Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2013, Article ID 175479, 8 pages http://dx.doi.org/10.1155/2013/175479
Research Article On the Existence and Stability of Periodic Solutions for a Nonlinear Neutral Functional Differential Equation Yueding Yuan1,2,3 and Zhiming Guo1,3 1
School of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, China School of Mathematics and Computer Sciences, Yichun University, Yichun 336000, China 3 Key Laboratory of Mathematics and Interdisciplinary Science of Guangdong Higher Education Institutes, Guangzhou University, Guangzhou 510006, China 2
Correspondence should be addressed to Zhiming Guo;
[email protected] Received 31 January 2013; Accepted 1 March 2013 Academic Editor: Chuangxia Huang Copyright Š 2013 Y. Yuan and Z. Guo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This paper deals with the existence and stability of periodic solutions for the following nonlinear neutral functional differential equation (đ/đđĄ)đˇđ˘đĄ = đ(đĄ) â đđ˘(đĄ) â đđđ˘(đĄ â đ) â â(đ˘(đĄ), đ˘(đĄ â đ)). By using Schauder-fixed-point theorem and Krasnoselskii-fixedpoint theorem, some sufficient conditions are obtained for the existence of asymptotic periodic solutions. Main results in this paper extend the related results due to Ding (2010) and Lopes (1976).
1. Introduction In recent years, the existence and stability of periodic solutions for differential equation has been extensively studied. Many researchers used the Lyapunov functional method, Hopf bifurcation techniques, and Mawhin continuation theorems to obtain the existence and stability of periodic solutions for neutral functional differential equation (NFDE); see papers [1â14] and their references therein. However, researches on the existence and stability of periodic solutions for NFDE by using fixed-point theorem are relatively rare [15, 16]. The reason lies in the fact that it is difficult to construct an appropriate completely continuous operator and an appropriate bounded closed convex set. In this paper, we will investigate the existence and stability of periodic solutions for the following nonlinear NFDE đ đˇđ˘ = đ (đĄ) â đđ˘ (đĄ) â đđđ˘ (đĄ â đ) â â (đ˘ (đĄ) , đ˘ (đĄ â đ)) , đđĄ đĄ (1) where đˇđ˘đĄ = đ˘(đĄ) â đđ˘(đĄ â đ), |đ|â¨1, đ⊠0, â â đś(R Ă R, R), and đ â đś(R, R). Such a kind of NFDE has been used for the study of distributed networks containing a transmission line [17, 18]. For example, suppose a system consists of a long
electrical cable of length đ, and one end of which isconnected to a power source đ¸(đĄ) with resistance đ
0 , while the other end is connected to an oscillating circuit formed of a condenser đś0 and a nonlinear element, the volt-ampere characteristic of which is đ = đ(đ˘). Let đż, đś, đ
, and đş be the parameters of the transmission line, respectively, đ0 the characteristic impedance of the line, V = 1/âđżđś the propagation velocity and assume the losses can not be disregarded. The process of the final end volt đ˘(đĄ) in such a system can be described by the following NFDES: đ˘ó¸ (đĄ) â đđ˘ó¸ (đĄ â đ) = đ (đĄ) â đđ˘ (đĄ) â đđđ˘ (đĄ â đ) â đđ (đ˘ (đĄ)) + đđđ (đ˘ (đĄ â đ))
(2)
or đś0 (đ˘ó¸ (đĄ) â đđ˘ó¸ (đĄ â đ)) = đ (đĄ) â đđ˘ (đĄ) â đđđ˘ (đĄ â đ) â đ (đ˘ (đĄ) â đđ˘ (đĄ â đ)) ,
(3)
where đ = 1/đ0 đś0 , đ = 1/đś0 , đ = (đ0 â đ
0 )/đ´2 (đ0 + đ
0 ), đ = (1 â đđ
0 )/(1 + đđ
0 ), đ(đĄ) = 2đ¸(đĄ â (đ/2))/đ´(đ0 + đ
0 )đś0 , đ = 2đ/V, đ´ = đđ
đ/đ0 , đ = âđś/đż, and đ(đ˘) is a given nonlinear function. If đ
0 > 0, then |đ| < 1, |đ| < 1. Obviously, we see that (2) (or (3)) is a special case of (1). The aim of this paper
2
Abstract and Applied Analysis
is to establish some criteria to guarantee the existence and stability of periodic solution for (1) by using Schauderâs fixedpoint theorem and Krasnoselskiiâs fixed-point theorem. The interesting is that main results obtained in this paper extend the related existing results. Furthermore, our results can also be applied to solve the problem of the existence and stability of periodic solutions for (2) and (3).
According to Lemma 1, (9) has a unique đ-periodic solution: V (đĄ) = (1 â đâđđżđ ) ĂâŤ
đĄ+đ
đĄ
In this section, let đś1 (Rđ) (đś(Rđ)) denote the set of all continuously differentiable functions (all continuous functions) đ : Rđ â R, where đ = 1, 2. đśđ = {đ | đ â đś(R), đ(đĄ + đ) = đ(đĄ)} is a Banach space with the supremum norm â â
â0 , đśđ1 = đś1 (R) ⊠đśđ with the norm âđâ1 = âđâ0 + âđó¸ â0 in a period interval, and đ is a positive constant. The next lemma will be used in the sequel. ó¸
Lemma 1. If đ ≠ 0, đ â đśđ , then the scalar equation đĽ (đĄ) = đđĽ(đĄ) + đ(đĄ) has a unique đ-periodic solution: â1
đĄ+đ
đĄ
đđ(đĄ+đâđ ) đ (đ ) đđ .
