On Representation and Generalization Capability of Pyramid Networks
Recommend Documents
On the Generalization Capability of Multi-Layered. Networks in the Extraction of Speech Properties. Renato DE MORI*, Yoshua BENGIO*, and Piero COSI. * *.
the network weights simultaneously. For fast convergence and good solution quality of the algorithms, we suggest the hyb
After describing an augmentation of the ... including the neuron augmentation to circular unit and the .... will be also used as a synonym for subset of data.
robust speech recognition, where the training and testing data fol- low different .... Illustration of the two-class cla
Representation, Learning, Generalization and Damage in Neural Network Models of Reading Aloud. John A. Bullinaria. Neural Networks Research Group.
generalization can strengthen procedures used to search for structural equation models for large data sets. ..... from the source, we will sometimes need to insist on the formal de nition, according to which a trek, like ..... Proof First we show tha
Apr 20, 2012 - Fluorescence lifetime imaging microscopy (FLIM), Forster resonance energy .... offset b or we can vary the full width half maximum (FWHM).
Luxor, Egypt ... 2. Representation capability. Representation capability of architects can be described as .... levels of geometrical definition and abstraction, 2).
Form Giving, Knowledge Building and Retrieving, and Decision-Making. ..... Barreneche, Raul A., 1996, Gehry's Guggenheim, Architecture,. September, pp.
and for freeways. It may also have variant rules for highways on bridges, in tunnels, ..... Recent engineering work has concentrated on providing geoprocessing tools that .... way on a framework and tools for contextual generalization. Notes. 1.
Al-Isra Private University, P.O. Box 22, Code 11622, Amman, Jordan. Abstract: Problem statement: Generalization feature enhancement of neural networks, ...
S.K.M. Wong, Y. Xiang and X. Nie ... variable is independent of its non-descendants given its parents. ... x3 x4 x5 x6. Figure 1: The DAG of a Bayesian Network. The joint probability distribution of .... Consider a function Ïk on a set k of variable
Apr 21, 2009 - Measurement 1998. 23,. 93-115. ... 2000, 49, 829-834. 9. Patra ... In Proceedings of the IEEE ICTTA'06, Damascus, Syria, 24-28 April,. 2006; p.
Mar 30, 2016 - Graduate School of Information Science and Technology, The University of Tokyo. Abstract. The workflow of extracting features from images ...
Mar 30, 2016 - arXiv:1603.09046v1 [cs.CV] 30 Mar 2016 ..... evaluation metric [2,30], since it is considered to better-indicate the overall se- mantic similarity.
known in the literature as the Ostrowski inequality. Definition 1. Let P ( a ) x# < x$ < ... < xn ) b be any partition of *a, b+ and let f!xi" ) f!xi"$" f!xi" Then f!x" is said to ...
continuous function F(x, t) and prove that on a rectangle [a, b] à (â1, 1), a ⤠x ⤠... In other words, assume that the function f is continuous on bounded interval [a ...
Jul 22, 2013 - ... Science, Japan. 4Department of Mathematics, University of California, Berkeley, USA ... 8Department of Computer Science, and Department of Physics & Astronomy, ... the nodes, then the degree distribution of the growing.
Apr 14, 2000 - Project Aries Technical Memo ARIES-TM-005. Artificial Intelligence Laboratory. Department of Electrical Engineering and Computer Science.
Apr 14, 2000 - A capability representation with embedded address and nearly-exact ..... gives a better fit between segment and object sizes than a purely ...
Support Vector Classifiers. Davide Anguita ... crossâvalidation for Support Vector Machines is here considered. Indeed
There are various concerns with data mining techniques, for example, rule ... example, the rule set may be further optimized by swapping rules extracted from dif-.
Each of these methods is tested on a wide range of dataâsets for different fold .... public dataâsets have been used
K-Fold Generalization Capability Assessment for. Support Vector ... diverse learning frameworks; the present work solely deals with SVM classification. A. Three ...
On Representation and Generalization Capability of Pyramid Networks
den neurons to the output, a key feature of this network is that the output of the pyramid network can be regarded as a sum of L outputs zcÐl=0Ð...ÐL , y = q c=0.
