Feb 16, 1989 - This result is comparable to Gearhart's theorem in the case of Co-Semigroups treated in [4,5,10] which has multiple applications on different ...
0378-620X/89/050713-1251.50+0.20/0
Integral Equations and Operator Theory Vol. 12 (1989)
(c) 1989 Birkh~user Verlag, Basel
ON THE SPECTRUM OF COSINE OPERATOR FUNCTIONS Carlos
Lizama
In t h i s paper we c h a r a c t e r i z e the spectrum of strongly continuous cosine functions, d e f i n e d in a H i l b e r t s p a c e , in terms of p r o p e r t i e s of the infinitesimal generator. INTRODUCTION Throughout cosine
function,
generator
A.
this
defined
p(A)
For f u n d a m e n t a l
is
facts
work C ( t ) ,
teR
in a H i ] b e r t
the resolvent on s t r o n g l y
is
a strongly
space H, w i t h set
and
o(A)
continuous
continuous
infinitesimal
the
cosine
spectrum.
functions
see
[2,8,11,12] The p r o b l e m o f
determining
some k n o w l e d g e of t h e o p e r a t o r (see E I , 3 , 7 , 9
] ).
known L9] to
sion
fails
the
[2,9]
).
second o r d e r
In p a r t i c u l a r , (*)
1~ p ( C ( 1 ) )
several
of
this
equation
was p r o v e d
that
{ -4~'n'}
in
for
the class general
of
result
a certain uniformly is
true:
kind
Hilbert
2 p ( A ) and
class
of
in c o n e c t i o n
u":Au+f
neZ and t h a t ,
by many a u t h o r s
are cases where t h e r e v e r s e
results
differential
it
given
o(C(t))
but t h e r e
(see
o(C(t)),
A, has been s t u d i e d
hold,
In ~ I ]
spectrum
The i n c l u s i o n :
ch{ tVo--~CE}-- } c is
the
incluwith
are p r e s e n t e d .
spaces we have:
Supln(4~'n'
+ A)-I~O 6 ~ c h
that
~6 + {e 2w6 + T } ~ / z } ,
6>0
chAe p ( C ( 6 ) ) . PROOF. Let s>O and ~eC f i x e d . We define: =
ews
+
4e2ws
+1
,
~
=
-
ews
+
~e2ws
+1
for
aach
, we h a v e
Lizama
715
Observe t h a t
leRep and t h i s
~-~
~B= I and
e-Re~ I > 2e ws
_
yields:
(3)
Ich~l.
e ws
I and w>O such
i ! M e ws
and t h a t f o r a r b i t r a r y r e a l numbers t o , t I . . . . . . t n and S l , S 2 , . . , s n with O!to~t1~ ..... ~tn:t, O~sj~tj-tj_ I ( j = 1 , 2 . . . . . n ; t n = t ) we have: IC(Sn)C(Sn. I) .... C(Sl)C(to)
~ ~ M e wt
(see [ 2 ]
t h e n , d e n o t i n g by r t h e s p e c t r a l r a d i u s of C ( s ) , and s j = s ( k = 0 , 1 . . . . . n ; j = 1 , 2 . . . . . n) t h a t : (5)
r(C(s))
Combining
(3)
p.60)
we have f o r
tk:kS
< e ws.
and (5) t h e
lemma i s p r o v e d .
The f o l l o w i n g lemma shows t h a t i t i s a l w a y s p o s s i b l e t o translate the conditions in (2) on t h e r e s o l v e n t of A, from t h e strip S t = ( ~ e C / IReul ! i n ( e W t + ~ e2Wt + I )} t o i t s complement. LEMMA 2 .
(6)
Let
[+-~ + 2 ~ i n / t }
(7)
Supl(•
~ G C and
f
n~Z
+ 2~inlt)[
c
-
p(A)
t>O f i x e d
and
6uppo6e
and
[+-~ + ~ i n l t )
z - A
]-II
nG Z
then,
there
exist6
reC
and
Tn eL(H),
n e Z
6ueh
that:
< +|
that:
716
Lizama
(8)
chTt
(9)
(•
~ p(C(~)) 2~in/t)'
(I0)(•
c p(A)
neZ
-
211in/t)[(•
+
+ 2~in/~)'-A
for as163ne Z. Moreover, PROOF.
]-I = Tn ( • 2 4 7 2 4 7
-I
Sup ITn i 0 such t h a t
E > (I/t)In(e
wt +#f e 2wt + I )
and d e f i n e : (11)
9 = ~ + i
then by lemma 1, Now, by (1)
(8)
holds.
we have: r
(12)
{(•
+ 2~in/t)2-A} = (•
holds.
•
(13)
Pn :•
sh{(•
2~in/t)s}
C(t-s)x
ds =
0
+ 2~in/t){
+ 2~in/t
Finally,
t
| J
Note t h a t
Im(u)
# 0 for
ch~tx - C(t)x} all
n~Z, then
, neZ , xeH. by (8)
we have t h a t
(9)
we d e f i n e : + 2~in/t
;
~n =+z-
+ 2~tn/t
, nGZ.
We have: (14)
pn(p~ - A ) - I : ( p n / ~ n ) [ ( ~ - P ~ ) ( P ~ - A ) - I + I ] = n ( ~ - A )
-I
Define: (15)
Tn
then using (11) i t are bounded. Then, and (15)
imply
(10)
:
(~n-
Pn' / ~ n )pn(P~ - A) -1 + Pn/~n
i s easy to see t h a t { p n / ~ n } n e Z a n d { ~ n - p ~ / ~ n } n e z (7) i m p l i e s t h a t S u p I T n l < +| . T h e r e f o r e (14) and the p r o o f
isn~mplete.