Define an operator đ´ by (đ´đ) (đĄ) â1
= (1 â đâđđżđ ) đĄ+đ
ĂâŤ
đĄ
âđżâ (đ (đ ) , đ (đ â đ)) + đđó¸ (đ â đ)] đđ â1
đĄ+đ
ĂâŤ
đĄ
1 óľŠ óľŠ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ (2đż + ) [óľŠóľŠóľŠđóľŠóľŠóľŠ0 +2đ óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨ đť+ sup óľ¨óľ¨óľ¨â (đĽ, đŚ)óľ¨óľ¨óľ¨] + óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨ đť ⤠đť. đ |đĽ|,|đŚ|â¤đť ] [ (6) Let V(đĄ) = đ˘(đżđĄ), đ = đ/đż, đ1 (đĄ) = đ(đżđĄ), and đ = đ/đż; then (1) can be rewritten as
Ă [đżđ1 (đ ) â 2đđđżđ (đ â đ)
In order to prove that (7) has a periodic solution, we shall make sure that đ´ satisfies the conditions of Schauderâs fixedpoint theorem (see Lemma 2.2.4 on page 40 of [20]). Note that for any đĽ â đ, we have đĽ(đĄ + đ) = đĽ(đĄ) and âđĽâ1 ⤠đť (đ´đĽ) (đĄ + đ) = (1 â đâđđżđ ) đĄ+2đ
Ă⍠(7)
đĄ+đ
(8)
Then đ is a bounded closed convex set of the Banach space đś1 (R). For any given đ â đ, consider the nonhomogeneous equation:
đâđđż(đĄ+2đâđ )
âđżâ (đĽ (đ ) , đĽ (đ â đ)) ] đđ + đđĽ (đĄ + đ â đ) âđđżđ â1
= (1 â đ
đĄ+đ
ĂâŤ
đĄ
)
đâđđż(đĄ+đâđ )
Ă [đżđ1 (đ ) â 2đđđżđĽ (đ â đ)
ó¸
(9)
â1
Ă [đżđ1 (đ ) â 2đđđżđĽ (đ â đ)
where đ1 (đĄ) â đśđ with âđâ0 = âđ1 â0 . It suffices to prove that (7) has a đ-periodic solution. Let
â đżâ (đ (đĄ) , đ (đĄ â đ)) + đđó¸ (đĄ â đ) .
đâđđż(đĄ+đâđ )
âđżâ (đ (đ ) , đ (đ â đ))] đđ + đđ (đĄ â đ) .
Proof. According to the condition (5), we can find a sufficiently small đż > 0 such that
V (đĄ) = âđđżV (đĄ) + đżđ1 (đĄ) â đđđżđ (đĄ â đ)
(11)
= (1 â đâđđżđ )
then (1) has a đ-periodic solution.
óľŠ óľŠ đ = {đ | đ â đśđ1 , óľŠóľŠóľŠđóľŠóľŠóľŠ1 ⤠đť} .
đâđđż(đĄ+đâđ )
Ă [đżđ1 (đ ) â đđđżđ (đ â đ)
Theorem 2. Suppose that â â đś(R2 ) and đ â đśđ . If there exists a constant đť > 0 such that óľ¨ óľŠóľŠ óľŠóľŠ óľ¨ óľ¨ óľ¨ óľŠóľŠđóľŠóľŠ0 < (1 â 3 óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨) đđť â sup óľ¨óľ¨óľ¨â (đĽ, đŚ)óľ¨óľ¨óľ¨ , (5) |đĽ|,|đŚ|â¤đť
â đżâ (V (đĄ) , V (đĄ â đ)) ,
(10)
âđżâ (đ (đ ) , đ (đ â đ)) + đđó¸ (đ â đ)] đđ .
(4)
Proof. It is easy to prove. We can find it in many ODE textbooks (e.g., see Example 2 on page 35 of [19]).
Vó¸ (đĄ) â đVó¸ (đĄ â đ) = đżđ1 (đĄ) â đđżV (đĄ) â đđđżV (đĄ â đ)
đâđđż(đĄ+đâđ )
Ă [đżđ1 (đ ) â đđđżđ (đ â đ)
2. Main Results and Proofs
đĽ (đĄ) = (1 â đđđ ) âŤ
â1
âđżâ (đĽ (đ ) , đĽ (đ â đ)) ] đđ + đđĽ (đĄ â đ) = (đ´đĽ) (đĄ) ;
(12)
Abstract and Applied Analysis
3 óľ¨óľ¨ óľ¨ + [đżđ1 (đĄ) â 2đđđżđĽ (đĄ â đ) â đżâ (đĽ (đĄ) , đĽ (đĄ â đ))] óľ¨óľ¨óľ¨ óľ¨óľ¨
Therefore, (đ´đĽ)(đĄ + đ) = (đ´đĽ)(đĄ). Meanwhile, we get (đ´đĽ)ó¸ (đĄ)
1 óľ¨ óľ¨ + óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨ âđĽâ1 ⤠(2 + ) đđż
âđđżđ â1
)
= (1 â đ Ă {âŤ
đĄ+đ
đĄ
óľ¨ óľ¨ óľ¨ óľ¨ óľŠ óľŠ Ă [đżóľŠóľŠóľŠđ1 óľŠóľŠóľŠ0 + 2đ óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨ đżđť + đż sup óľ¨óľ¨óľ¨â (đĽ, đŚ)óľ¨óľ¨óľ¨] |đĽ|,|đŚ|â¤đť ] [
đâđđż(đĄ+đâđ ) (âđđż)
1 óľ¨ óľ¨ + óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨ đť = (2đż + ) đ
Ă [đżđ1 (đ ) â 2đđđżđĽ (đ â đ) âđżâ (đĽ (đ ) , đĽ (đ â đ)) ] đđ
óľŠ óľŠ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ Ă [óľŠóľŠóľŠđ1 óľŠóľŠóľŠ0 +2đ óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨ đť+ sup óľ¨óľ¨óľ¨â (đĽ, đŚ)óľ¨óľ¨óľ¨] + óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨ đť ⤠đť. |đĽ|,|đŚ|â¤đť ] [ (14)
+ (1 â đâđđżđ ) [đżđ1 (đĄ) â 2đđđżđĽ (đĄ â đ) âđżâ (đĽ (đĄ) , đĽ (đĄ â đ)) ] }
Thus, đ´đĽ â đ. For any đĽ â đ, âđ´đĽâ0 ⤠đť, â(đ´đĽ)ó¸ â0 ⤠đť. According to Arzela-Ascoli Theorem (see Theorem 4.9.6 on page 84 of [21]), the subset đ´đ of đśđ is a precompact set; therefore, đ´ : đ â đś1 (R) â đśđ is a compact operator. Suppose that {đĽđ } â đ, đĽđ â đĽ, then âđĽđ â đĽâ0 â 0 and âđĽđó¸ â đĽó¸ â0 â 0 as đ â â. Also, we have
+ đđĽó¸ (đĄ â đ) â1
= (1 â đâđđżđ ) (âđđż) ĂâŤ
đĄ+đ
đĄ
đâđđż(đĄ+đâđ )
Ă [đżđ1 (đ ) â 2đđđżđĽ (đ â đ) âđżâ (đĽ (đ ) , đĽ (đ â đ)) ] đđ + [đżđ1 (đĄ) â 2đđđżđĽ (đĄ â đ) â đżâ (đĽ (đĄ) , đĽ (đĄ â đ))]
óľŠ óľŠóľŠ óľŠóľŠđ´đĽđ â đ´đĽóľŠóľŠóľŠ0 óľ¨óľ¨ â1 = sup óľ¨óľ¨óľ¨(1 â đâđđżđ ) óľ¨ đĄâR
+ đđĽó¸ (đĄ â đ) .