network with one hidden layer network with two hidden layers
0.75
classification rate
¦ ¨ A2;3 q ¤?7®A2;3/3:yz87~>7 ?r ` q q
120
100
80
60
40
Number of (each) hidden layer unit
0.7
0.65
0.6
0.55
b`\l2R x R.°Ôjei6±2MO_ TWVjece`\PEq[aWcef®PEmeMÔN2MO_EVTd_EiaWce]^M®²VTd_@PEmeMòmeM^aW_EP[fe`\qEM^aWqvM Ne_ETUe± Z M^iL³ 0.5
10
15
20
25
30
35
40
45
50
Number of (each) hidden layer unit
Ê ùË´DÓ5#(Ñ$µ"Í@ÓsÏ̶·$ÎDÓ#kÌÍ1' 'Ü8Ú"ç~ç×{Û ØãÜ çYÛYÝÚ Ù°æ ÞÜØOßkà2ÝáYâ0Øà Øwßkà å[ÜnÞêWã Ú2Ýá çÝà2å~×°Ü é âeï¢Ú2Þæ ênà é ç~Ú2Ýé ÜôØãÜôçKÜÝ÷à2Ý é Ú"Þ~êÜôà2÷>ØãÜ é é ß·Ù°Øã Øãà2âÜ'à2÷ é Ö~×°ØÙ{×°ÚQÛ2ÜݹÞÜØOßkà2ÝáUâQì ãÜèåKÜÞ~êWã é Ú2ÝáæÚ2ØÚ'âÜnØâ Ú2ÝÜ à2åØÚ"Ù{ÞS Ünæ÷sÝà é ØãnÜ ¸½öÔí é Ú2êWãÙ{ÞÜ ×°ÜnÚ2ÝÞÙ{ÞëªåKÜÞêWã é Ú"Ýá ÝÜçKà2âÙ{Øà"ÝÛ ì ã~ܬåKÜÞêWã é Ú2ÝáùçÝà2å×{Ü é âÚ2ÝܬØãÜhû(Ö~âØÝÚ2×°Ù{Ú2Þ êÝÜnæÙ{ØÁêÚ2ÝæüÚ2ç~çÝàeäQÚ2×ÔçÝà2å×{Ü é Ú"Þ~æªØã~ÜIãÜÚ2ÝØ¬æÙ{âÜÚ2âÜ>çÝà2åñ ×{Ü é ì ãÜû5ÖâSØ^ÝÚ2×{Ù°Ú2Þ¢ênÝÜæÙ{ØêÚ2Ýæ/Ú"ç~çÝàQäeÚ2×ç~Ýà"å~×°Ü Ù°âØ^àÁÚ2ââÜnââ Ú2çç~×°Ù{êÚ2ØÙ°à2Þ~â÷sà2ÝØã~Ü ÷sà2Ý é à2£÷ 3sên×°Ú2âSâeï~Ú"ØØÝÙ{åÖØÜ¢â 7^ìû(Þù¿Ü ¯UÖ~Ú"× é Ù{âê×{Ú2ââÙ ênÚ2Ø^Ù{à2Þùêà2âØ Ù{âÖâÜæÔì ãÜ ÝÚeß æ~Ú2Ø^ÚüÙ°âIç~ÝÜçÝàUênÜââSÜæ åYÛÞà2Ý Ú2×°Ù{ÿÚ2ØÙ°à2Þüà2÷®ØãÜ Ù{ÞçÖ~ضæÚ2ØÚKïKß·ãà2âܹäQÚ"×{ÖÜnâ¶Ú2ÝÜIâSêÚ2×°ÜnæªØà>Ú>é ÝSÚ"Þ~ë"ܹåKÜØOßkÜÜnCÞ B Ú2Þwæ 2ì ã~Ü Ø^ÜnÚ"êWã~Ù°Þ~ëhâÙ{ë"Þ~Ú2×°âÚ2ÝÜ5êWãà2âÜnÞ&Ú2Lâ à2_Ý BKì ãÜ Þ~ÜØñ ßà"Ýá&Ú2ÝêWãÙ{ØÜêØÖÝSÜâIÙ°Þ´Ü çKÜÝÙ é ÜÞYØÚ"×kâÜnØ^Ö~çîÚ2ÝÜIØãÜIâSÚ é ÜIÙ{Þ åKà2Ø^ã¬Ø^ã~Ü