On the Solutions and Conservation Laws of a Coupled Kadomtsev

0 downloads 0 Views 2MB Size Report
Oct 6, 2012 - Kadomtsev-Petviashvili (KP) equation given by [3]. ( + ... ((3a) and (3b)) into a system of nonlinear ordinary differential equations in orderΒ ...
Hindawi Publishing Corporation Journal of Applied Mathematics Volume 2013, Article ID 741780, 7 pages http://dx.doi.org/10.1155/2013/741780

Research Article On the Solutions and Conservation Laws of a Coupled Kadomtsev-Petviashvili Equation Chaudry Masood Khalique Department of Mathematical Sciences, International Institute for Symmetry Analysis and Mathematical Modelling, North-West University, Mafikeng Campus, Private Bag X 2046, Mmabatho 2735, South Africa Correspondence should be addressed to Chaudry Masood Khalique; [email protected] Received 6 October 2012; Accepted 2 December 2012 Academic Editor: Asghar Qadir Copyright Β© 2013 Chaudry Masood Khalique. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A coupled Kadomtsev-Petviashvili equation, which arises in various problems in many scientific applications, is studied. Exact solutions are obtained using the simplest equation method. The solutions obtained are travelling wave solutions. In addition, we also derive the conservation laws for the coupled Kadomtsev-Petviashvili equation.

1. Introduction

In this paper, we study a new coupled KP equation [10]:

The well-known Korteweg-de Vries (KdV) equation [1] 𝑒𝑑 + 6𝑒𝑒π‘₯ + 𝑒π‘₯π‘₯π‘₯ = 0

(1)

governs the dynamics of solitary waves. Firstly, it was derived to describe shallow water waves of long wavelength and small amplitude. It is a crucial equation in the theory of integrable systems because it has infinite number of conservation laws, gives multiple-soliton solutions, and has many other physical properties. See, for example, [2] and references therein. An essential extension of the KdV equation is the Kadomtsev-Petviashvili (KP) equation given by [3] (𝑒𝑑 + 6𝑒𝑒π‘₯ + 𝑒π‘₯π‘₯π‘₯ )π‘₯ + 𝑒𝑦𝑦 = 0.

(2)

This equation models shallow long waves in the π‘₯-direction with some mild dispersion in the 𝑦-direction. The inverse scattering transform method can be used to prove the complete integrability of this equation. This equation gives multiple-soliton solutions. Recently, the coupled Korteweg-de Vries equations and the coupled Kadomtsev-Petviashvili equations, because of their applications in many scientific fields, have been the focus of attention for scientists and as a result many studies have been conducted [4–9].

7 5 (𝑒𝑑 + 𝑒π‘₯π‘₯π‘₯ βˆ’ 𝑒𝑒π‘₯ βˆ’ 𝑣𝑣π‘₯ + (𝑒𝑣)π‘₯ ) + 𝑒𝑦𝑦 = 0, 4 4 π‘₯

(3a)

5 7 (𝑣𝑑 + 𝑣π‘₯π‘₯π‘₯ βˆ’ 𝑒𝑒π‘₯ βˆ’ 𝑣𝑣π‘₯ + 2(𝑒𝑣)π‘₯ ) + 𝑣𝑦𝑦 = 0, 4 4 π‘₯

(3b)

and find exact solutions of this equation. The method that is employed to obtain the exact solutions for the coupled Kadomtsev-Petviashvili equation ((3a) and (3b)) is the simplest equation method [11, 12]. Secondly, we derive conservation laws for the system ((3a) and (3b)) using the multiplier approach [13, 14]. The simplest equation method was introduced by Kudryashov [11] and later modified by Vitanov [12]. The simplest equations that are used in this method are the Bernoulli and Riccati equations. This method provides a very effective and powerful mathematical tool for solving nonlinear equations in mathematical physics. Conservation laws play a vital role in the solution process of differential equations (DEs). The existence of a large number of conservation laws of a system of partial differential equations (PDEs) is a strong indication of its integrability [15]. A conserved quantity was utilized to find the unknown exponent in the similarity solution which could not have been obtained from the homogeneous boundary conditions [16].

2

Journal of Applied Mathematics

Also recently, conservation laws have been employed to find solutions of the certain PDEs [17–19]. The outline of the paper is as follows. In Section 2, we obtain exact solutions of the coupled KP system ((3a) and (3b)) using the simplest equation method. Conservation laws for ((3a) and (3b)) using the multiplier method are derived in Section 3. Finally, in Section 4 concluding remarks are presented.

Here 𝐻(𝑧) satisfies the Bernoulli and Riccati equations, 𝑀 is a positive integer that can be determined by balancing procedure, and A0 , . . . , A𝑀, B0 , . . . , B𝑀 are constants to be determined. The solutions of the Bernoulli and Riccati equations can be expressed in terms of elementary functions. We first consider the Bernoulli equation:

𝐻󸀠 (𝑧) = π‘Žπ» (𝑧) + 𝑏𝐻2 (𝑧) ,

2. Exact Solutions of ((3a) and (3b)) Using Simplest Equation Method We first transform the system of partial differential equations ((3a) and (3b)) into a system of nonlinear ordinary differential equations in order to derive its exact solutions. The transformation 𝑒 = 𝐹 (𝑧) ,

𝑣 = 𝐺 (𝑧) ,

𝑧 = 𝑑 βˆ’ 𝜌π‘₯ + (𝜌 βˆ’ 1) 𝑦, (4)

where 𝜌 is a real constant, transforms ((3a) and (3b)) to the following nonlinear coupled ordinary differential equations (ODEs):

where π‘Ž and 𝑏 are constants. Its solution can be written as

𝐻 (𝑧) = π‘Ž {

cosh [π‘Ž (𝑧 + 𝐢)] + sinh [π‘Ž (𝑧 + 𝐢)] }. 1 βˆ’ 𝑏 cosh [π‘Ž (𝑧 + 𝐢)] βˆ’ 𝑏 sinh [π‘Ž (𝑧 + 𝐢)] (8)