ĂâŤ
đĄ+đ
đĄ
(13)
đâđđż(đĄ+đâđ )
Ă [ â 2đđđż (đĽđ (đ â đ) â đĽ (đ â đ))
By (6), we have
â đż (â (đĽđ (đ ) , đĽđ (đ â đ))
âđ´đĽâ1 óľŠ óľŠ = âđ´đĽâ0 + óľŠóľŠóľŠóľŠ(đ´đĽ)ó¸ óľŠóľŠóľŠóľŠ0 óľ¨óľ¨ â1 ⤠sup óľ¨óľ¨óľ¨(1 â đâđđżđ ) óľ¨ đĄâR ĂâŤ
đĄ+đ
đĄ
đâđđż(đĄ+đâđ )
Ă [đżđ1 (đ ) â 2đđđżđĽ (đ â đ) óľ¨óľ¨ âđżâ (đĽ (đ ) , đĽ (đ â đ)) ] đđ óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨óľ¨ â1 + sup óľ¨óľ¨óľ¨óľ¨(1 â đâđđżđ ) (âđđż) óľ¨ đĄâR ĂâŤ
đĄ+đ
đĄ
đâđđż(đĄ+đâđ )
Ă [đżđ1 (đ ) â 2đđđżđĽ (đ â đ) â đżâ (đĽ (đ ) , đĽ (đ â đ))] đđ
ââ (đĽ (đ ) , đĽ (đ â đ)))] đđ óľ¨óľ¨ óľ¨ +đ (đĽđ (đĄ â đ) â đĽ (đĄ â đ)) óľ¨óľ¨óľ¨ óľ¨óľ¨ â¤
1 óľŠ óľ¨ óľ¨ óľŠ [2đ óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨ đżóľŠóľŠóľŠđĽđ â đĽóľŠóľŠóľŠ0 đđż óľ¨ + đż sup óľ¨óľ¨óľ¨â (đĽđ (đĄ) , đĽđ (đĄ â đ)) đĄâ[0,đ]
óľ¨ â â (đĽ (đĄ) , đĽ (đĄ â đ) )óľ¨óľ¨óľ¨ ] óľ¨ óľ¨óľŠ óľŠ + óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨ óľŠóľŠóľŠđĽđ â đĽóľŠóľŠóľŠ0 1 óľ¨ óľ¨óľŠ óľŠ = 3 óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨ óľŠóľŠóľŠđĽđ â đĽóľŠóľŠóľŠ0 + sup đ đĄâ[0,đ] óľ¨ óľ¨ Ă óľ¨óľ¨óľ¨â (đĽđ (đĄ) , đĽđ (đĄ â đ)) â â (đĽ (đĄ) , đĽ (đĄ â đ))óľ¨óľ¨óľ¨ ,
óľŠóľŠ óľŠ óľŠóľŠ(đ´đĽđ )ó¸ â (đ´đĽ)ó¸ óľŠóľŠóľŠ óľŠ óľŠ0 óľ¨óľ¨ â1 = sup óľ¨óľ¨óľ¨(1 â đâđđżđ ) (âđđż) đĄâR óľ¨
4
Abstract and Applied Analysis ĂâŤ
đĄ+đ
đĄ
If there exists đ > 0 such that
đâđđż(đĄ+đâđ )
óľ¨ óľ¨ 1 óľŠóľŠ óľŠóľŠ đ â 3 óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨ đ óľ¨ óľ¨ sup óľ¨óľ¨â (đĽ, đŚ)óľ¨óľ¨óľ¨ , óľŠóľŠđóľŠóľŠ â¤ óľ¨ óľ¨ âđťâ óľ¨ óľ¨ 1 + óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨ đ (1 + óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨) |đĽ|,|đŚ|â¤đť+đ óľ¨ (18)
Ă [ â 2đđđż Ă (đĽđ (đ â đ) â đĽ (đ â đ)) â đż (â (đĽđ (đ ) , đĽđ (đ â đ))
then the solution V(đ)(đĄ) to (16) through đ satisfies limđĄ â â V(đ)(đĄ) = 0.
ââ (đĽ (đ ) , đĽ (đ â đ)))] đđ â 2đđđż (đĽđ (đĄ â đ) â đĽ (đĄ â đ)) â đż (â (đĽđ (đĄ) , đĽđ (đĄ â đ)) óľ¨óľ¨ óľ¨ ââ (đĽ (đĄ) , đĽ (đĄ â đ)) ) + đ (đĽó¸ đ (đĄ â đ) â đĽó¸ (đĄ â đ)) óľ¨óľ¨óľ¨ óľ¨óľ¨
Proof. By (18), we have 1 óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľŠ óľŠ óľ¨ (1 + óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨) óľŠóľŠóľŠđóľŠóľŠóľŠ + 3 óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨ đ + sup óľ¨óľ¨â (đĽ, đŚ)óľ¨óľ¨óľ¨ đ |đĽ|,|đŚ|â¤đť+đ óľ¨
óľ¨ óľ¨óľŠ óľŠ â¤ 2đż [2đ óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨ óľŠóľŠóľŠđĽđ â đĽóľŠóľŠóľŠ0
óľ¨ óľ¨ + đť (1 + óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨) ⤠đ.
