Jan 6, 2014 - For every r A Z, q and m b 2 such that Ùm, q Û 1٠¼ 1, we define the ...... [2] T. M. Apostol, Introduction to analytic number theory, Undergraduate ...
Hiroshima Math. J. 46 (2016), 37–54
On the average of some arithmetical functions under a constraint on the sum of digits of squares Dedicated to my parents He´di and Wiem for their endless support, with love Karam Aloui (Received January 6, 2014) (Revised June 5, 2015)
Abstract. Let q b 2 be an integer and Sq ðnÞ denote the sum of the digits in base q of the positive integer n. We look for an estimate of the average of some multiplicative arithmetical functions defined by sums over divisors d of n satisfying Sq ðd 2 Þ 1 r mod m for some integers r and m.
1. Introduction Throughout this paper, we denote by N, N0 , Z, R and C the sets of positive integers, non negative integers, integers, real and complex numbers respectively. Given a real number x, bxc denotes the greatest integer a x and eðxÞ ¼ e 2ipx . The greatest common divisor of two integers a and b will be denoted by ða; bÞ and if a a b we denote by wa; bx the set fa; a þ 1; . . . ; bg. The number of distinct prime factors of a positive integer n will be denoted oðnÞ. First, we shall introduce the following definition: let n A N0 and q be an integer b 2. The sequence ðaj ðnÞÞj A N0 A f0; 1; . . . ; q 1gN0 is defined to be the unique sequence satisfying n¼
y X
ak ðnÞq k :
ð1:1Þ
k¼0
The right hand side of the expression (1.1) shall be called the expansion of n to the base q. We shall set SðnÞ ¼ Sq ðnÞ ¼
y X
ak ðnÞ:
k¼0
2010 Mathematics Subject Classification. 11N37, 11N60, 11N69. Key words and phrases. sum of digits function, multiplicative functions.
38
Karam Aloui
A function f : N0 ! C is called completely q-additive if f ð0Þ ¼ 0 and f ðaq k þ bÞ ¼ f ðaÞ þ f ðbÞ for any integers a b 1, k b 1 and 0 a b < q k . Such functions were introduced by Gelfond [7] and further studied by Delange [5], Be´sineau [3], Coquet [4], Ka`tai [9] and others. Using the base q expansion (1.1), we find that the function f is completely q-additive if and only if f ð0Þ ¼ 0 and f ðnÞ ¼
y X
f ðak ðnÞÞ:
k¼0
It follows that a completely q-additive function is completely determined by its values on the set f0; 1; . . . ; q 1g. A typical example of a completely q-additive function is the sum of digits function S. Another kind of arithmetic functions is the multiplicative ones, i.e. that satisfy f ð1Þ ¼ 1 and whenever a and b are coprime integers, then f ðabÞ ¼ f ðaÞ f ðbÞ (see [2, chapter 2] for further informations). In this paper, we shall focus on the following functions depending on a positive integer n: P the number of positive divisors function, t : n 7! 1. djn
The sum of the s-th powers of all the positive divisors function (for P n s . In particular, s0 ¼ t. s A R), ss : n 7! djn d P The number of positive integers a n and coprime to n, j : n 7! 1. 1akan The Mo ¨ bius function, ðk; nÞ¼1 8 > < 1; if n ¼ 1; m : n 7! ð1Þ r ; if n ¼ p1 . . . pr ; a product of distinct primes; > : 0; otherwise:
The non principal Dirichlet character modulo 4, ( 0; if 2jn; w : n 7! ð1Þ ðn1Þ=2 ; otherwise:
The number of representations of n as the sum of two integral squares denoted by rðnÞ. Except the last one, all these functions are multiplicative and it can be shown (see [8, chapter 16] for instance) that X n jðnÞ ¼ mðdÞ ; d djn
rðnÞ ¼ 4
X djn
wðdÞ:
Arithmetical functions under digital constraint
