On inversion of frequency domain electromagnetic

0 downloads 0 Views 574KB Size Report
30. 40. 50. 60 z in m δ=12.3m δ=62.4m δ=53.9m δ=32.2% δ=101.5% δ=200.5% δ=16.6% synthetic estimated d1 d2 d3 ρ1 ρ2 ρ3 ρ4 d1 d2 d3 ρ1 ρ2 ρ3 ρ4. MCM.
pyGIMLi

On inversion of frequency domain electromagnetic data in salt water problems Thomas Günther Leibniz Institute for Applied Geophysics (LIAG), Hannover

Questions

Imaging of 2-layer case (100 − 3 Ωm) Resolution measures

66 82 100

IP d=100m h=1m

IP d=200m h=1m

IP d=10m h=40m

16 z in m

32 50 66

56k 28k 14k 7k 3.5k 1.7k 880 440 220 110

56k 28k 14k 7k 3.5k 1.7k 880 440 220 110

56k 28k 14k 7k 3.5k 1.7k 880 440 220 110

100

56k 28k 14k 7k 3.5k 1.7k 880 440 220 110

82

IP d=200m h=1m

32 50 66 82 100 0

OP d=50m h=1m

OP d=100m h=1m

OP d=200m h=1m

66 100

20

20 z in m

δ=4.3m

30 δ=52.3%

30

Rx-Tx=100m

10

δ=4.7%

δ=25.7%

40

50 δ=30.8%

50 δ=14.2%

3

10

30

100 300 601

30

40

δ=8.1m

50

0

Rx-Tx=150m

10

δ=3.8%

10

30

δ=1.0m δ=10.3% δ=4.2m

100 300 601

3

10

30

δ=1.2%

30 δ=0.9m δ=17.0%

40 δ=4.4m

40

50 δ=21.4% 601

3

30

50

0

DC

10

δ=0.6%

10

30

δ=4.0m δ=89.1% δ=25.2m

100 300 601

3

δ=0.5%

δ=1.3m δ=16.0%

f [Hz]

1760 440 110

200

250

300 x [m]percent outphase

350

400

f [Hz]

7040 1760 440 110

200

250

300 x [m]

350

300

d1 d2 d3 ρ 1 ρ 2 ρ 3

δ=5.1m

0

err=1.0%

20

20 δ=5.8m

δ=2.0m

30 δ=16.9%

10

30

100 300 601δ=19.2%3

30 δ=50.8%

40 δ=37.6m

50 δ=13.7m

3

err=2.0%

50 δ=25.3% 10

30

100 300 601

3

10

30

100 300

δ=8.8%

30

0 δ=1.5%

10 δ=18.0%

10 δ=27.8%

20 δ=5.6m

20 δ=6.8m

20

30

30

30

δ=0.3m

δ=193.8%

δ=128.9%

40

δ=0.1m 10 δ=6.3% δ=0.8m

40

40 δ=1.5m

50 δ=19.9m

50 δ=40.6m

50

δ=1.1%

60 δ=36.2%

60

60

100 300 601

3

10

30

δ=8.7% δ=2.2m δ=6.2%

δ=8.6% DC EM 701 3 10 30 100 300 701 3 10 30 100 300 701 Results of individual and joint inversion with lithology

100 300

3

10

30

DCEM 100 300

Conclusions & Outlook Tx-Rx geometry highly influences FDEM sensitivity I resolution properties depend on noise level I combination of Tx-Rx can improve result slightly I DC resolves resistors, EM resolves conductors ⇒ combined inversion highly recommended 2 I χ test underestimates, MCM overestimates uncertainty I

20 40 60 80 100

10 0 10 20 30 40 50 60 70

28160

100

10 δ=12.2%

40

0

7040

30

10 δ=5.2%

δ=2.5%

Shallow salt water over Eem clay layer and deep saltwater intrusion (Attwa et al., 2011) 30 15 0 15 30 45 60 75 90

10

RD

I14k I7k I3k I2k I880 I440 I220 I110 O14k O7k O3k O2k O880 O440 O220 O110 ρ4 I14k I2k I220 O7k O880O110