óľ¨ + sup óľ¨óľ¨óľ¨â (đĽđ (đĄ) , đĽđ (đĄ â đ)) đĄâ[0,đ]
óľŠ óľ¨ óľ¨óľŠ óľ¨ ââ (đĽ (đĄ) , đĽ (đĄ â đ)) óľ¨óľ¨óľ¨ ] + óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨ óľŠóľŠóľŠóľŠđĽđó¸ â đĽó¸ óľŠóľŠóľŠóľŠ0 . (15) When âđĽđ â đĽâ1 â 0 as đ â â, |đĽđ (đĄ) â đĽ(đĄ)| â 0 for đĄ â [0, đ] uniformly. And since â is continuous, âđ´đĽđ â đ´đĽâ0 â 0, â(đ´đĽđ )ó¸ â (đ´đĽ)ó¸ â0 â 0. Consequently, đ´ is continuous. Thus, by Schauder-fixed-point theorem (see Lemma 2.2.4 on page 40 of [20]), there is a đ â đ such that đ = đ´đ. Therefore, (7) has at least one đ-periodic solution. Since V(đĄ) = đ˘(đżđĄ) and đ(đżđĄ) = đ1 (đĄ), (1) has at least one đ-periodic solution. The proof is completed. Next, we explore the stability of this đ-periodic solution đ˘â (đĄ) for (1). We assume that theconditions of Theorem 2 are satisfied. Therefore, (1) has at least one đ-periodic solution đ˘â (đĄ). Let V(đĄ) = đ˘(đĄ) â đ˘â (đĄ) then (1) is transformed as đ đˇV = âđV (đĄ) â đđV (đĄ â đ) â đ (V (đĄ) , V (đĄ â đ)) , đđĄ đĄ
(16)
Given the initial function đ, by [20, Theorem 12.2.3], there exists a unique solution V(đ)(đĄ) for (16). Let đđ óľŠ óľŠ = {đ | đ â đ, óľŠóľŠóľŠđóľŠóľŠóľŠ ⤠đ, đ0 = đ, đ (đĄ) ół¨â 0 as đĄ ół¨â â} ; (20) then đđ is a bounded convex closed set of đ. We write (16) as ó¸
[V (đĄ) â đV (đĄ â đ)] = â đ [V (đĄ) â đV (đĄ â đ)] â 2đđV (đĄ â đ) â đ (V (đĄ) , V (đĄ â đ)) ; (21) then we have V (đĄ) = [đ (0) â đđ (âđ)] đâđđĄ + đV (đĄ â đ) đĄ
+ ⍠[â2đđV (đ â đ) â đ (V (đ ) , V (đ â đ))] đâđ(đĄâđ ) đđ . 0
(22)
â
where đˇVđĄ = V(đĄ) â đV(đĄ â đ) and đ(V(đĄ), V(đĄ â đ)) = â(đ˘ (đĄ) + V(đĄ), đ˘â (đĄ â đ) + V(đĄ â đ)) â â(đ˘â (đĄ), đ˘â (đĄ â đ)). Clearly, (16) has trivial solution V(đĄ) ⥠0. Now we use Krasnoselskiis-fixedpoint theorem (see [22] or [15, Lemma 2.2]) to prove that trivial solution V(đĄ) ⥠0 to (16) is asymptotically stable. Set đ as the Banach space of bounded continuous function đ : [âđ, â) â đ
with the supremum norm â â
â. Also, Given the initial function đ, denote the norm of đ by âđâ = supđĄâ[âđ,0] |đ(đĄ)|, which should not cause confusion with the same symbol for the norm in đ. Theorem 3. Let đť be as in Theorem 2. Assume that all conditions of Theorem 2 are satisfied. Suppose that â satisfies the Lipschitz condition and óľ¨ óľ¨ óľ¨ óľ¨ sup óľ¨óľ¨óľ¨â (đĽ, đŚ)óľ¨óľ¨óľ¨ ⤠đđť (1 + óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨) .
|đĽ|,|đŚ|â¤đť
(19)
(17)
For all đ â đđ , define the operators đ´ and đľ by (đ´đ) (đĄ) 0, đĄ â [âđ, 0] , { { { đĄ = {⍠[â2đđđ (đ â đ) â đ (đ (đ ) , đ (đ â đ))] đâđ(đĄâđ ) đđ , { { 0 đĄ ⼠0, { (đľđ) (đĄ) đ (đĄ) , ={ (đ (0) â đđ (âđ)) đâđđĄ + đđ (đĄ â đ) ,
đĄ â [âđ, 0] , đĄ ⼠0. (23)
Abstract and Applied Analysis
5
For any đĽ, đŚ â đđ , đĽ(đĄ) â 0, đŚ(đĄ) â 0 as đĄ â â, and âđĽâ ⤠đ, âđŚâ ⤠đ. Therefore, we have
lim (đ´đĽ) (đĄ)
đĄââ
đĄ
= lim
âŤ0 [â2đđđĽ (đ â đ) â đ (đĽ (đ ) , đĽ (đ â đ))] đđđ đđ đđđĄ
đĄââ
= lim
1
đĄââđ
[â2đđđĽ (đĄ â đ) â đ (đĽ (đĄ) , đĽ (đĄ â đ))] = 0,
óľ¨ óľ¨óľ¨ óľ¨óľ¨(đ´đĽ)ó¸ (đĄ)óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨óľ¨ đĄ óľ¨ = óľ¨óľ¨óľ¨âđ ⍠[â2đđđĽ (đ â đ) â đ (đĽ (đ ) , đĽ (đ â đ))] đâđ(đĄâđ ) đđ óľ¨óľ¨ 0 óľ¨óľ¨ óľ¨ â2đđđĽ (đĄ â đ) â đ (đĽ (đĄ) , đĽ (đĄ â đ)) óľ¨óľ¨óľ¨ óľ¨óľ¨ óľ¨ óľ¨ â¤ đ [2đ óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨ đ +
lim (đľđŚ) (đĄ) = lim [(đ (0)âđđ (âđ)) đâđđĄ + đđŚ (đĄ â đ)] = 0.