Secondly, for the Riccati equation:

5 𝜌4 𝐹󸀠󸀠󸀠󸀠 (𝑧) + 𝜌2 𝐺 (𝑧) 𝐹󸀠󸀠 (𝑧) 4

𝐻󸀠 (𝑧) = π‘Žπ»2 (𝑧) + 𝑏𝐻 (𝑧) + 𝑐

7 βˆ’ 𝜌2 𝐹 (𝑧) 𝐹󸀠󸀠 (𝑧) + 𝜌2 𝐹󸀠󸀠 (𝑧) 4 5 βˆ’ 3πœŒπΉσΈ€ σΈ€  (𝑧) + 𝐹󸀠󸀠 (𝑧) + 𝜌2 𝐹󸀠 (𝑧) 𝐺󸀠 (𝑧) 2

(5a)

7 5 βˆ’ 𝜌2 𝐹󸀠 (𝑧)2 + 𝜌2 𝐹 (𝑧) 𝐺󸀠󸀠 (𝑧) 4 4 βˆ’ 𝜌2 𝐺 (𝑧) 𝐺󸀠󸀠 (𝑧) βˆ’ 𝜌2 𝐺󸀠 (𝑧)2 = 0, 4

σΈ€ σΈ€ σΈ€ σΈ€ 

𝜌𝐺

2

σΈ€ σΈ€ 

(𝑧) + 2𝜌 𝐺 (𝑧) 𝐹 (𝑧)

5 βˆ’ 𝜌2 𝐹 (𝑧) 𝐹󸀠󸀠 (𝑧) + 4𝜌2 𝐹󸀠 (𝑧) 𝐺󸀠 (𝑧) 4 5 βˆ’ 𝜌2 𝐹󸀠 (𝑧)2 + 2𝜌2 𝐹 (𝑧) 𝐺󸀠󸀠 (𝑧) 4 7 βˆ’ 𝜌2 𝐺 (𝑧) 𝐺󸀠󸀠 (𝑧) + 𝜌2 𝐺󸀠󸀠 (𝑧) 4 7 βˆ’ 3πœŒπΊσΈ€ σΈ€  (𝑧) + 𝐺󸀠󸀠 (𝑧) βˆ’ 𝜌2 𝐺󸀠 (𝑧)2 = 0. 4 We now use the simplest equation method [11, 12] to solve the system ((5a) and (5b)) and as a result we will obtain the exact solutions of our coupled KP system ((3a) and (3b)). We use the Bernoulli and Riccati equations as the simplest equations. We briefly recall the simplest equation method here. Let us consider the solutions of ((5a) and (5b)) in the form

(9)

(π‘Ž, 𝑏, and 𝑐 are constants), we shall use the solutions

𝐻 (𝑧) = βˆ’

𝑏 πœƒ 1 βˆ’ tanh [ πœƒ (𝑧 + 𝐢)] , 2π‘Ž 2π‘Ž 2

𝐻 (𝑧) = βˆ’

πœƒ 1 𝑏 βˆ’ tanh ( πœƒπ‘§) 2π‘Ž 2π‘Ž 2

+

(5b)

(7)

(10)

sech (πœƒπ‘§/2) , 𝐢 cosh (πœƒπ‘§/2) βˆ’ (2π‘Ž/πœƒ) sinh (πœƒπ‘§/2)

where πœƒ2 = 𝑏2 βˆ’ 4π‘Žπ‘ > 0 and 𝐢 is a constant of integration. 2.1. Solutions of ((3a) and (3b)) Using the Bernoulli Equation as the Simplest Equation. In this case the balancing procedure yields 𝑀 = 2 so the solutions of ((5a) and (5b)) are of the form

𝐹 (𝑧) = A0 + A1 𝐻 + A2 𝐻2 , 𝐺 (𝑧) = B0 + B1 𝐻 + B2 𝐻2 .

(11)

𝑀

𝐹 (𝑧) = βˆ‘A𝑖 (𝐻 (𝑧))𝑖 , 𝑖=0 𝑀

𝐺 (𝑧) = βˆ‘B𝑖 (𝐻 (𝑧))𝑖 . 𝑖=0

(6)

Substituting (11) into ((5a) and (5b)) and making use of the Bernoulli equation (7) and then equating all coefficients of the functions 𝐻𝑖 to zero, we obtain an algebraic system of equations in terms of A0 , A1 , A2 , B0 , B1 , and B2 .

Journal of Applied Mathematics

3

Solving the system of algebraic equations, with the aid of Mathematica, we obtain π‘Ž = 1, 𝑏 = 3, A0 =

π‘˜ (𝜌4 + 𝜌2 βˆ’ 3𝜌 + 1) 𝜌2

A1 340992

B2 =

Γ— {9849A21 𝜌3 βˆ’ 3245184A0 𝜌3 βˆ’ 354564A0 A1 𝜌3

,

+ 90144A1 𝜌3 + 3752A21 𝜌2

36A0 𝜌4 A1 = 4 , 𝜌 + 𝜌2 βˆ’ 3𝜌 + 1

βˆ’ 1081728A0 𝜌2 βˆ’ 135072A0 A1 𝜌2

A2 = 3A1 , B0 =

+ 30048A1 𝜌2 + 11256A21 𝜌

1 21312

βˆ’ 50652A0 A1 𝜌 + 90144A1 𝜌 βˆ’ 25326A21 βˆ’ 16884A0 A1

Γ— {βˆ’49248A0 𝜌9 βˆ’ 8208A0 𝜌8

βˆ’ 240384A1 + 1665792} ,

+ 67392A20 𝜌7 βˆ’ 98496A0 𝜌7

(12)

