mente definida) que admite uma c01 ineação af im pode ser escrita local- mente como produto Cartesiano de variedades nas quais a colineação afim.
Revista Brasileira de Flsica, Vol. 18, n9 1, 1988
On Riemann Spaces with Proper Affine Collineations B. LESCHE and M.L. BEDRAN
lmtituto de Flsica, Universidade Fedral do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro,
21944, RJ, Brasil
Recebido em 14 de outubro de 1987
Ab-t I t i s shown t h a t a Riemannian m a n i f o l d (wi t h p o s i t i v e d e f i n i t e m e t r i c ) w h i c h c a r r i e s an a f f i n e c o l l i n e a t i o n can l o c a l l y be w r i t t e n as a C a r t e s i a n p r o d u c t o f m a n i f o l d s i n each one o f which t h e a f f i n e c o l l i n e a t i o n a c t s as a h o m o t h e t i c motion. 1. INTRODUCTION
A f f i n e c o l l i n e a t i o n s a r e symmetries o f a f f i n e spaces d e f i n e d by t h e v a n i s h i n g L i e d e r i v a t i v e o f t h e a f f i n e connections l
a
where ; denotes c o v a r i a n t d e r i v a t i v e and R
i s t h e Riemann tensor. I n
B Y ~
Riemannian and pseudo Riemannian spaces eq.
(1.1)
i s equivalent t o
where t h e ( ) i n d i c a t e s y m m e t r i z a t i o n i n t h e i n d i c e s a,B.
S p e c i a l cases
are o f a f f i n e c o l l i n e a t i o n s i n Riemannian spaces w i t h r n e t r i c g aB t h e t i c motions
h;B) = c o n s t .
homo-
%B
and K i l l i n g v e c t o r
A f f i n e c011 i n e a t i o n s a r e t r a n s f o r m a t i o n s t h a t keep t h e geodes i c s unchanged, a l t h o u g h t h e y may change t h e m e t r i c . Hojman
set
of
et
a12
showed t h a t a f f i n e c o l l i n e a t i o n s a r e non- Noetherian symmetries and cons t r u c t e d new c o n s t a n t s o f rnotion a s s o c i a t e d t o them. An example o f a f L f i n e c o l l i n e a t i o n was g i v e n by K a t z i n and ' l e v i n e 3 i n a two
dirnensional
a f f i n e space wi t h o u t m e t r i c . Bedran and ~ e s c h egave ~ an example o f
af-
Revista Brasileira de Ffsica, Vol. 18, n? 1, 1988
f i n e c01 1 i n e a t i o n i n t h e Robertson- Walker m e t r i c (a pseudo
Riemannian
space) w h i c h t u r n e d o u t t o be a h m o t h e t i c m o t i o n . I n t h i s paper we s h a l l d e r i v e c o n d i t i o n s on t h e geometry o f Riemannian space i n o r d e r t o a d m i t a p r o p e r a f f i n e c o l l i n e a t i o n , an a f f i n e c o l l i n e a t i o n t h a t i s n o t a h o m o t h e t i c motion. The a f f i n e c o l l i n e a t i o n s i n Riemannian spaces i s o f i n t e r e s t
for
i.e,
study
of
dynamic
systems. The o r b i t s o f a system o f p a r t i c l e s under s c l e r o n o r n i c s t r a i n t s w i t h o u t f o r c e s a r e g i v e n by t h e
a
con-
g e o d e s i c s i n conf i g u r a t i o n
space, where t h e m e t r i c i s g i v e n by t h e k i n e t i c energy.
Aff ine
col-
l i n e a t i o n s define sygmetries i n the s e t o f o r b i t s .
2. RESTRICTIONS ON ~ H GEOMETRY E IMPOSED BY THE EXISTENCE OF PROPER AFFINE COLLINEATIONS
L e t M be a f i n i t e dimensional Riemannian m a n i f o l d w i t h p o s i t i v e definite metric g
aB'
a c c o r d i n g t o eq. (1.2)
I f t h e r e e x i s t s an a f f i n e c o l l i n e a t i o n on M, then t h e r e must e x i s t a symmetric t e n s o r SolBsuch t h a t
'ol~;y
= O
I f t h e a f f i n e c o l l i n e a t i o n i s a p r o p e r one we
(2.1) h a v e w i t h eq.