39
rðnÞ is multiplicative and thus rðnÞ is ‘‘almost In fact, this implies that 4 multiplicative’’. For every r A Z, q and m b 2 such that ðm; q 1Þ ¼ 1, we define the following functions that depend on n, q, r and m (but we will omit the latter ones for briefness) X
tðnÞ ¼
1;
djn Sðd 2 Þ1r mod m
ss ðnÞ ¼
X djn Sðd 2 Þ1r mod m
s n ; d
X
jðnÞ ¼
djn Sðd 2 Þ1r mod m
rðnÞ ¼ 4
for s A R;
n mðdÞ ; d
X
wðdÞ:
djn Sðd 2 Þ1r mod m j
Note that the assumption ðm; q 1Þ ¼ 1 is crucial since it implies that ðq 1Þ m A RnZ for all j A w1; m 1x, a result that allows to use the Theoerem A which will be stated later. P P P Our target, in this paper, is to estimate tðnÞ, ss ðnÞ, jðnÞ and nax nax nax P rðnÞ (representing the averages of the functions t, ss , j and r respectively, nax
in accordance to the study made in [8, chapter 18]). In order to detect the congruences, we shall use the classic orthogonality relation m1 1; 1X jða bÞ e ¼ m j¼0 m 0;
if a 1 b mod m; else:
ðm A N; a; b A ZÞ
ð1:2Þ
Finally, Gelfond [7] alluded the problem of giving an estimate for the number of values of a polynomial P (P takes only integer values on the set N) satisfying the condition SðPðnÞÞ 1 r mod m. Basically, we shall need the following result proved by Mauduit and Rivat [10], answering the question of Gelfond in the case PðnÞ ¼ n 2 . Theorem A [Mauduit-Rivat, 2007]. Let q b 2 be an integer and a A R such that ðq 1Þa A RnZ then there exists sq ðaÞ > 0 and x0 :¼ x0 ðq; aÞ b 2
40
Karam Aloui
such that for every real number x b x0 , we have X log x ð1=2ÞoðqÞþ4 1sq ðaÞ 5=2 1=2 2 7=2 eðaSðn ÞÞ a 4q ðlog qÞ tðqÞ 1þ x : nax log q In particular, this means that for x su‰ciently large X
eðaSðn 2 ÞÞ f ðlog xÞ ð1=2ÞoðqÞþ4 x 1sq ðaÞ :
nax
Recently, Mkaouar and Wanne`s [11] used an improved result of Drmota, Mauduit and Rivat [6], in addition to the classic Abel’s summation formula, to prove interesting results about the average of some additive functions (namely, the number of distinct prime factors o and the total number of prime factors W of a positive integer n) under digital constraints. Using the same ideas, we will follow a similar path, in this article, in order to study the multiplicative functions under constraints on the sum of the digits of squares. Indeed, this is our second approach concerning this topic after the first study done in [1]. 2. A lemma on power sums We need a classical lemma estimating some expressions that will be needed later. In part a), the constant g is Euler-Mascheroni’s constant defined by the equation ! X1 g ¼ lim log x : x!þy n nax In part b), zðsÞ denotes the Riemann zeta function defined by the equations 8 þy > X > 1 > > ; if s > 1; > s < n n¼1 zðsÞ ¼ ! > X1 > x 1s > > lim ; if 0 < s < 1; > : x!þy ns 1 s nax a proof can be found in [2, chapter 3]. Lemma 2.1. As x ! þy, we have P1 1 a) ¼ log x þ g þ O . x nax n P 1 x 1s þ zðsÞ þ Oðx s Þ, if s > 0, s 0 1. b) ¼ s 1s nax n
Arithmetical functions under digital constraint
41
P 1 ¼ Oðx 1s Þ, if s > 1. s n>x n P s x sþ1 þ Oðx s Þ, if s b 0. d) n ¼ sþ1 nax
c)
3. Average of t Theorem 3.1. Let q b 2 and m b 2 be integers such that ðq 1; mÞ ¼ 1, let r A Z. Then we have X
tðnÞ ¼
nax
1 a þ 2g 1 x log x þ x þ Oððlog xÞ ð1=2ÞoðqÞþ4 x 1sq; m =2 Þ; m m
x ! þy, where g stands for Euler-Mascheroni’s constant, j min sq (sq being the constant stated in Theorem A) and m j A w1; m1x ! ! ð þy X m1 X rj j du 2 Sðd Þ a¼ e e : m m u2 1 j¼1 dau as
Proof.