đĄââ
Since |(đ´đĽ)ó¸ (đĄ)| = 0, đĄ â [âđ, 0], and
đĄââ
(24)
Thus, limđĄ â â (đ´đĽ + đľđŚ)(đĄ) = 0. Again by (17) and (19), we have
sup
|đĽ|,|đŚ|â¤đť+đ
óľ¨óľ¨ óľ¨óľ¨ đĄ óľ¨ óľ¨ Ă sup óľ¨óľ¨óľ¨âŤ đâđ(đĄâđ ) đđ óľ¨óľ¨óľ¨ óľ¨óľ¨ đĄâĽ0 óľ¨óľ¨ 0 óľ¨ óľ¨ + 2đ óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨ đ + sup
|đĽ|,|đŚ|â¤đť+đ
óľ¨ óľ¨ = 2 [2đ óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨ đ +
óľŠ óľŠóľŠ óľŠóľŠđ´đĽ + đľđŚóľŠóľŠóľŠ
sup
|đĽ|,|đŚ|â¤đť+đ
óľ¨ óľ¨ óľ¨óľ¨ óľ¨ óľ¨óľ¨â (đĽ, đŚ)óľ¨óľ¨óľ¨ + sup óľ¨óľ¨óľ¨â (đĽ, đŚ)óľ¨óľ¨óľ¨] |đĽ|,|đŚ|â¤đť
óľ¨ óľ¨ óľ¨óľ¨ óľ¨ óľ¨óľ¨â (đĽ, đŚ)óľ¨óľ¨óľ¨ + sup óľ¨óľ¨óľ¨â (đĽ, đŚ)óľ¨óľ¨óľ¨ |đĽ|,|đŚ|â¤đť
óľ¨ óľ¨ óľ¨óľ¨ óľ¨ óľ¨óľ¨â (đĽ, đŚ)óľ¨óľ¨óľ¨ + sup óľ¨óľ¨óľ¨â (đĽ, đŚ)óľ¨óľ¨óľ¨] , |đĽ|,|đŚ|â¤đť
đĄ ⼠0; (26)
óľŠ óľŠ â¤ âđ´đĽâ + óľŠóľŠóľŠđľđŚóľŠóľŠóľŠ óľ¨óľ¨ óľ¨óľ¨ đĄ óľ¨ óľ¨ = sup óľ¨óľ¨óľ¨âŤ [â2đđđĽ (đ â đ) â đ (đĽ (đ ) , đĽ (đ â đ))] đâđ(đĄâđ ) đđ óľ¨óľ¨óľ¨ óľ¨óľ¨ đĄâĽ0 óľ¨óľ¨ 0 óľ¨ óľ¨ + sup óľ¨óľ¨óľ¨(đľđŚ) (đĄ)óľ¨óľ¨óľ¨ đĄâĽâđ
óľ¨ óľ¨ â¤ [2đ óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨ đ +
sup
|đĽ|,|đŚ|â¤đť+đ
óľ¨ óľ¨ óľ¨óľ¨ óľ¨ óľ¨óľ¨â (đĽ, đŚ)óľ¨óľ¨óľ¨ + sup óľ¨óľ¨óľ¨â (đĽ, đŚ)óľ¨óľ¨óľ¨] |đĽ|,|đŚ|â¤đť
óľŠóľŠ óľŠ óľŠóľŠđ´đĽđ â đ´đĽóľŠóľŠóľŠ óľ¨óľ¨óľ¨ đĄ = sup óľ¨óľ¨óľ¨âŤ {â2đđ [đĽđ (đ â đ) â đĽ (đ â đ)] đĄâĽ0 óľ¨óľ¨ 0
óľ¨óľ¨ óľ¨óľ¨ đĄ óľ¨ óľ¨ Ă sup óľ¨óľ¨óľ¨âŤ đâđ(đĄâđ ) đđ óľ¨óľ¨óľ¨ óľ¨óľ¨ đĄâĽ0 óľ¨óľ¨ 0 óľ¨ óľ¨ óľŠ óľŠ + max {óľŠóľŠóľŠđóľŠóľŠóľŠ , sup óľ¨óľ¨óľ¨óľ¨(đ (0) â đđ (âđ)) đâđđĄ + đđŚ (đĄ â đ)óľ¨óľ¨óľ¨óľ¨} đĄâĽ0
1 óľ¨ óľ¨ óľ¨ óľ¨ óľŠ óľŠ óľ¨ óľ¨ â¤ (1 + óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨) óľŠóľŠóľŠđóľŠóľŠóľŠ + 3 óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨ đ + sup óľ¨óľ¨â (đĽ, đŚ)óľ¨óľ¨óľ¨ đ |đĽ|,|đŚ|â¤đť+đ óľ¨ +
1 óľ¨ óľ¨ sup óľ¨óľ¨â (đĽ, đŚ)óľ¨óľ¨óľ¨ đ |đĽ|,|đŚ|â¤đť óľ¨
Thus, đ´đĽ + đľđŚ â đđ .
â đ (đĽđ (đ ) , đĽđ (đ â đ)) óľ¨óľ¨ óľ¨ +đ (đĽ (đ ) , đĽ (đ â đ)) } đâđ(đĄâđ ) đđ óľ¨óľ¨óľ¨ óľ¨óľ¨ óľ¨ óľ¨óľŠ óľŠ â¤ [2đ óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨ óľŠóľŠóľŠđĽđ â đĽóľŠóľŠóľŠ óľ¨ + sup óľ¨óľ¨óľ¨â (đ˘â (đĄ) + đĽđ (đĄ) , đ˘â (đĄ â đ) + đĽđ (đĄ â đ)) đĄâĽ0
óľ¨ â â (đ˘â (đĄ) + đĽ (đĄ) , đ˘â (đĄ â đ) + đĽ (đĄ â đ))óľ¨óľ¨óľ¨ ]
1 óľ¨ óľ¨ óľ¨ óľ¨ óľŠ óľŠ óľ¨ óľ¨ â¤ (1 + óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨) óľŠóľŠóľŠđóľŠóľŠóľŠ + 3 óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨ đ + sup óľ¨óľ¨â (đĽ, đŚ)óľ¨óľ¨óľ¨ đ |đĽ|,|đŚ|â¤đť+đ óľ¨ óľ¨ óľ¨ + đť (1 + óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨) ⤠đ.
here, the derivative of (đ´đĽ)ó¸ (đĄ) at zero means the left-hand side derivative when đĄ ⤠0 and the right-hand side derivative when đĄ ⼠0, one can see (đ´đĽ)ó¸ (đĄ) is bounded for all đĽ â đđ . Therefore, đ´đđ is a precompact set of đ. Thus, đ´ is compact. Suppose that {đĽđ } â đđ , đĽ â đ, đĽđ â đĽ as đ â â; then |đĽđ (đĄ) â đĽ(đĄ)| â 0 uniformly for đĄ ⼠âđ as đ â â. Since
óľ¨óľ¨ óľ¨óľ¨ đĄ óľ¨ óľ¨óľŠ óľ¨ óľ¨ óľŠ Ă sup óľ¨óľ¨óľ¨âŤ đâđ(đĄâđ ) đđ óľ¨óľ¨óľ¨ = 2 óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨ óľŠóľŠóľŠđĽđ â đĽóľŠóľŠóľŠ óľ¨óľ¨ đĄâĽ0 óľ¨óľ¨ 0 (25)
1 óľ¨ + sup óľ¨óľ¨óľ¨â (đ˘â (đĄ) + đĽđ (đĄ) , đ˘â (đĄ â đ) + đĽđ (đĄ â đ)) đ đĄâĽ0 óľ¨ â â (đ˘â (đĄ) + đĽ (đĄ) , đ˘â (đĄ â đ) + đĽ (đĄ â đ))óľ¨óľ¨óľ¨ , (27)
6
Abstract and Applied Analysis
and â is continuous, we have âđ´đĽđ â đ´đĽâ â 0 as đ â â. Thus, đ´ is continuous. Due to the fact that óľŠ óľ¨ óľ¨ óľ¨óľŠ óľŠ óľŠóľŠ óľ¨ óľŠóľŠđľđĽ â đľđŚóľŠóľŠóľŠ = sup óľ¨óľ¨óľ¨đđĽ (đĄ â đ) â đđŚ (đĄ â đ)óľ¨óľ¨óľ¨ ⤠óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨ óľŠóľŠóľŠđĽ â đŚóľŠóľŠóľŠ , đĄâĽ0
âđĽ, đŚ â đđ , (28) and |đ| < 1, we know that đľ is a contractive operator. According to Krasnoselskiiâs fixed-point theorem (see [22] or [15, Lemma 2.2]), there is a đ â đđ such that (đ´ + đľ)đ = đ. Therefore, đ(đĄ) is a solution for (16). Because the solution through đ for the equation is unique, the solution V(đ)(đĄ) = đ(đĄ) â 0 as đĄ â â. When â satisfies the Lipschitz condition, then there is a constant đż > 0 such that óľ¨óľ¨ óľ¨ â â â â óľ¨óľ¨â (đ˘ (đĄ)+đ˘ (đĄ) , đ˘ (đĄ â đ)+đ˘ (đĄ â đ))ââ (đ˘ (đĄ) , đ˘ (đĄâđ))óľ¨óľ¨óľ¨ ⤠đżâ|đ˘ (đĄ)|2 + |đ˘ (đĄ â đ)|2 ,
Theorem 5. Suppose that is â â đś1 (R2 ) and (âđĽ (đ˘â , đ˘â ), âđŚ (đ˘â , đ˘â )) = (0, 0); then the zero solution of (34) is exponentially asymptotically stable. Proof. For all đ in đś = đś([âđ, 0], R), let đˇđ = đ (0) â đđ (âđ) , đżđ = âđđ (0) â đđđ (âđ) ,
(35)
đšđ = âđ (đ (0) , đ (âđ)) . Then đˇ is stable, and đˇ and đż are linear and continuous. Consider the equation (đ/đđĄ)đˇđ˘đĄ = đżđ˘đĄ . Let 0
2
đ (đ) = (đˇđ) + 2đđ2 ⍠đ2 (đ) đđ. âđ
(36)
Then đĚ (đ) = 2 (đˇđ) (âđđ (0) â đđđ (âđ)) + 2đđ2 (đ2 (0) â đ2 (âđ))
âđ˘ â đ. (29)
Since đ satisfies
= â2đ (1 â đ2 ) đ2 (0) . (37)
âđđĄ
đ (đĄ) = [đ (0) â đđ (âđ)] đ
+ đđ (đĄ â đ)
đĄ
+ ⍠[â2đđđ (đ â đ) â đ (đ (đ ) , đ (đ â đ))] đâđ(đĄâđ ) đđ , 0
(30)
then óľ¨ óľ¨ óľŠ óľŠ â2đż óľŠóľŠ óľŠóľŠ óľ¨ óľ¨ óľŠ óľŠ óľŠóľŠ óľŠóľŠ óľŠóľŠđóľŠóľŠ ⤠(1 + óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨) óľŠóľŠóľŠđóľŠóľŠóľŠ + 3 óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨ óľŠóľŠóľŠđóľŠóľŠóľŠ + óľŠđóľŠ , đ óľŠ óľŠ
(31)
Thus, according to the last conclusion of Theorem 12.7.1 in [20, Page 297], the zero solution of đ˘ó¸ (đĄ) â đđ˘ó¸ (đĄ â đ) = âđđ˘(đĄ) â đđđ˘(đĄ â đ) is uniformly asymptotically stable. On the other hand, one can see that đšđ đ˘ = (âđđĽ (đ˘ (0) , đ˘ (âđ)) , âđđŚ (đ˘ (0) , đ˘ (âđ))) .