+ 11232A20 𝜌6 + 279072A0 𝜌6 βˆ’ 75978A30 𝜌5 + 67392A20 𝜌5

where π‘˜ is any root of 469π‘˜3 βˆ’ 416π‘˜2 + 304π‘˜ βˆ’ 256 = 0. Consequently, a solution of ((3a) and (3b)) is given by

βˆ’ 98496A0 𝜌5 βˆ’ 12663A30 𝜌4 βˆ’ 190944A20 𝜌4 + 270864A0 𝜌4 βˆ’ 67608A20 𝜌3 βˆ’ 492480A0 𝜌3 + 2814A0 A1 𝜌3 βˆ’ 22536A20 𝜌2 + 205200A0 𝜌2 + 938A0 A1 𝜌2 + 2814A0 A1 𝜌 + 34704A0 βˆ’ 7504A0 A1 + 41472𝜌11 10

+ 6912𝜌 + 124416𝜌

βˆ’ 352512𝜌 + 186624𝜌

+ 𝐡2 π‘Ž2 {

βˆ’ 884736𝜌4 + 1181952𝜌3 βˆ’ 1645056𝜌2 + 933120𝜌 βˆ’ 172800} , A1 B1 = 1022976 Γ—

βˆ’ 3245184A0 𝜌

3

βˆ’ 354564A0 A1 𝜌3 + 90144A1 𝜌3

βˆ’ 135072A0 A1 𝜌 + 30048A1 𝜌

cosh [π‘Ž (𝑧 + 𝐢)] + sinh [π‘Ž (𝑧 + 𝐢)] } 1 βˆ’ 𝑏 cosh [π‘Ž (𝑧 + 𝐢)] βˆ’ 𝑏 sinh [π‘Ž (𝑧 + 𝐢)]

2 cosh [π‘Ž (𝑧 + 𝐢)] + sinh [π‘Ž (𝑧 + 𝐢)] }, 1 βˆ’ 𝑏 cosh [π‘Ž (𝑧 + 𝐢)] βˆ’ 𝑏 sinh [π‘Ž (𝑧 + 𝐢)] (13a)

cosh [π‘Ž (𝑧 + 𝐢)] + sinh [π‘Ž (𝑧 + 𝐢)] } 1 βˆ’ 𝑏 cosh [π‘Ž (𝑧 + 𝐢)] βˆ’ 𝑏 sinh [π‘Ž (𝑧 + 𝐢)]

2 cosh [π‘Ž (𝑧 + 𝐢)] + sinh [π‘Ž (𝑧 + 𝐢)] }, 1 βˆ’ 𝑏 cosh [π‘Ž (𝑧 + 𝐢)] βˆ’ 𝑏 sinh [π‘Ž (𝑧 + 𝐢)] (13b)

where 𝑧 = 𝑑 βˆ’ 𝜌π‘₯ + (𝜌 βˆ’ 1)𝑦 and 𝐢 is a constant of integration. 2.2. Solutions of ((3a) and (3b)) Using Riccati Equation as the Simplest Equation. The balancing procedure gives 𝑀 = 2 so the solutions of ((5a) and (5b)) are of the form 𝐹 (𝑧) = A0 + A1 𝐻 + A2 𝐻2 ,

+ 3752A21 𝜌2 βˆ’ 1081728A0 𝜌2 2

+ 𝐴 2 π‘Ž2 {

= 𝐡0 + 𝐡1 π‘Ž {

7

βˆ’ 705024𝜌6 + 1285632𝜌5

{9849A21 𝜌3

= 𝐴 0 + 𝐴 1π‘Ž {

𝑣 (𝑑, π‘₯, 𝑦)

9

8

𝑒 (𝑑, π‘₯, 𝑦)

2

+ 11256A21 𝜌 βˆ’ 50652A0 A1 𝜌 + 90144A1 𝜌 βˆ’ 25326A21 βˆ’ 16884A0 A1 βˆ’ 240384A1 + 1665792} ,

𝐺 (𝑧) = B0 + B1 𝐻 + B2 𝐻2 .

(14)

Substituting (14) into ((5a) and (5b)) and making use of the Riccati equation (9), we obtain algebraic system of equations in terms of A0 , A1 , A2 , B0 , B1 , and B2 by equating all coefficients of the functions 𝐻𝑖 to zero.

4

Journal of Applied Mathematics 𝑒 (𝑑, π‘₯) =𝐴 0 + 𝐴 1 {βˆ’

Solving the algebraic equations one obtains 𝜌 = βˆ’1,

+

2

A0 = π‘˜ (8π‘Žπ‘ + 𝑏 + 5) , A1 =

12π‘ŽA0 𝑏 , 8π‘Žπ‘ + 𝑏2 + 5

+ 𝐴 2 {βˆ’

π‘ŽA1 A2 = , 𝑏

+

B0 = 3 (βˆ’2048π‘Ž2 𝑏𝑐 βˆ’ 256π‘Žπ‘3 + 208π‘ŽA0 𝑏

B1 = B2 =

A1 (336π‘Žπ‘ βˆ’ 29A1 ) , 192π‘Žπ‘ βˆ’ 6A1

2 sech (πœƒπ‘§/2) }, 𝐢 cosh (πœƒπ‘§/2)βˆ’(2π‘Ž/πœƒ) sinh (πœƒπ‘§/2) (17a)

+

1 17760000

+ 𝐡2 {βˆ’

Γ— {βˆ’270144π‘Ž2 A20 A1 𝑏𝑐

+

(15)