Given x large enough, we have X
X
tðnÞ ¼
nax
1
d; l dlax 2 Sðd Þ1r mod m
¼ A1 þ A2 A3 ; where A1 ¼
A2 ¼
X
X
pffiffi lax=d da x 2 Sðd Þ1r mod m
X
X pffiffi la x
1;
1
dax=l Sðd 2 Þ1r mod m
and A3 ¼
X
X
pffiffi pffiffi da x la x Sðd 2 Þ1r mod m
1:
sq; m ¼
42
Karam Aloui
First, we may write using the orthogonality relation (1.2) X x A1 ¼ pffiffi d da x Sðd 2 Þ1r mod m
¼
m1 1 X x X j ðSðd 2 Þ rÞ e m dapffiffix d j¼0 m
¼
m1 pffiffiffi 1 X 1 1 X rj x þ x e Sj ðxÞ þ Oð xÞ; pffiffi d m m j¼1 m
ð3:1Þ
da x
where X e Sj ðxÞ ¼ pffiffi
da x
j 2 m Sðd Þ
d
;
for each j A w1; m 1x:
The first sum can be estimated as a consequence of Lemma 2.1 giving pffiffiffi 1 X 1 1 g x ¼ x log x þ x þ Oð xÞ: pffiffi d m 2m m
ð3:2Þ
da x
Next, using Abel’s summation formula, we get X e j Sðd 2 Þ m Sj ðxÞ ¼ pffiffi d da x
pffiffi x
ð 1 X j Sðd 2 Þ þ ¼ pffiffiffi e x dapffiffix m 1
! X j du 2 Sðd Þ e : m u2 dau
Thanks to Theorem A, we write for j A w1; m 1x X j ðlog uÞ ð1=2ÞoðqÞþ4 1 2 Sðd Þ 2 f e : u dau m u 1þsq ð j=mÞ Hence, we obtain ! ! ð pxffiffi X j du ðlog xÞ ð1=2ÞoðqÞþ4 2 Sðd Þ e ¼ aj þ O ; m u2 xsq ð j=mÞ=2 1 dau where ! ð þy X j du 2 Sðd Þ aj ¼ e ; m u2 1 dau
for every j A w1; m 1x:
ð3:3Þ
Arithmetical functions under digital constraint
Using Theorem A again, we have ! 1 X j ðlog xÞ ð1=2ÞoðqÞþ4 2 pffiffiffi Sðd Þ ¼ O e : x dapffiffix m xsq ð j=mÞ=2
43
ð3:4Þ
Taking the identities (3.3) and (3.4) jointly and setting j sq; m ¼ min sq , m j A w1; m1x we find
! ðlog xÞ ð1=2ÞoðqÞþ4 Sj ðxÞ ¼ aj þ O : xsq; m =2
Considering (3.2) and choosing sq; m small enough, we go back to (3.1) in order to find 1 aþg x log x þ x þ Oððlog xÞ ð1=2ÞoðqÞþ4 x 1sq; m =2 Þ; 2m m m1 P rj where a ¼ e aj . m j¼1 Next, we write m1 1 X X X j ðSðd 2 Þ rÞ e A2 ¼ m pffiffi dax=l j¼0 m A1 ¼
ð3:5Þ
la x
¼
m1 1 X X 1X jr X X j Sðd 2 Þ : 1þ e e pffiffi m pffiffi dax=l m j¼1 m m dax=l la x
la x
It is easy to check, using Lemma 2.1, that 1 X X 1 X x þ Oð1Þ 1¼ m pffiffi dax=l m pffiffi l la x
la x
¼
pffiffiffi 1 g x log x þ x þ Oð xÞ: 2m m
ð3:6Þ
As a consequence of Theorem A, we get for j A w1; m 1x, 1sq ð j=mÞ X X j X x Sðd 2 Þ f e ðlog xÞ ð1=2ÞoðqÞþ4 pffiffi pffiffi m l dax=l la x
la x
f ðlog xÞ ð1=2ÞoðqÞþ4 x 1sq ð j=mÞ=2 : The last bound follows from Lemma 2.1.