é Ö×{ØÙ°×{ÚQÛ2ÜÝKÞ~ÜØwßà2Ýá®Ú2Þæ¬Ø^ã~ÜHçYÛYÝÚ é Ù{æ¶ÞÜnØwßà"Ýáì ã~Ü ÞYÖ é åKÜÝà"÷Ôã~Ù°æ~æÜÞùÖ~ÞÙ{Ø^âÚ2Þ~æ>Øã~ܬçÚ2ÝÚ é ÜØÜÝâ5ã~Úeä2Ü åKÜÜnÞ&æÜnñ ØÜÝ é Ù{ÞÜæ´Ü çKÜÝÙ é ÜÞYØÚ"×{×{Û&ß·Ù°ØãèÚ é Ö~×°ØÙ{×°ÚQÛ2ÜÝÞÜnØwßà"Ýá$À Ú"ÝSÜùÖ~âܼæ ÀØ^ã~Ü ×°ÜnÚ"ÝÞ~ñ Ù{ÞëÁêà2ÞâØÚ2ÞYØ·Ú24â B[ì ¹KïQØãÜ é à é ÜÞYØHçÚ2ÝÚ é ÜØÜÝÚ2Jâ BKì ¾"ï"Ú2Þæ/Ø^ã~Ü ØÜ é çKÜÝÚ2ØÖÝÜ êà2ÞâSØ^Ú2ÞYØÙ{ÞhØã~Ü5âÙ{ë é à2Ù°æ½Ú2êØÙ{äeÚ2ØÙ{à"Þ½÷ÖÞênØ^Ù{à2Þ½Ú"â Kì BKì ãÜ ØÝÚ2Ù{ÞÙ{ÞëhÙ{ââÜØ5Øà¹âØà2ç&Ú2ØÚ2ÞùÚeä2ÜnÝÚ"ë2Ü à2ÖØçÖ~Ø(ÜnÝÝà2Ý à2¼÷ BKì B8àK6ì [à2Ý5ØãÜhãÜÚ2ÝØ¶æ~Ù°âSÜÚ2âܬç~Ýà"å~×°Ü é ïØã~ܬÞÜØOßkà2ÝáYâ¶ã~Úeä2Ü Øwßà®ãÙ{ææ~ÜÞ¢×{ÚeÛÜÝâHÜÚ2êWã¢ß·Ù{Ø^ã ½HÖ~ÞÙ{Ø^âQïQØãÜà2ÖØçÖ~Ø ×{ÚeÛÜÝÙ°â Ú2ë2Ú"Ù{Þ/âÜØ5ØàhâØà2çùÚ"ØÚ2Þ>ÚQä2ÜÝÚ2ë2Ü à2ÖØçÖØÜÝÝà2Ý5à2$÷ BKì B8àKì Ú )B2ñE÷sà2×{æ/êÝà2ââñ àhÜäQÚ"×{ÖÚ2ØÜ ë2ÜÞÜnÝÚ"×{Ù{ÿÚ2ØÙ°à2ÞùçKÜÝ÷à"Ý Ú2Þ~êÜUï~} äQÚ2×°Ù{æÚ2ØÙ{à"ÞèÙ°â¹ÖâÜnæì ãÜ>æÚ2ØÚ Ù{â¹æÙ{äUé Ù{æÜnæüÙ°ÞYØzà )B é ÖØÖÚ2×{×°Û Ü ê×{ÖâÙ{ä2Ü æ~Ú"ØÚhë2Ýà2ÖçâQì ãÜÞ/Ù°Þ/ÜÚ2êWãùØÝÚ"Ù{ÞÙ{Þ~ë Ú2Þæ/ØÜâØ5çÝà2ñ êÜnââeïà2ÞÜæ~Ú"ØÚ®ë2Ýà2Öç½Ù{âêà é çÚ2ÝÜIØãÜIÝÜnçÝÜâSÜÞñ ØÚ2Ø^Ù{à2Þ0êÚ2çÚ2åÙ{×°Ù{ØÙ{ÜâeïØãÜ3ÞYÖ é åKÜÝèà2÷ Ö~ÞÙ{ØâùÙ{â êã~à2âÜÞ é Ö~êWã â é Ú2×{×°ÜnݽØãÚ2ÞØãÜ ÷sà2Ý é ÜÝIÜ çKÜÝÙ é ÜÞYØâeì ãÜ çYÛUÝÚ é Ù{æóÞÜØñ ßà"ÝáYâ5âSãàeß é ÖêWãùåKÜØØÜݶên×°Ú2ââSÙ êÚ2Ø^Ù{à2Þ&ÝÚ2ØÜâ ØãÚ2ÞùØ^ã~Ü é Ö×{ñ ØÙ°×{ÚQÛ2ÜÝÞÜØOßkà2ÝáYâeì ã~ÜâÜhÝÜâÖ~×°Øâ ÝÜ é Ú2Ù{Þ>Ö~ÞêWãÚ2Þ~ë"Ünæ&Ù{Þùêà é ñ çÚ2ÝÙ{âà2Þß·Ù{Ø^ãôØ^ã~ÜèâÚ é ÜèÞYÖ é åKÜÝ/à2÷®ßÜÙ{ë2ãUØIçÚ2ÝÚ é