+ 1080576π‘Ž2 A20 A2 𝑐2 + 50652π‘ŽA20 A1 𝑏3 βˆ’ 84420π‘ŽA20 A1 𝑏 + 5784000π‘ŽA1 𝑏

sech (πœƒπ‘§/2) } 𝐢 cosh (πœƒπ‘§/2) βˆ’ (2π‘Ž/πœƒ) sinh (πœƒπ‘§/2)

𝑏 πœƒ 1 βˆ’ tanh ( πœƒπ‘§) 2π‘Ž 2π‘Ž 2

𝑣 (𝑑, π‘₯) =𝐡0 + 𝐡1 {βˆ’

βˆ’1

βˆ’ 1280π‘Žπ‘ + 15A0 A1 ) Γ— (74A1 ) ,

𝑏 πœƒ 1 βˆ’ tanh ( πœƒπ‘§) 2π‘Ž 2π‘Ž 2

𝑏 πœƒ 1 βˆ’ tanh ( πœƒπ‘§) 2π‘Ž 2π‘Ž 2 sech (πœƒπ‘§/2) } 𝐢 cosh (πœƒπ‘§/2)βˆ’(2π‘Ž/πœƒ) sinh (πœƒπ‘§/2)

𝑏 πœƒ 1 βˆ’ tanh ( πœƒπ‘§) 2π‘Ž 2π‘Ž 2 2 sech (πœƒπ‘§/2) }, 𝐢 cosh (πœƒπ‘§/2) βˆ’ (2π‘Ž/πœƒ) sinh (πœƒπ‘§/2) (17b)

where 𝑧 = 𝑑 βˆ’ 𝑝π‘₯ + (𝑝 βˆ’ 1)𝑦 and 𝐢 is a constant of integration. A profile of the solution ((13a) and (13b)) is given in Figure 1. The flat peaks appearing in the figure are an artifact of Mathematica and they describe the singularities of the solution.

βˆ’ 751200π‘ŽA0 A1 𝑏 βˆ’ 3552000π‘Žπ‘B1 + 1350720π‘ŽA20 A2 𝑐 + 6009600π‘ŽA0 A2 𝑐 + 70350A0 A21 + 313000A21 βˆ’ 422100A20 A2 βˆ’ 3756000A0 A2

3. Conservation Laws of ((3a) and (3b))

+ 28920000A2 βˆ’ 4221A0 A21 𝑏4

In this section we present conservation laws for the coupled KP system ((3a) and (3b)) using the multiplier method [13, 14]. First we present some preliminaries which we will need later in this section.

βˆ’ 938A31 𝑏3 𝑐 βˆ’ 14070A0 A21 𝑏2 + 62600A21 𝑏2 βˆ’ 480256A32 𝑐4 βˆ’ 4006400A22 𝑐2 βˆ’ 1800960A0 A22 𝑐2 + 112560A21 A2 𝑐2 } , where π‘˜ is any root of 469π‘˜3 βˆ’ 416π‘˜2 + 304π‘˜ βˆ’ 256 and hence solutions of ((3a) and (3b)) are 𝑒 (𝑑, π‘₯, 𝑦) =𝐴 0 + 𝐴 1 {βˆ’ + 𝐴 2 {βˆ’

𝑏 πœƒ 1 βˆ’ tanh [ πœƒ (𝑧 + 𝐢)]} 2π‘Ž 2π‘Ž 2 2

𝑏 πœƒ 1 βˆ’ tanh [ πœƒ (𝑧 + 𝐢)]} , 2π‘Ž 2π‘Ž 2

(16a) 𝑏 πœƒ 1 tanh [ πœƒ (𝑧 + 𝐢)]} 𝑣 (𝑑, π‘₯, 𝑦) = 𝐡0 + 𝐡1 {βˆ’ βˆ’ 2π‘Ž 2π‘Ž 2 + 𝐡2 {βˆ’

2 𝑏 πœƒ 1 βˆ’ tanh [ πœƒ (𝑧 + 𝐢)]} , 2π‘Ž 2π‘Ž 2

(16b)

3.1. Preliminaries. We briefly present the notation and pertinent results which we utilize below. For details the reader is referred to [20]. Consider a π‘˜th-order system of PDEs of 𝑛-independent variables π‘₯ = (π‘₯1 , π‘₯2 , . . . , π‘₯𝑛 ) and π‘š-dependent variables 𝑒 = (𝑒1 , 𝑒2 , . . . , π‘’π‘š ): 𝐸𝛼 (π‘₯, 𝑒, 𝑒(1) , . . . , 𝑒(π‘˜) ) = 0,

𝛼 = 1, . . . , π‘š,

(18)

where 𝑒(1) , 𝑒(2) , . . . , 𝑒(π‘˜) denote the collections of all first, second,. . ., π‘˜th-order partial derivatives, that is, 𝑒𝑖𝛼 = 𝐷𝑖 (𝑒𝛼 ), 𝑒𝑖𝑗𝛼 = 𝐷𝑗 𝐷𝑖 (𝑒𝛼 ), . . ., respectively, with the total derivative operator with respect to π‘₯𝑖 given by 𝐷𝑖 =

πœ• πœ• πœ• + 𝑒𝑖𝛼 𝛼 + 𝑒𝑖𝑗𝛼 𝛼 + β‹… β‹… β‹… , πœ•π‘₯𝑖 πœ•π‘’ πœ•π‘’π‘—

𝑖 = 1, . . . , 𝑛,

(19)

where the summation convention is used whenever appropriate.

Journal of Applied Mathematics

π‘₯

5

βˆ’2 0

2 25 20 𝑒 15 10

6

𝑣 4 2

5 βˆ’2

βˆ’2 βˆ’2

𝑦

0

0

𝑦 0

2

2

(a)

π‘₯

2

(b)

Figure 1: Profile of the travelling wave solution ((13a) and (13b)).