ð3:7Þ
44
Karam Aloui
Combining (3.6) and (3.7) and choosing sq; m small enough gives A2 ¼
1 g x log x þ x þ Oððlog xÞ ð1=2ÞoðqÞþ4 x 1sq; m =2 Þ; 2m m
ð3:8Þ
Finally, thanks to Theorem A, we obtain m1 X pffiffiffi 1 X pffiffiffi 1X j 2 ðSðd Þ rÞ ð x þ Oð1ÞÞ A3 ¼ ð x þ Oð1ÞÞ þ e m pffiffi m j¼1 pffiffi m da x
¼
da x
1 x þ Oððlog xÞ ð1=2ÞoðqÞþ4 x 1sq; m =2 Þ; m
ð3:9Þ
Gathering (3.5), (3.8) and (3.9) together, we get the desired conclusion.
9
4. Average of ss The case s ¼ 0 was considered in the previous paragraph. consider s > 0 and deal carefully with the subcase s ¼ 1.
We shall first
Theorem 4.1. Let q b 2 and m b 2 be integers such that ðm; q 1Þ ¼ 1, let r A Z and s > 0 be a real number. We assert that zðsþ1Þ X þ b sþ1 Oðx log xÞ; if s ¼ 1; x ss ðnÞ ¼ sþ1 þ as x ! þy; m Oðx t Þ; if s 0 1; nax where z stands for the Riemann zeta function defined in !Lemma 2.1, ! m1 Ð þy P P jr j du Sðd 2 Þ t ¼ maxð1; sÞ and b ¼ e e . 1 m m u sþ2 j¼1 dau Proof.
Let x be large enough, we may write s X X X n ss ðnÞ ¼ d nax nax djn Sðd 2 Þ1r mod m
¼
X
X n s
nax dax Sðd 2 Þ1r mod m n¼hd
¼
X
X
d hs
dax hax=d Sðd 2 Þ1r mod m
¼
X dax Sðd 2 Þ1r mod m
( sþ1 x
s ) x þO s : sþ1 d d
ð4:1Þ
Arithmetical functions under digital constraint
45
Here, we should treat the subcases s ¼ 1 and s 0 1 separately, using in both cases Lemma 2.1 and applying (1.2). If s ¼ 1, then ! X X X1 1 2 1 s1 ðnÞ ¼ x þO x 2 d2 d nax dax dax Sðd 2 Þ1r mod m
j m1 1 2X jr X e m Sðd 2 Þ x ¼ e þ Oðx log xÞ d2 2m m dax j¼0 ¼
1 2 1 x þ zð2Þ þ O x 2 2m x j m1 1 2X jr X e m Sðd 2 Þ x þ e þ Oðx log xÞ: 2m m dax d2 j¼1
If s 0 1, we set t ¼ maxð1; sÞ so that X
1 x sþ1 ss ðnÞ ¼ s þ 1 nax
X dax Sðd 2 Þ1r mod m
X 1 þO x sþ1 d ds dax 1
!
s
j m1 X 1 jr X e m Sðd 2 Þ sþ1 x ¼ e ðs þ 1Þm m dax d sþ1 j¼0 1s
s x s þ zðsÞ þ Oðx Þ þO x 1s
1 x s sþ1 s1 x ¼ þ zðs þ 1Þ þ Oðx Þ ðs þ 1Þm s j m1 X 1 jr X e m Sðd 2 Þ sþ1 þ x e þ Oðx t Þ: ðs þ 1Þm m dax d sþ1 j¼1 Going back to (4.1), we can summarize by the following formula X Oðx log xÞ; if s ¼ 1; zðs þ 1Þ sþ1 x ss ðnÞ ¼ þBþ ðs þ 1Þm Oðx t Þ; if s 0 1; nax
ð4:2Þ
where j m1 X 1 jr X e m Sðd 2 Þ sþ1 x e : B¼ d sþ1 ðs þ 1Þm m dax j¼1
ð4:3Þ
46
Karam Aloui
We apply Abel’s formula to B in order to get, for j A w1; m 1x, Tj ðxÞ ¼
Xe dax
j 2 m Sðd Þ d sþ1
! ðx X 1 X j j du 2 2 Sðd Þ þ ðs þ 1Þ Sðd Þ ¼ sþ1 e e : sþ2 x dax m m u 1 dau As a consequence of Theorem A, the latter integral is again absolutely convergent. Therefore, we get ! ðx X j du 2 Sðd Þ e ¼ b j þ Oððlog xÞ ð1=2ÞoðqÞþ4 x ssq ð j=mÞ Þ; m u sþ2 1 dau