(1.3) saB
Z const.
As SaB i s symmetric, L?B
x gaB
d e f i n e s a 1i n e a r mapping o f t h e
(2.2) tan-
g e n t spaces i n t o t h e t a n g e n t spaces w h i c h i s s e l f - a d j o i n t w i t h r e s p e c t t o t h e s c a l a r p r o d u c t d e f i n e d by t h e m e t r i c t e n s o r . Thus, a p p l y i n g t h e s p e c t r a l theorem, we can w r i t e
k
wi t h
and
Revista Brasileira de Flsica, Vol. 18, n? 1, 1988
and
and S R E R . The f a c t t h a t SaB i s c o v a r i a n t l y constant means t h a t s a B ( x ) can be obtained from S o l B ( g ) by a p p l y i n g a p a r a l l e l t r a n s p o r t o p e r a t o r which corresponds t o a p a t h lead i n g from x t o y
SOB( y ) =
I n s e r t i n g eq. (2.3)
I'
Sq (z)
;'2
i n t o eq. ( 2 . 7 ) g i v e s
c
II
(ylphB ( Y ) =
v
R
lJ
Sp, ( x )Ta
p R V ~( x )
,? ( y ) S T V ~ l J ((s) ~ RcrB E B EV~J f u l f i 11s eqs. (2.4) -(2.6). Then the uniqueness
of
the
spectral dec
p o s i t i o n implies
S R ( y ) ' s (z) z S R R
(2
and
Paa6(y) = T~' T 6lJ P RW(") By def i n i t i o n o f p a r a l l e l t r a n s p o r t eq.(2.10)
(2.
gives
T h i s r e s u l t means t h a t the tangent spaces Tx can be w r i t t e n as a d i r e c t sum o f orthogonal subspaces
i n such a way t h a t a p a r ' a l l e l t r a n s p o r t .c f rom x t o y maps V&
into
Y
v
along
any
curve y leading
RY T
y
v
=
(2.13)
Revista Brasileira de Flsica, Vol. 18, nP 1, 1988
Consequently the Riemann tensor
such t h a t i t maps
V&
fl
BlJv
d e f i n e s a rnap
into
From eq. (2.15) and
R u o r ~+~RuyaB + RV B Y ~=
O
and from the o r t h o g o n a l i t y o f the s'paces Vhone
f u r t h e r concludes f o r
I n the f o l l o w i n g we w i l l denote c o v a r i a n t d e r i v a t i v e s by D. Lema: Let x ( c , X ) be a one-parameter fami 1y o f geodesics, where 5 i s t h e curve parameter ( p r o p o r t i o n a l t o the p a t h l e n g t h s) and X i s the f a m i l y
axCL/a T h e n v t h e Lemma g i v e s t h e d e s i r e d r e s u l t a/au (y) E
c o n n e c t i o n . W i t h eq.(2.21) ementof V
Eq.(2.22)
RP'
element o f V
EP
we have t h a t Dt/DA a t X = 0 ,
ensures t h a t D a / D g a t A = O ,
'
vky. L e t us now w r i t e t h e m e t r i c t e n s o r i n t h e s e a l i g n e d c o o r d i n a t e s . As t h e spaces Vlluca r e o r t h o g o n a l i t f o l l o w s t h a t g t a k e s b l o c k d i a g o n a l form
F u r t h e r , f rom eq. (2.13)
f o r t h e C h r i s t o f f e l symbols we conclude
we g e t f rom eq. (2.24)
,
', ' ifn f m
+
r cn, k x m , i
ixp,s> (2.25)
Revista Brasileira de Flsica, Vol. 18,
So (a) gji
um ' s,i
n9 1, 1988
depends o n l y o n t h e c o o r d i n a t e s
The s e t MQ C
= O f o r m # Q i s l o c a l l y a submanifold o f M
.
(i)
M
with
can be thought
5
o f as a m e t r i c t e n s o r f o r MR. On MQ t h e a f f i n e c011 i n e a t i o n
acts
as
a homothetic m o t i o n because t h e tangent spaces o f MQ a r e t h e VQ and c(