The Euler-Lagrange operator, for each 𝛼, is given by πœ• 𝛿 πœ• = + βˆ‘(βˆ’1)𝑠 𝐷𝑖1 , . . . , 𝐷𝑖𝑠 𝛼 , 𝛿𝑒𝛼 πœ•π‘’π›Ό 𝑠β‰₯1 πœ•π‘’π‘–1 𝑖2 ,...,𝑖𝑠

coupled KP system ((3a) and (3b)), we obtain the zerothorder multipliers (with the aid of GeM [21]), Ξ› 1 (𝑑, π‘₯, 𝑦, 𝑒, 𝑣), Ξ› 2 (𝑑, π‘₯, 𝑦, 𝑒, 𝑣) that are given by (20)

Ξ› 1 = 𝑓3 (𝑑) + 𝑦𝑓4 (𝑑) βˆ’ 𝑦2 𝑓7σΈ€  (𝑑) + 2π‘₯𝑓7 (𝑑)

𝛼 = 1, . . . , π‘š.

+ 𝑦3 (βˆ’π‘“8σΈ€  (𝑑)) + 6π‘₯𝑦𝑓8 (𝑑) ,

The 𝑛-tuple vector 𝑇 = (𝑇1 , 𝑇2 , . . . , 𝑇𝑛 ), 𝑇𝑗 ∈ A, 𝑗 = 1, . . . , 𝑛, where A is the space of differential functions, is a conserved vector of (18) if 𝑇𝑖 satisfies 󡄨 𝐷𝑖 𝑇𝑖 󡄨󡄨󡄨󡄨(18) = 0.

(21)

Equation (21) defines a local conservation law of system (18). A multiplier Ξ› 𝛼 (π‘₯, 𝑒, 𝑒(1) , . . .) has the property that Ξ› 𝛼 𝐸𝛼 = 𝐷𝑖 𝑇𝑖

(22)

Ξ›2 = βˆ’

𝑦2 𝑓1σΈ€ 

(𝑑) + 2π‘₯𝑓1 (𝑑) + 𝑦

3

(βˆ’π‘“2σΈ€ 

where 𝑓𝑖 , 𝑖 = 1, 2, . . . , 8 are arbitrary functions of 𝑑. Corresponding to the above multipliers we have the following eight local conserved vectors of ((3a) and (3b)): 𝑇1𝑑 =

1 {βˆ’2𝑓1 (𝑑) 𝑣 + 2π‘₯𝑓1 (𝑑) 𝑣π‘₯ βˆ’ 𝑦2 𝑓1σΈ€  (𝑑) 𝑣π‘₯ } , 2

𝑇1π‘₯ =

1 {βˆ’8𝑦2 𝑓1σΈ€  (𝑑) 𝑒π‘₯ 𝑣 βˆ’ 8𝑦2 𝑓1σΈ€  (𝑑) 𝑣π‘₯ 𝑒 4 + 16π‘₯𝑓1 (𝑑) 𝑒π‘₯ 𝑣 + 16π‘₯𝑓1 (𝑑) 𝑣π‘₯ 𝑒

𝛿 (Ξ› 𝛼 𝐸𝛼 ) = 0. 𝛿𝑒𝛼

+ 7𝑦2 𝑓1σΈ€  (𝑑) 𝑣π‘₯ 𝑣 βˆ’ 14π‘₯𝑓1 (𝑑) 𝑣π‘₯ 𝑣

Once the multipliers are obtained the conserved vectors are calculated via a homotopy formula [13, 14]. 3.2. Construction of Conservation Laws for ((3a) and (3b)). We now construct conservation laws for the coupled KP system ((3a) and (3b)) using the multiplier method. For the

(𝑑))

+ 6π‘₯𝑦𝑓2 (𝑑) + 𝑓5 (𝑑) + 𝑦𝑓6 (𝑑) ,

holds identically. In this paper, we will consider multipliers of the zeroth order, that is, Ξ› 𝛼 = Ξ› 𝛼 (𝑑, π‘₯, 𝑦, 𝑒, 𝑣). The determining equations for the multiplier Ξ› 𝛼 are (23)

(24)

+ 5𝑦2 𝑓1σΈ€  (𝑑) 𝑒π‘₯ 𝑒 βˆ’ 10π‘₯𝑓1 (𝑑) 𝑒π‘₯ 𝑒

βˆ’ 16𝑓1 (𝑑) 𝑒𝑣 + 5𝑓1 (𝑑) 𝑒2 + 2𝑦2 𝑓1σΈ€ σΈ€  (𝑑) 𝑣 βˆ’ 4π‘₯𝑓1σΈ€  (𝑑) 𝑣 + 7𝑓1 (𝑑) 𝑣2 βˆ’ 8𝑓1 (𝑑) 𝑣π‘₯π‘₯ + 8π‘₯𝑓1 (𝑑) 𝑣π‘₯π‘₯π‘₯ + 4π‘₯𝑓1 (𝑑) 𝑣𝑑 βˆ’ 2𝑦2 𝑓1σΈ€  (𝑑) 𝑣𝑑 βˆ’ 4𝑦2 𝑓1σΈ€  (𝑑) 𝑣π‘₯π‘₯π‘₯ } ,