ð4:4Þ
with ! ð þy X j du 2 Sðd Þ bj ¼ e ; sþ2 m u 1 dau
for every j A w1; m 1x:
Using Theorem A once again, we have 1 X j 2 Sðd e Þ ¼ Oððlog xÞ ð1=2ÞoðqÞþ4 x ssq ð j=mÞ Þ: x sþ1 dax m
ð4:5Þ
Considering the identities (4.4) and (4.5) jointly, we find Tj ðxÞ ¼ ðs þ 1Þbj þ Oððlog xÞ ð1=2ÞoðqÞþ4 x ssq ð j=mÞ Þ: Going back to (4.3), we write b sþ1 x þ Oððlog xÞ ð1=2ÞoðqÞþ4 x 1sq; m Þ; m m1 P j jr with sq; m ¼ min sq e and b ¼ b. m m j j A w1; m1x j¼1 Hence, taking (4.2) and (4.6) jointly enables to reach our result. B¼
ð4:6Þ
9
In order to find the average order of ss ðnÞ for negative s, we shall set u ¼ s where u > 0. Theorem 4.2. Let q b 2 and m b 2 be integers such that ðm; q 1Þ ¼ 1, let r A Z and s < 0 be a real number. Thus
Arithmetical functions under digital constraint
47
8 > > > Oð1Þ; if v < 0; > < X zð1 sÞ Oððlog xÞ ð1=2ÞoðqÞþ4 x v Þ; if v b 0 and s 0 sq; m ; xþ ss ðnÞ ¼ > Oððlog xÞ ð1=2ÞoðqÞþ5 x 1þs Þ; if sq j ¼ sq; m ; m > nax > m > : Ej A w1; m 1x and s ¼ sq; m b 1; j as x ! þy, where z is the Riemann zeta function, sq; m ¼ min sq and m j A w1; m1x v ¼ maxð1 þ s; 1 sq; m Þ. Proof. In fact, if we set u ¼ s > 0, it follows from the orthogonality relation (1.2) that X
ss ¼
nax
¼
X
X
nax
djn Sðd 2 Þ1r mod m
X 1 hu hax
u d n
X
1
dax=h Sðd 2 Þ1r mod m
¼ G 1 þ G 2;
ð4:7Þ
where 1X 1 x G1 ¼ m hax h u h and G2 ¼
m1 1X rj X 1 X j 2 Sðd e e Þ : m j¼1 m hax h u dax=h m
Therefore, X 1 1 X 1 G1 ¼ x þO 1þu m hax h hu hax
!
1 ¼ xfzð1 þ uÞ þ Oðx u Þg þ m 8 > < Oðlog xÞ; zð1 þ uÞ ¼ x þ Oð1Þ; > m : Oðx 1u Þ;
(
Oðlog xÞ; if u ¼ 1; n 1u o O x1u þ zðuÞ þ Oðx u Þ ;
if u ¼ 1; if u > 1; if u < 1:
else;
48
Karam Aloui
Besides, Theorem A enables us to get for j A w1; m 1x, X 1 X j X 1 x ð1=2ÞoðqÞþ4 x 1sq ð j=mÞ 2 Sðd Þ f e log h u dax=h m hu h h hax hax f ðlog xÞ ð1=2ÞoðqÞþ4 x 1sq ð j=mÞ Thanks to Lemma 2.1, 8 > Oððlog xÞ ð1=2ÞoðqÞþ5 x 1u Þ; > > > < G2 ¼ > Oððlog xÞ ð1=2ÞoðqÞþ4 x 1u Þ; > > > : Oððlog xÞ ð1=2ÞoðqÞþ4 x 1sq; m Þ;
X
1
hax
h 1þusq ð j=mÞ
:
if sq mj ¼ sq; m ; Ej A w1; m 1x and u ¼ sq; m ; if u < sq; m ; if u > sq; m :
A discussion on the possible orders of the real numbers 0, 1 u and 1 sq; m completes the proof. 9 5. Average of j Theorem 5.1. Let q b 2 and m b 2 be integers such that ðm; q 1Þ ¼ 1, let r A Z. We assert that X
jðnÞ ¼
3 p2
nax
where r ¼
m1 P j¼1
þr 2 x þ Oðx log xÞ; m
Ð þy jr e 1 m
P
j Sðd 2 Þ mðdÞe m dau
as x ! þy; !
