 q Q
p Q
Γk (ai + kαi n) ≡ Γk (bj + kβj n)
j=1
i=1 q Q
Γk (ai )(ai )αi n,k , Γk (bj )(bj )βj n,k
j=1
using (6), above equation reduces to p Q Γk (ai )k αi n aki α n i , D ≡ i=1 q Q b Γk (bj )k βj n kj j=1
(17)
βj n
using generalized Pochhammer symbol(Shukla and Prajapati [8]), q Y Γ(γ + nq) γ+r−1 (γ)nq = = q qn , if q ∈ N; Γ(γ) q n r=1 Equation (17), immediately leads to, p αi ai Q Q k +r−1 γk (ai ) αi n αi n α i k (αi ) n D ≡ i=1 × r=1 b q β Q j j k βj n (βj )βj n Q k +s−1 γk (bj ) j=1
s=1
βj
n
(18)
6
KULDEEP SINGH GEHLOT AND JYOTINDRA C. PRAJAPATI
Let
ai k
+r−1 αi
p Q
D
≡
i=1 q Q j=1 p Q
≡
i=1 q Q
b
j k
= µr and
+s−1 βj
= ϑs then above equation follows αi Q
γk (ai )
(µr )n k αi n (αi )αi n r=1 × βj k βj n (βj )βj n Q γk (bj ) (ϑs )n s=1
γk (ai ) γk (bj )
αi Q
αi n
αi n
k (αi ) × β k βj n (βj )βj n Qj
j=1
Γ(ϑs )
r=1
×
Γ(ϑs − µr )Γ(µr )
Γ(µr + n)Γ(ϑs − µr ) , Γ(ϑs − µr + µr + n)
s=1
above equation can be written in the form of Beta function as, p Q
≡
i=1 q Q
α Qi
γk (ai )
α n kαi n (αi ) i βj n βj n k (β ) j γk (bj )
×
j=1
Γ(ϑs )
R1
r=1 βj Q
tµr −n−1 (1 − t)ϑs −µr −1 dt,
(19)
Γ(ϑs −µr )Γ(µr ) 0
s=1
From (16) and (19), we obtain p Q βj Γk (ai ) Q αi Q R1 µ −1 (a , kα ) i i 1,p k 1 z = i=1 × t r (1 − t)ϑs −µr −1 dt q p Ψq Q B(µr ,ϑs −µr ) (bj , kβj )1,q Γk (bj ) r=1 s=1 0 j=1
This gives equation (15). Theorem 5.2. For k ∈ R; z ∈ C, ai , bj ∈ C; αi , βj ∈ R (αi , βj 6= 0; i = 1, 2, ..., p; j = 1, 2, ..., q) and (ai + αi n), (bj + βj n) ∈ C\kZ− , then " # p p p P P P a a a ∞ ( ki )−p R ( ki )−p ( pi ) (ai , kαi )1,p k k −t ¯ i=1 z = k i=1 e ti=1 z dt(20) p Ψq 0 Ψq (bj , βj )1,q (kt) (bj , kβj )1,q 0 Proof: Using the definition of generalized K-Wright function (10), we have
k p Ψq
(z) =
k p Ψq
(ai , αi )1,p z = (bj , βj )1,q
∞ X n=0
p Q
Γk (ai + αi n)z n
i=1 q Q
, Γk (bj + βi n)n!
j=1
using equation (4), we get
k p Ψq
(z) =
∞ X
p Q
k
ai +αi n −1 k
i=1
n=0
q Q
in Γ( ai +α )z n k
, Γk (bj + βj n)n!
j=1
this can be written as in the form
k p Ψq
(z) =
∞ X n=0
p Q i=1 q Q
k
ai +αi n −1 k
z n Z∞
Γk (bj + βj n)n!
j=1
0
e−t t
ai +αi n −1 k
dt,
ON GENERALIZATION OF K-WRIGHT FUNCTIONS AND ITS PROPERTIES
7
above equation reduces to,
k p Ψq
(z) =
Z∞ Y p
(kt)
0 i=1
ai k
−1 −t
e
p Q
∞ X n=0
(kt)
nαi k
i=1 q Q
Γk (bj + βj n)
zn dt, n!
j=1
Finally, we arrived at k p Ψq
" # p p p P P P a a a ∞ ( ki )−p R ( pi ) ( ki )−p (ai , kαi )1,p k −t ¯ i=1 z = k i=1 z dt e ti=1 0 Ψq (bj , βj )1,q (kt) (bj , kβj )1,q 0
Particular Cases: For suitable values of parameters the results obtained in references Dorrego and Cerutti [2] , Gehlot [3] are special cases of this paper.
Acknowledgement: Authors are grateful to reviewers for their valuable suggestions and comments from the betterment of paper and also thankful to Mr. Krunal Kachhia (Lecturer, CHARUSAT)for LaTeX typing of paper.
References [1] Diaz, R. and Pariguan, E. On hypergeometric functions and Pochhammer k-symbol. Divulgaciones Mathematicas, Vol. 15 No. 2 (2007) 179-192. [2] Dorrego, G.A. and Cerutti, R.A. The K-Mittag-Leffler Function. Int. J. Contemp. Math. Sciences, Vol. 7 (2012) No. 15, 705-716. [3] Gehlot K.S. The generalized K- Mittag-Leffler function, Int. J. Contemp. Math. Sciences, Vol. 7 (2012) No. 45, 2213-2219. [4] Kilbas, A.A. Fractional Calculus of the Generalized Wright function, FCAA, Vol.(8), No 2 (2005), 113-126. [5] Mittag-Leffler, G.. Sur la nouvellefonction . C.RAcad. Sci. Paris 137 (1903) 554-558. [6] Prabhakar, T. R. A singular integral equation with a generalized Mittag- Leffler function in the kernel. Yokohama Math. J. 19 (1971), 7-15. [7] Samko, S. G., Kilbas, A.A. and Marichev,O.I. ,Fractional Integral and Derivatives, Theory and Applications. Gordon Breach, Yverdon et al. (1993). [8] Shukla, A. K. and Prajapati, J.C.. On the generalization of Mittag-Leffler function and its properties. Journal of Mathematical Analysis and Applications, 336 (2007) 797-811. [9] Wiman, A. Uber den fundamental Satz in der Theories der Funktionen . Acta Math. 29 (1905) 191-201. [10] Wright, E.M. The asymptotic expansion of the generalized hypergeometric function. J. London Math. Soc. 10 (1935), 287-293.
8
KULDEEP SINGH GEHLOT AND JYOTINDRA C. PRAJAPATI
Kuldeep Singh Gehlot Department of Mathematics, Government Bangur College, Pali-306401, Rajasthan, India. E-mail address:
[email protected] Jyotindra C. Prajapati Charotar University of Science and Technology, Changa, Anand-388421, Gujarat, India. E-mail address:
[email protected]