Inversion and resolution analysis of synthetic model: χ2 test (bars), model variance (numbers), model covariance matrix (MCM), model (RM) & data (RD) resolution matrix

-50

0

Laterally Constrained Inversion: Cuxhaven profile

28160

3

0 δ=1.7%

40

Combined inversion DC+FDEM is superior to single and decreases uncertainty

inphase percent

δ=53.9m

1

δ=1.3m

30 δ=0.4m

50 10

d1 d2 d3 ρ1 ρ2 ρ3 ρ4

0 δ=59.8%

DCEM

20

δ=1.3%

δ=62.4m

d1 d2 d3 ρ 1 ρ 2 ρ 3 ρ 4

Joint inversion field case Cuxhaven

20 z in m

z in m

20

MCM-scaled

60 δ=16.6%

err=0.5%

601

100 300

z in m

10

d1 d2 d3 ρ 1 ρ 2 ρ 3 ρ 4

δ=200.5%

50

d1 d2 d3 ρ1 ρ2 ρ3 ρ4

Result for combined Tx-Rx data and different noise

z in m

10

EM

40

50 δ=11.0%

Joint inversion FDEM+DC 0

30

40

Synthetic model inversion for three Tx-Rx separations

0

30 δ=101.5%

20

δ=7.5%

3

0

RM

d1 d2 d3 ρ1 ρ2 ρ3 ρ4

Synthetic experiment combined geometry

20

40 δ=56.4m

601

0

δ=2.4m

20 δ=12.3m

Anomaly of a saltwater interface as a function of depth

z in m

10

z in m

10 δ=8.2%

10

-40

82

z in m

Rx-Tx=50m

10 δ=32.2%

-30

50

synthetic estimated

20

-20

32

MCM

0

30

-10

OP d=10m h=40m

16

Synthetic experiment for different geometry 0

%

16

Layer sensitivity for different Tx-Rx (d) and height (h)

0

IP d=10m h=40m

z in m

IP d=50m h=1m

0

IP d=100m h=1m

z in m

50

IP d=50m h=1m

z in m

z in m

32

0

4 3 3 2 2 1 1 0 0 0 -1 -1 -2 -2 -3 -3 -4

112k 56k 28k 14k 7k 3.5k 1.7k 880 440 220 110

16

%

112k 56k 28k 14k 7k 3.5k 1.7k 880 440 220 110

IP d=10m h=40m

112k 56k 28k 14k 7k 3.5k 1.7k 880 440 220 110

IP d=200m h=1m

z in m

IP d=100m h=1m

z in m

IP d=50m h=1m

z in m

Depth sensitivity: geometries 0

Geophysical Inversion & Modelling Library in Python I error-weighted Gauss-Newton minimization 2 I block (λ → 0) or smooth discretization (λ: χ =1) I very simple joint inversion for same or other parameters 2 I uncertainty analysis by parameter variation (χ test), model covariance/resolution and data importance matrices

How do the different frequencies contribute? I Influence of loop separation and system height? I How is the resolution compared to VES (or TEM)? I What can we improve by prior knowledge? I Improvement by combination of different techniques? I How to combine line data with coupled soundings? I

112k 56k 28k 14k 7k 3.5k 1.7k 880 440 220 110

saltwater is an important issue on coasts and inland (N. Germany) I FDEM represents fast large-scale conductivity imaging I applied airborne (HEM) and on ground (MaxMin/Promys)

I

Framework – pyGIMLi

z in m

Motivation

400

120 200

1.0

250

4.2

300

350

17

72

Data (left) and 2d model (top) from LCI type inversion

Attwa, M., Günther, T., Grinat, M. & Binot, F. (2011): Evaluation of DC, FDEM and IP resistivity methods for imaging perched saltwater and a shallow channel within coastal tidal flat sediments, J. Appl. Geoph. 75, 656-670.

http://www.liag-hannover.de

Outlook

400

300

more rigorous treatment of HEM data I Strategy: first combined inversions (with VES, TEM, MRS, etc.), then 2d/3d LCI/SCI inversion using results of combined inversion as reference I

[email protected]

Suggest Documents