6

Journal of Applied Mathematics 𝑦

𝑇1 = 2𝑦𝑓1σΈ€  (𝑑) 𝑣 + 2π‘₯𝑓1 (𝑑) 𝑣𝑦 βˆ’ 𝑦2 𝑓1σΈ€  (𝑑) 𝑣𝑦 , 𝑇2𝑑 =

𝑇6π‘₯ =

1 {βˆ’6𝑦𝑓2 (𝑑) 𝑣 + 6π‘₯𝑦𝑓2 (𝑑) 𝑣π‘₯ + 𝑦3 (βˆ’π‘“2σΈ€  (𝑑)) 𝑣π‘₯ } , 2 𝑇2π‘₯ =

1 {8𝑦𝑓6 (𝑑) 𝑒π‘₯ 𝑣 + 8𝑦𝑓6 (𝑑) 𝑣π‘₯ 𝑒 4 βˆ’ 5𝑦𝑓6 (𝑑) 𝑒π‘₯ 𝑒 βˆ’ 7𝑦𝑓6 (𝑑) 𝑣π‘₯ 𝑣

1 {βˆ’8𝑦3 𝑓2σΈ€  (𝑑) 𝑒π‘₯ 𝑣 βˆ’ 8𝑦3 𝑓2σΈ€  (𝑑) 𝑣π‘₯ 𝑒 4

βˆ’ 2𝑦𝑓6σΈ€  (𝑑) 𝑣 + 4𝑦𝑓6 (𝑑) 𝑣π‘₯π‘₯π‘₯ + 2𝑦𝑓6 (𝑑) 𝑣𝑑 } ,

+ 48π‘₯𝑦𝑓2 (𝑑) 𝑒π‘₯ 𝑣 + 48π‘₯𝑦𝑓2 (𝑑) 𝑣π‘₯ 𝑒 𝑦

𝑇6 = 𝑦𝑓6 (𝑑) 𝑣𝑦 βˆ’ 𝑓6 (𝑑) 𝑣,

+ 5𝑦3 𝑓2σΈ€  (𝑑) 𝑒π‘₯ 𝑒 βˆ’ 30π‘₯𝑦𝑓2 (𝑑) 𝑒π‘₯ 𝑒 + 7𝑦3 𝑓2σΈ€  (𝑑) 𝑣π‘₯ 𝑣 βˆ’ 42π‘₯𝑦𝑓2 (𝑑) 𝑣π‘₯ 𝑣

𝑇7𝑑 =

βˆ’ 48𝑦𝑓2 (𝑑) 𝑒𝑣 + 15𝑦𝑓2 (𝑑) 𝑒2 +

2𝑦3 𝑓2σΈ€ σΈ€ 

(𝑑) 𝑣 βˆ’

12π‘₯𝑦𝑓2σΈ€ 

1 {βˆ’2𝑓7 (𝑑) 𝑒 + 2π‘₯𝑓7 (𝑑) 𝑒π‘₯ βˆ’ 𝑦2 𝑓7σΈ€  (𝑑) 𝑒π‘₯ } , 2

𝑇7π‘₯ =

(𝑑) 𝑣

1 {βˆ’5𝑦2 𝑓7σΈ€  (𝑑) 𝑒π‘₯ 𝑣 βˆ’ 5𝑦2 𝑓7σΈ€  (𝑑) 𝑣π‘₯ 𝑒 4

+ 21𝑦𝑓2 (𝑑) 𝑣2 βˆ’ 24𝑦𝑓2 (𝑑) 𝑣π‘₯π‘₯

+ 10π‘₯𝑓7 (𝑑) 𝑒π‘₯ 𝑣 + 10π‘₯𝑓7 (𝑑) 𝑣π‘₯ 𝑒

+ 24π‘₯𝑦𝑓2 (𝑑) 𝑣π‘₯π‘₯π‘₯ + 12π‘₯𝑦𝑓2 (𝑑) 𝑣𝑑

+ 7𝑦2 𝑓7σΈ€  (𝑑) 𝑒π‘₯ 𝑒 βˆ’ 14π‘₯𝑓7 (𝑑) 𝑒π‘₯ 𝑒

βˆ’ 2𝑦3 𝑓2σΈ€  (𝑑) 𝑣𝑑 βˆ’ 4𝑦3 𝑓2σΈ€  (𝑑) 𝑣π‘₯π‘₯π‘₯ } ,

+ 4𝑦2 𝑓7σΈ€  (𝑑) 𝑣π‘₯ 𝑣 βˆ’ 8π‘₯𝑓7 (𝑑) 𝑣π‘₯ 𝑣

𝑦

𝑇2 = 3𝑦2 𝑓2σΈ€  (𝑑) 𝑣 βˆ’ 6π‘₯𝑓2 (𝑑) 𝑣

βˆ’ 10𝑓7 (𝑑) 𝑒𝑣 + 2𝑦2 𝑓7σΈ€ σΈ€  (𝑑) 𝑒

+ 6π‘₯𝑦𝑓2 (𝑑) 𝑣𝑦 βˆ’ 𝑦3 𝑓2σΈ€  (𝑑) 𝑣𝑦 , 𝑇3𝑑 = 𝑇3π‘₯ =

βˆ’ 4π‘₯𝑓7σΈ€  (𝑑) 𝑒 + 7𝑓7 (𝑑) 𝑒2

1 𝑓 (𝑑) 𝑒π‘₯ , 2 3

+ 4𝑓7 (𝑑) 𝑣2 βˆ’ 8𝑓7 (𝑑) 𝑒π‘₯π‘₯

1 {5𝑓3 (𝑑) 𝑒π‘₯ 𝑣 + 5𝑓3 (𝑑) 𝑣π‘₯ 𝑒 4

+ 8π‘₯𝑓7 (𝑑) 𝑒π‘₯π‘₯π‘₯ + 4π‘₯𝑓7 (𝑑) 𝑒𝑑 βˆ’ 2𝑦2 𝑓7σΈ€  (𝑑) 𝑒𝑑 βˆ’ 4𝑦2 𝑓7σΈ€  (𝑑) 𝑒π‘₯π‘₯π‘₯ } ,