(38)
Thus, đš(0) = đšđ (0) = 0. According to [20, Theorem 12.9.1], the zero solution of (34) is exponentially asymptotically stable.
that is óľ¨ óľ¨ (1 â 3 óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨ â
â2đż óľŠ óľŠ óľ¨ óľ¨ óľŠ óľŠ ) óľŠóľŠóľŠđóľŠóľŠóľŠ ⤠(1 + óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨) óľŠóľŠóľŠđóľŠóľŠóľŠ . đ
3. Examples (32)
Therefore, if 1 â 3|đ| â (â2đż/đ) > 0, then there clearly exists a đż > 0 for any đ > 0 such that |đ(đĄ)| < đ for all đĄ ⼠âđ if âđâ < đż. Thus, we have the following. Theorem 4. If the Lipschitz constant đż for â corresponding to R2 satisfies óľ¨ óľ¨ 1 â 3 óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨ â
â2đż > 0, đ
(33)
then the zero solution for (16) is stable. When đ is constant and the equation đ â đ(1 + đ)đ˘ = â(đ˘, đ˘) has only one solution đ˘â , then đ˘â is an equilibrium of (1) and (1) can be transformed to the following equation: đ đˇđ˘ = âđđ˘ (đĄ) â đđđ˘ (đĄ â đ) â đ (đ˘ (đĄ) , đ˘ (đĄ â đ)) , (34) đđĄ đĄ â
where đˇđ˘đĄ = đ˘(đĄ) â đđ˘(đĄ â đ) and đ(đ˘(đĄ), đ˘(đĄ â đ)) = â(đ˘ + đ˘(đĄ), đ˘â + đ˘(đĄ â đ)) â â(đ˘â , đ˘â ). Now, we consider the stability of the zero solution for (34).
In this section, we present two examples to illustrate the applicability of our main results. Example 6 (Lopes et al. [8, 9, 13, 15, 23]). Consider the NFDE (2) which arises from a transmission line model, where đ > 0, đ > 0, đ > 0, |đ| < 1, đ â đś(R), and đ is a given nonlinear function. Now, let â(đ˘(đĄ), đ˘(đĄâđ)) = đđ(đ˘(đĄ))âđđđ(đ˘(đĄâđ)). It is not difficult to see that (2) is a special case of (1). Therefore, by Theorems 2â5, we have the following. Theorem 7. Suppose that đ â đś(R) and đ â đśđ . If there exists a constant đť > 0 such that óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľŠóľŠ óľŠóľŠ óľŠóľŠđóľŠóľŠ0 < (1 â 3 óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨) đđť â đ (1 + óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨) sup óľ¨óľ¨óľ¨đ (đĽ)óľ¨óľ¨óľ¨ , (39) |đĽ|â¤đť
then (2) has a đ-periodic solution. Remark 8. Theorem 7 implies that the conditions in [15] đ < 1,
óľ¨óľ¨ óľ¨óľ¨ 1 â đ , óľ¨óľ¨đóľ¨óľ¨ < 3+đ
(40)
where đ = (đ/đđť)sup|đĽ|â¤đť|đ(đĽ)|, are unnecessary for the existence of periodic solutions for (2).
Abstract and Applied Analysis
7
Theorem 9. Let đť be as in Theorem 7. Assume that all conditions of Theorem 7 are satisfied. If đ satisfies the Lipschitz condition, (đ/đđť)sup|đĽ|â¤đť|đ(đĽ)| ⤠1 and there exists đ > 0 such that óľ¨ óľ¨ đ â 3 óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨ đ đ óľ¨ óľŠóľŠ óľ¨ âóľŠ óľŠóľŠđâđ˘ óľŠóľŠóľŠ â¤ óľ¨ óľ¨ â đť â đ sup óľ¨óľ¨óľ¨đ(đĽ)óľ¨óľ¨óľ¨ , 1 + óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨ |đĽ|â¤đť+đ
(41)
condition, sup|đĽ|â¤(1+|đ|)đť|đ(đĽ)| ⤠đđť(1 + |đ|), and there exists đ > 0 such that óľŠóľŠ âóľŠ óľŠóľŠđ â đ˘ óľŠóľŠóľŠ â¤
đ â 3 |đ| đ 1 óľ¨ óľ¨óľ¨ âđťâ sup óľ¨đ (đĽ)óľ¨óľ¨óľ¨ , 1 + |đ| đ (1 + |đ|) |đĽ|â¤(1+|đ|)(đť+đ) óľ¨ (45)
then the solution đ˘(đ)(đĄ) through đ to (2) satisfying đ˘(đ)(đĄ) â đ˘â (đĄ) as đĄ â â, where đ˘â (đĄ) is a đ-periodic solution of (2).
then the solution through đ of (3) đ˘(đ)(đĄ) â đ˘â (đĄ) as đĄ â â, where đ˘â (đĄ) is a đ-periodic solution of (3).
Remark 10. The sufficient conditions for the existence of periodic solutions in [15] are very complicated. For example, they need extra condition đ > đť, đ < đ â đť and
Theorem 16. If all conditions of Theorem 14 are satisfied, and the Lipschitz constant đż for đ corresponding to (ââ, +â) satisfies 1 â 3|đ| â (đż/đ)(1 + |đ|) > 0, then đ-periodic solution đ˘â (đĄ) of (3) is stable.
đâđťâđ óľ¨óľ¨ óľ¨óľ¨ , óľ¨óľ¨đóľ¨óľ¨ < 3đ + đť + đ óľ¨ óľ¨ đ â 3 óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨ đ đ óľŠóľŠ âóľŠ óľŠóľŠđ â đ˘ óľŠóľŠóľŠ ⤠óľ¨óľ¨ óľ¨óľ¨ â đť â óľ¨ óľ¨, 1 + óľ¨óľ¨đóľ¨óľ¨ 1 + óľ¨óľ¨óľ¨đóľ¨óľ¨óľ¨
(42)
Theorem 17. Suppose that đ is constant, the equation đâđ(1+ đ)đ˘ = đ(đ˘ â đđ˘) has only one solution đ˘â , đ â đś1 (R), and đó¸ (đ˘â â đđ˘â ) = 0, then the equilibrium đ˘â of (3) is exponentially asymptotically stable.
where đ = (đ/đ)sup|đĽ|â¤đť+đ |đ(đĽ)|.
Acknowledgment
Theorem 11. If all conditions of Theorem 7 are satisfied, and the Lipschitz constant đż for đ corresponding to (ââ, +â) satisfies 1 â 3|đ| â (đ/đ)(1 + |đ|)đż > 0, then the đ-periodic solution đ˘â (đĄ) of (2) is stable.
This work was partially supported by the National Natural Science Foundation of China nos. 11201411 and 11031002.