! du . u3
Let x be large enough, due to (1.2) and Lemma 2.1 we have X X n jðnÞ ¼ mðdÞ d nax nax djn
Proof. X
Sðd 2 Þ1r mod m
¼
X
mðdÞ
dax Sðd 2 Þ1r mod m
¼
X dax Sðd 2 Þ1r mod m
X
h
hax=d
mðdÞ
x2 x þ O d 2d 2
m1 e mj Sðd 2 Þ 1 2X jr X x ¼ e mðdÞ þ Oðx log xÞ d2 2m m dax j¼0
Arithmetical functions under digital constraint þy X 1 1 2X mðdÞ 2 x ¼ þ O x 2m d¼1 d 2 d2 d>x
49
!
m1 e mj Sðd 2 Þ 1 2X jr X x þ e mðdÞ þ Oðx log xÞ 2m m dax d2 j¼1 ¼
þy 1 2X mðdÞ x þ C þ Oðx log xÞ; 2m d¼1 d 2
ð5:1Þ
where m1 e mj Sðd 2 Þ 1 2X jr X x e mðdÞ : C¼ 2m m dax d2 j¼1
ð5:2Þ
First, using the Mo¨bius inversion formula (see [2, p. 32]), we get 0 1 0 1 ! ! þy þy þy þy X X X X X X 1 mðmÞ 1 B 1 @ C mðdÞA ¼ mðmÞA ¼ 1; ¼ 2 2 2@ 2 d m k k m¼1 d¼1 k¼1 k¼1 d; m mjk dm¼k
so that þy X mðdÞ d¼1
d2
¼
6 : p2
ð5:3Þ
Next, we may apply Abel’s summation formula again to C in order to obtain Uj ðxÞ ¼
X
mðdÞ
dax
e
j 2 m Sðd Þ 2 d
! ðx X 1 X j j du 2 2 Sðd Þ þ 2 Sðd Þ ¼ 2 mðdÞe mðdÞe : x dax m m u3 1 dau The integral is trivially convergent. ðx 1
Subsequently, we get ! X j du 2 Sðd Þ mðdÞe ¼ rj þ O x 1 ; 3 m u dau
with rj ¼
ð þy X 1
j Sðd 2 Þ mðdÞe m dau
!
du ; u3
for each j A w1; m 1x:
ð5:4Þ
50
Karam Aloui
Clearly, we have 1 X j 2 Sðd Þ ¼ O x 1 : mðdÞe x 2 dax m
ð5:5Þ
Considering the identities (5.4) and (5.5) jointly, we find Uj ðxÞ ¼ 2rj þ O x 1 : Going back to (5.2), we write r 2 x þ OðxÞ; ð5:6Þ m m1 P j jr with sq; m ¼ min sq e and r ¼ r. m m j j A w1; m1x j¼1 Hence, considering (5.1), (5.3) and (5.6) together gives the desired result. 9 C¼
6. Average of r Theorem 6.1. Let q b 2 and m b 2 be integers such that ðm; q 1Þ ¼ 1, let r A Z. We state that X
rðnÞ ¼
nax
p þ 4n x þ Oððlog xÞ ð1=2ÞoðqÞþ4 x 1sq; m =2 Þ; m
as x ! þy;
where ! ! ð þy X m1 X jr j du 2 n¼ Sðd Þ e wðdÞe m m u2 1 j¼1 dau and sq; m
j ¼ min sq (sq being the constant stated in Theorem A). m j A w1; m1x
Proof. Given x large enough, we have X X X rðnÞ ¼ 4 wðdÞ nax
nax
¼4
djn Sðd 2 Þ1r mod m
X
wðdÞ
dhax Sðd 2 Þ1r mod m
¼4
X dax Sðd 2 Þ1r mod m
wðdÞ
X hax=d
1
Arithmetical functions under digital constraint
X
¼4
wðdÞ
x d
wðdÞ
X x þ4 pffiffi d
dax Sðd 2 Þ1r mod m
¼4
X pffiffi da x 2 Sðd Þ1r mod m
ha x
X pffiffi x