βˆ’ 7𝑓3 (𝑑) 𝑒π‘₯ 𝑒 βˆ’ 4𝑓3 (𝑑) 𝑣π‘₯ 𝑣 βˆ’ 2𝑓3σΈ€  (𝑑) 𝑒 + 4𝑓3 (𝑑) 𝑒π‘₯π‘₯π‘₯ + 2𝑓3 (𝑑) 𝑒𝑑 } , 𝑦

𝑇3 = 𝑓3 (𝑑) 𝑒𝑦 , 1 𝑇4𝑑 = 𝑦𝑓4 (𝑑) 𝑒π‘₯ , 2 𝑇4π‘₯ =

1 {5𝑦𝑓4 (𝑑) 𝑒π‘₯ 𝑣 + 5𝑦𝑓4 (𝑑) 𝑣π‘₯ 𝑒 4

𝑦

𝑇7 = 2𝑦𝑓7σΈ€  (𝑑) 𝑒 + 2π‘₯𝑓7 (𝑑) 𝑒𝑦 βˆ’ 𝑦2 𝑓7σΈ€  (𝑑) 𝑒𝑦 , 𝑇8𝑑 =

1 {βˆ’6𝑦𝑓8 (𝑑) 𝑒 + 6π‘₯𝑦𝑓8 (𝑑) 𝑒π‘₯ βˆ’ 𝑦3 𝑓8σΈ€  (𝑑) 𝑒π‘₯ } , 2 𝑇8π‘₯ =

1 {βˆ’5𝑦3 𝑓8σΈ€  (𝑑) 𝑒π‘₯ 𝑣 βˆ’ 5𝑦3 𝑓8σΈ€  (𝑑) 𝑣π‘₯ 𝑒 4 + 30π‘₯𝑦𝑓8 (𝑑) 𝑒π‘₯ 𝑣 + 30π‘₯𝑦𝑓8 (𝑑) 𝑣π‘₯ 𝑒

βˆ’ 7𝑦𝑓4 (𝑑) 𝑒π‘₯ 𝑒 βˆ’ 4𝑦𝑓4 (𝑑) 𝑣π‘₯ 𝑣 βˆ’ 2𝑦𝑓4σΈ€  𝑒

+ 7𝑦3 𝑓8σΈ€  (𝑑) 𝑒π‘₯ 𝑒 βˆ’ 42π‘₯𝑦𝑓8 (𝑑) 𝑒π‘₯ 𝑒

+ 4𝑦𝑓4 (𝑑) 𝑒π‘₯π‘₯π‘₯ + 2𝑦𝑓4 (𝑑) 𝑒𝑑 } , 𝑦 𝑇4

+ 4𝑦3 𝑓8σΈ€  (𝑑) 𝑣π‘₯ 𝑣 βˆ’ 24π‘₯𝑦𝑓8 (𝑑) 𝑣π‘₯ 𝑣

= 𝑦𝑓4 (𝑑) 𝑒𝑦 βˆ’ 𝑓4 (𝑑) 𝑒,

βˆ’ 30𝑦𝑓8 (𝑑) 𝑒𝑣 + 2𝑦3 𝑓8σΈ€ σΈ€  𝑒

1 𝑇5𝑑 = 𝑓5 (𝑑) 𝑣π‘₯ , 2 𝑇5π‘₯ =

βˆ’ 12π‘₯𝑦𝑓8σΈ€  (𝑑) 𝑒 + 21𝑦𝑓8 (𝑑) 𝑒2

1 {8𝑓5 (𝑑) 𝑒π‘₯ 𝑣 + 8𝑓5 (𝑑) 𝑣π‘₯ 𝑒 4

+ 12𝑦𝑓8 (𝑑) 𝑣2 βˆ’ 24𝑦𝑓8 (𝑑) 𝑒π‘₯π‘₯ + 24π‘₯𝑦𝑓8 (𝑑) 𝑒π‘₯π‘₯π‘₯ + 12π‘₯𝑦𝑓8 (𝑑) 𝑒𝑑

βˆ’ 5𝑓5 (𝑑) 𝑒π‘₯ 𝑒 βˆ’ 7𝑓5 (𝑑) 𝑣π‘₯ 𝑣 βˆ’ 2𝑓5σΈ€  (𝑑) 𝑣 + 4𝑓5 (𝑑) 𝑣π‘₯π‘₯π‘₯ + 2𝑓5 (𝑑) 𝑣𝑑 } , 𝑦

𝑇5 = 𝑓5 (𝑑) 𝑣𝑦 , 1 𝑇6𝑑 = 𝑦𝑓6 (𝑑) 𝑣π‘₯ , 2

βˆ’ 2𝑦3 𝑓8σΈ€  (𝑑) 𝑒𝑑 βˆ’ 4𝑦3 𝑓8σΈ€  (𝑑) 𝑒π‘₯π‘₯π‘₯ } , 𝑦

𝑇8 = 3𝑦2 𝑓8σΈ€  (𝑑) 𝑒 βˆ’ 6π‘₯𝑓8 (𝑑) 𝑒 + 6π‘₯𝑦𝑓8 (𝑑) 𝑒𝑦 βˆ’ 𝑦3 𝑓8σΈ€  (𝑑) 𝑒𝑦 . (25)

Journal of Applied Mathematics We note that because of the arbitrary functions 𝑓𝑖 , 𝑖 = 1, 2, . . . , 8 in the multipliers, we obtain an infinitely many conservation laws for the coupled KP system ((3a) and (3b)).