Theorem 12. Suppose that đ is constant, the equation đâđ(1+ đ)đ˘ = đ(1 â đ)đ(đ˘) has only one solution đ˘â , đ â đś1 (R), and đó¸ (đ˘â ) = 0; then the equilibrium đ˘â of (2) is exponentially asymptotically stable. Example 13 (Lopes [9]). Consider the NFDE (3) which arises from a transmission line model, where đś0 > 0, đ > 0, đ > 0, |đ| < 1, đ â đś(R) and đ is a given nonlinear function. Let Ě Ě (đĄ) = (1/đś0 )đ(đĄ), đĚ = đ/đś0 , and đ(đ˘) đ = (1/đś0 )đ(đ˘); then (3) can be rewritten as Ě (đĄ) â đĚđ˘ (đĄ) â đĚđđ˘ (đĄ â đ) đ˘ó¸ (đĄ) â đđ˘ó¸ (đĄ â đ) = đ Ě (đ˘ (đĄ) â đđ˘ (đĄ â đ)) . âđ
(43)
Ě Now, let â(đ˘(đĄ), đ˘(đĄâđ)) = đ(đ˘(đĄ)âđđ˘(đĄâđ)). It is not difficult to see that (43) is a special case of (1). Therefore, by Theorems 2â5, we have the following. Theorem 14. Suppose that đ â đś(R) and đ â đśđ . If there exists a constant đť > 0 such that óľŠóľŠ óľŠóľŠ óľŠóľŠđóľŠóľŠ0 < (1 â 3 |đ|) đđť â
sup
|đĽ|â¤(1+|đ|)đť
óľ¨ óľ¨óľ¨ óľ¨óľ¨đ (đĽ)óľ¨óľ¨óľ¨ ,
(44)
then (3) has a đ-periodic solution. Theorem 15. Let đť be as in Theorem 14. Assume that all conditions of Theorem 14 are satisfied. If đ satisfies the Lipschitz
References [1] R. K. Brayton, âBifurcation of periodic solutions in a nonlinear difference-differential equations of neutral type,â Quarterly of Applied Mathematics, vol. 24, pp. 215â224, 1966. [2] R. K. Brayton, âNonlinear oscillations in a distributed network,â Quarterly of Applied Mathematics, vol. 24, pp. 289â301, 1967. [3] R. K. Brayton and W. L. Miranker, âA stability theory for nonlinear mixed initial boundary value problems,â Archive for Rational Mechanics and Analysis, vol. 17, pp. 358â376, 1964. [4] R. K. Brayton and J. K. Moser, âA theory of nonlinear networks. I,â Quarterly of Applied Mathematics, vol. 22, pp. 1â33, 1964. [5] K. L. Cooke and D. W. Krumme, âDifferential-difference equations and nonlinear initial-boundary value problems for linear hyperbolic partial differential equations,â Journal of Mathematical Analysis and Applications, vol. 24, pp. 372â387, 1968. [6] J. M. Ferreira, âOn the stability of a distributed network,â SIAM Journal on Mathematical Analysis, vol. 17, no. 1, pp. 38â45, 1986. [7] W. Krawcewicz, J. Wu, and H. Xia, âGlobal Hopf bifurcation theory for condensing fields and neutral equations with applications to lossless transmission problems,â The Canadian Applied Mathematics Quarterly, vol. 1, no. 2, pp. 167â220, 1993. [8] O. Lopes, âForced oscillations in nonlinear neutral differential equations,â SIAM Journal on Applied Mathematics, vol. 29, pp. 196â207, 1975. [9] O. Lopes, âStability and forced oscillations,â Journal of Mathematical Analysis and Applications, vol. 55, no. 3, pp. 686â698, 1976. [10] S. Siqueira Ceron and O. Lopes, âđź-contractions and attractors for dissipative semilinear hyperbolic equations and systems,â Annali di Matematica Pura ed Applicata. Serie Quarta, vol. 160, pp. 193â206, 1991.
8 [11] S. Lu and W. Ge, âOn the existence of periodic solutions for neutral functional differential equation,â Nonlinear Analysis: Theory, Methods & Applications, vol. 54, no. 7, pp. 1285â1306, 2003. [12] W. L. Miranker, âPeriodic solutions of the wave equation with a nonlinear interface condition,â International Business Machines Corporation, vol. 5, pp. 2â24, 1961. [13] M. Slemrod, âNonexistence of oscillations in a nonlinear distributed network,â Journal of Mathematical Analysis and Applications, vol. 36, pp. 22â40, 1971. [14] J. J. Wei and S. G. Ruan, âStability and global Hopf bifurcation for neutral differential equations,â Acta Mathematica Sinica. Chinese Series, vol. 45, no. 1, pp. 93â104, 2002 (Chinese). [15] L. Ding and Z. Li, âPeriodicity and stability in neutral equations by Krasnoselskiiâs fixed point theorem,â Nonlinear Analysis: Real World Applications, vol. 11, no. 3, pp. 1220â1228, 2010. [16] T. A. Burton, âPerron-type stability theorems for neutral equations,â Nonlinear Analysis: Theory, Methods & Applications, vol. 55, no. 3, pp. 285â297, 2003. [17] V. B. KolmanovskiËÄą and V. R. Nosov, Stability of functionaldifferential equations, vol. 180 of Mathematics in Science and Engineering, Academic Press, London, UK, 1986. [18] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, vol. 191 of Mathematics in Science and Engineering, Academic Press, Boston, Mass, USA, 1993. [19] T.-R. Ding and C. Li, Ordinary Differential Equations Tutorial, Higher Education Press, Bejing, China, 2004. [20] J. K. Hale, âFunctional differential equations,â in Analytic Theory of Differential Equations, vol. 183 of Lecture Notes in Mathematics, p. 2, Springer, Berlin, Germany, 1971. [21] D. X. Xia, Z. R. Wu, S. Z. Yan, and W. C. Shu, Real Variable Function and Functional Analysis, Higher Education Press, Beijing, China, 2nd edition, 2010. [22] D. R. Smart, Fixed Point Theorems, Cambridge University Press, London, UK, 1974. [23] V. G. Angelov, âLossy transmission lines terminated by R-loads with exponential V-I characteristics,â Nonlinear Analysis: Real World Applications, vol. 8, no. 2, pp. 579â589, 2007.
Abstract and Applied Analysis