ÜØÜÝâeïÚ"â âã~àeß·Þ´Ù°Þ äQÚ"×{ÖÜnâ¶à2÷kØãÜ Ù{ÞçÖ~ض×{ÚeÛ2ÜÝâ Ú2ÝÜIØãÜI×{Ú2Ýë2ÜâØ¶à2÷kÚ2×°×Ô×{ÚeÛ2ÜnÝâeïKÚ2Þæ´Øãà2âÜIà2÷kØãÜ ÝâSØÁã~Ù°æ~æÜÞü×{ÚeÛÜÝâ¬Ù{â¶ØãܾâÜêà2Þ~æî×{Ú2Ýë"ÜnâØeì½íwØÁÙ{â êà2ÞêÜnÙ°äQÚ2å×{Ü ØãÚ2Ø/Ø^ã~Ù°â ÛYÙ°Ün×°æ~â/ãÙ{ë2ãÜÝ/ÝÜnçÝÜâSÜÞYØÚ"ØÙ{à2Þ Ú2Þæë2ÜÞ~ÜÝÚ2×{Ù°ÿnÚ"ØÙ{à2Þ çKÜÝ÷sà2Ý é Ú2Þ~êÜUïÚ2âØãÜ®ÞÜØOßkà2ÝáYâêÚ2Þ é Ú2á2ÜÖ~âÜ®à"÷DâÙ é ç×{ÜåÚ2âÙ{â à2ÞùâÖêWãù×{ÚeÛ2ÜnÝâØ^à¢Ú2ççÝà Ù é Ú2ØÜ5ÚhØÚ2Ýë2ÜØ5÷sÖÞ~êØÙ°à2ÞÔì ùË ÏÌ1Ò µ Ñ 'nÓsÏÔÌ íwÞ¾ØãÙ{âçÚ2ç[ÜnÝeïYßÜ5ãÚQä2ܮٰÞYä2ÜnâØÙ°ë2Ú2ØÜ5ØãÜ ÝÜç~ÝÜâÜnÞYØ^Ú2ØÙ{à"ÞèêÚ2ñ çÚ2å~Ù°×{Ù{ØwÛîÚ2Þæôë"ÜnÞÜÝÚ2×{Ù°ÿnÚ2Ø^Ù{à2Þç[ÜnÝ÷sà2Ý é Ú2ÞênÜ´à2÷ çYÛYÝÚ é Ù{æ Þ~ÜØñ b`\l2R,^] 52aWR_Ef(°ÔNe_EjeT)i6±e±"Z\MOM^i_ ³ TWV[jece`\PEq aWcef®PEmeMkN"M^_EVTW_EiaWce]^M£²ÙÅÆ6&VTd_ÔPEmeMò]^_EMOfe`\P ßà"ÝáYâ Ø^ã~Üà2ÝÜØÙ{êÚ2×°×{Û&Ú2Þæ´Ü ç[ÜnÝÙ é ÜnÞYØ^Ú2×{×{ÛYì ãÜI×{àeßÜÝ5åKà2ÖÞæ ÷sà2ݽõhöæ~Ù é ÜnÞâÙ{à2Þîà2÷(ÚªçYÛUÝÚ é Ù{æîÞ~ÜØwßà2ÝáüÙ°}â ;3û3W:zy¬87~>7 ×{Ú"ÝSë"ÜnÝÁØã~Ú"ÞóØãÚ2ØÁà2÷Ú é Ö×{Ø^Ù{×{ÚeÛ2ÜnݶÞÜnØwßà"Ýáìùû5ÞæüØã~Ü/âÙ é Öñ ×{Ú"ØÙ{à2Þ¾Ü çKÜÝÙ é ÜÞYØâ5à2ÞùØwßàhåKÜÞêWã é Ú2ÝáùçÝà2å×{Ü é ââSãàeߨã~Ú"Ø çYÛYÝÚ é Ù{æÁÞ~ÜØwßà2ÝáUâHçKÜÝ÷à2Ý é å[ÜnØ^ØÜÝë"ÜnÞÜÝÚ2×{Ù°ÿnÚ2Ø^Ù{à2Þ½Ú"Þ~æhÝÜnçÝÜñ âÜnÞYØ^Ú2ØÙ°à2Þ´êÚ2çÚ2å~Ù°×{Ù{ØwÛYïÜnä2ÜÞ´ß·Ù°Øã é ÖêWã&â é Ú2×{×{ÜÝ5ÞÜØOßkà2Ýá&âÙ{ÿÜ ØãÚ2Þ½Ø^ã~Ú2Ø à2÷ é Ö×{ØÙ°×{ÚQÛ2ÜÝÞÜnØwßà"ÝáYâeì ãÙ{âòÚ2ë"ÝÜnÜâHß·Ù{Ø^ã½ØãÜØãÜnñ à2ÝÜØÙ{êÚ2×Ú2ÞÚ2×{ÛYâÙ°âQì ÜnâÙ{æÜâQï2Øã~Üà2ÖØçÖ~Ø×°ÚQÛ2ÜÝßÜÙ{ë"ãYØâò÷sÝà é Ù°Þ~ñ çÖ~Ø