4. Concluding Remarks The coupled Kadomtsev-Petviashvili system ((3a) and (3b)) was studied in this paper. The simplest equation method was used to obtain travelling wave solutions of the coupled KP system ((3a) and (3b)). The simplest equations that were used in the solution process were the Bernoulli and Riccati equations. However, it should be noted that the solutions ((13a) and (13b)), ((16a) and (16b)), and ((17a) and (17b)) obtained by using these simplest equations are not connected to each other. We have checked the correctness of the solutions obtained here by substituting them back into the coupled KP system ((3a) and (3b)). Furthermore, infinitely many conservation laws for the coupled KP system ((3a) and (3b)) were derived by employing the multiplier method. The importance of constructing the conservation laws was discussed in the introduction.

Acknowledgments C. M. Khalique would like to thank the Organizing Committee of Symmetries, Differential Equations, and Applications: Galois Bicentenary (SDEA2012) Conference for their kind hospitality during the conference.

References [1] D. J. Korteweg and G. de Vries, β€œOn the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves,” Philosophical Magazine, vol. 39, pp. 422– 443, 1895. [2] A. M. Wazwaz, β€œIntegrability of coupled KdV equations,” Central European Journal of Physics, vol. 9, no. 3, pp. 835–840, 2011. [3] B. B. Kadomtsev and V. I. Petviashvili, β€œOn the stability of solitary waves in weakly dispersive media,” Soviet Physics. Doklady, vol. 15, pp. 539–541, 1970. [4] D.-S. Wang, β€œIntegrability of a coupled KdV system: PainlevΒ΄e property, Lax pair and BΒ¨acklund transformation,” Applied Mathematics and Computation, vol. 216, no. 4, pp. 1349–1354, 2010. [5] C.-X. Li, β€œA hierarchy of coupled Korteweg-de Vries equations and the corresponding finite-dimensional integrable system,” Journal of the Physical Society of Japan, vol. 73, no. 2, pp. 327– 331, 2004. [6] Z. Qin, β€œA finite-dimensional integrable system related to a new coupled KdV hierarchy,” Physics Letters A, vol. 355, no. 6, pp. 452–459, 2006. [7] X. Geng, β€œAlgebraic-geometrical solutions of some multidimensional nonlinear evolution equations,” Journal of Physics A, vol. 36, no. 9, pp. 2289–2303, 2003. [8] X. Geng and Y. Ma, β€œN-solution and its Wronskian form of a (3+1)-dimensional nonlinear evolution equation,” Physics Letters A, vol. 369, no. 4, pp. 285–289, 2007.

7 [9] X. Geng and G. He, β€œSome new integrable nonlinear evolution equations and Darboux transformation,” Journal of Mathematical Physics, vol. 51, no. 3, Article ID 033514, 21 pages, 2010. [10] A.-M. Wazwaz, β€œIntegrability of two coupled kadomtsev-petviashvili equations,” Pramana, vol. 77, no. 2, pp. 233–242, 2011. [11] N. A. Kudryashov, β€œSimplest equation method to look for exact solutions of nonlinear differential equations,” Chaos, Solitons & Fractals, vol. 24, no. 5, pp. 1217–1231, 2005. [12] N. K. Vitanov, β€œApplication of simplest equations of Bernoulli and Riccati kind for obtaining exact traveling-wave solutions for a class of PDEs with polynomial nonlinearity,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 8, pp. 2050–2060, 2010. [13] S. C. Anco and G. Bluman, β€œDirect construction method for conservation laws of partial differential equations. I. Examples of conservation law classifications,” European Journal of Applied Mathematics, vol. 13, no. 5, pp. 545–566, 2002. [14] M. Anthonyrajah and D. P. Mason, β€œConservation laws and invariant solutions in the Fanno model for turbulent compressible flow,” Mathematical & Computational Applications, vol. 15, no. 4, pp. 529–542, 2010. [15] G. W. Bluman and S. Kumei, Symmetries and Differential Equations, vol. 81 of Applied Mathematical Sciences, Springer, New York, NY, USA, 1989. [16] R. Naz, F. M. Mahomed, and D. P. Mason, β€œComparison of different approaches to conservation laws for some partial differential equations in fluid mechanics,” Applied Mathematics and Computation, vol. 205, no. 1, pp. 212–230, 2008. [17] A. SjΒ¨oberg, β€œDouble reduction of PDEs from the association of symmetries with conservation laws with applications,” Applied Mathematics and Computation, vol. 184, no. 2, pp. 608–616, 2007. [18] A. SjΒ¨oberg, β€œOn double reductions from symmetries and conservation laws,” Nonlinear Analysis: Real World Applications, vol. 10, no. 6, pp. 3472–3477, 2009. [19] A. H. Bokhari, A. Y. Al-Dweik, F. D. Zaman, A. H. Kara, and F. M. Mahomed, β€œGeneralization of the double reduction theory,” Nonlinear Analysis: Real World Applications, vol. 11, no. 5, pp. 3763–3769, 2010. [20] N. H. Ibragimov, CRC Handbook of Lie Group Analysis of Differential Equations, vol. 1–3, CRC Press, Boca Raton, Fla, USA, 1996. [21] A. F. Cheviakov, β€œGeM software package for computation of symmetries and conservation laws of differential equations,” Computer Physics Communications, vol. 176, no. 1, pp. 48–61, 2007.

Advances in

Operations Research Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Advances in

Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Applied Mathematics

Algebra

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Probability and Statistics Volume 2014

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Differential Equations Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Submit your manuscripts at http://www.hindawi.com International Journal of

Advances in

Combinatorics Hindawi Publishing Corporation http://www.hindawi.com

Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Journal of

Mathematics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Discrete Mathematics

Journal of

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Discrete Dynamics in Nature and Society

Journal of

Function Spaces Hindawi Publishing Corporation http://www.hindawi.com

Abstract and Applied Analysis

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Journal of

Stochastic Analysis

Optimization

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014