Lizama
717
Let peC and t>O f i x e d
(16)
F(p,s)x
= Vt/2
and d e f i n e
e ps C ( t - l s l ) x
the function: ; IslO, x~H,~GC. =+" -|
PROOF. D e f i n e Xn=-:~+ 2 ~ i n / t and ~n=~ + 2 ~ i n l t f o r a l l i s known t h a t f o r f u n c t i o n s f , g G L 2 ( ] O , t [ ; H ) t h e Parseval's h o l d s in the Form
neZ. I t formula
Ft
+|
Jo I f ( s ) x l '
(17)(I/t)
ds : -~X
rt
( 1 8 ) ( I i t ) ] 0 Ig(s)xl' then,
(19)
with
f(s)x
ds
:
+~ -| Z
rt
=_|
hand,
ds~'
sin(2~ns/t)g(s)x
dsl ~ ,
0
and g ( s ) x
: ch(ps)C(t-s)x
tt
ds +
t JO ~ c h ( ~ s ) C ( t - s ) x
the following
sh(knS)
+ sh(PnS)
sh(XnS)
-
Then u s i n g
(19)
sh(PnS)
I'
we have
ds :
=
cos(2~ns/t)
2 sh(Ps)
[ {I -|
law,
," neZ , seR.
we have
t
0
(1/2)
hold
sin(2~ns/t)
and the p a r a l l e l o g r a m
I Ish(.s)C(t-s)xl'
t
identities
= 2i c h ( ~ s )
t
=
cos(2~ns/t)f(s)x 0
os(2~ns/t)sh(~s)C(t-s)xds~' +_.Z ~ 0sin(211ns/t)ch(ps)C(t-s)x ds~ '
On t h e o t h e r
(20)
t
?
I(1/t)
= sn(ps)C(t-s)x
Jo l s h ( ~ s ) C ( t - s ) x i '
t
i
~(I/t)
ds + t I Ich(ps)C(t-s)xl'
s h ( ~ n S ) C ( t _ s)x d s l ' 0
0
ds :
+ I rt s h ( P n S ) C ( t - s ) x d s l ' } 0
718
Lizama
Now, left
of
(20),
and s h ( ~ s )
(21) -|Z ~ and t h e
using
the
and a p p l y i n g
- ch(~s)
that
the
: e -~s
i>oo
result
fact
-an
:
identities
~-n
for
sh(~s)
all
neZ i n
+ ch(~s)
:
the e ~s
we o b t a i n :
s
ds~ 2 = (t/2){
~e~Sc(t-s)x~'ds + 0 ~e- ~Sc(t-s)x~'ds}
follows.
MAIN RESULT.
THEOREM 4. Le~ H be a H i s of a 6 ~ r o n g s fos (22)
eontinuou~
6tatement6
co6ine
6 p a c e and A t h e g e n e r a t o r
function
O(t),
t~R.
Then t h e
arc equivas
{ e p(C(t))
(23) { 4 ' /
eh~t
= ~ } e p(A) -
and
Sup Ix(x ' - A)-II ~hxt=~
::MO and observe t h a t the s o l u t i o n s of the equation ch~t={ are of the form: (24) Xk =-# + 2 ~ i k / t By lemma I ,
, ~k =
# + 2~ik/t
we can assume t h a t
We d e f i n e F(#,s)
as in (16),
; keZ , DeC.
IReptl < In(e wt + ~e2wt + I ).
then, there e x i s t s constants e>O and
0>0 such t h a t : (25)
(I/~2)IC(t)xl ' ~
?
~F(~,s)x~' ds s 621ch~tx - C ( t ) x l 2, xeH.
t
In f a c t ,
in order to prove the i n e q u a l i t y on the l e f t
in (25),
observe t h a t D'A1embert's f u n c t i o n a l equation gives: C ( t ) x = 2 C(t) C ( t - s ) x - C ( t - 2 s ) x By i n t e g r a t i o n over [ O , t ]
,
s e R , xeH.
and using the f a c t t h a t C ( t )
is even,
we
Lizama
719
we o b t a i n : [
t C(t)x : 2 I
J
t
c(t)c(t-s)x 0
ds-
rt I C(s)x ds J0
, x~H
then, using (4) and HOlder's i n e q u a l i t y , we have t h a t there e x i s t s a constant KI>O such t h a t : t (26)
IC(t)xi'
0
(25).
the
following
two c a s e s :
# 0
We h a v e : (34)
Ichptx~ 2 - ~C(t)x~' = 2 Re< chptx, chptx - C ( t ) x > - ~ch~tx - C(t)x~ 2 _< 2 Ichptx~ ~chptx - C(t)x~ - Wchptx - C(t)x~'
Hence a c o m b i n a t i o n
(35) Ichptxi 2 < ~' -
< ~'
B'IchlJtx
of
i
t
(25)
and
IF(u,s)xI'
(34)
yields:
ds +
Ichptxi'
Ic(t)xl'
t
- C(t)x I'
+ 21chptx ~ Ichptx-C(t)x~-~chptx-C(t)x~
~
Lizama
721
then (35) O~ (~2B'
implies
that:
- 1)~chptx-C(t)x~'
+ 2 i c h p t x ~ ~ c h p t x - C ( t ) x ~ - ~ c h ~ t x l 2.
Hence: (36)
Jchptx-C(t)x~
~ (I + e B ) - 1 1 c h ~ t l
~x~
Now, we d e f i n e C*(s) := ( C ( s ) ) * . Then, i t f o l l o w s [ 9 ] t h a t C*(s) is a s t r o n g l y c o n t i n u o u s cosine f u n c t i o n w i t h g e n e r a t o r A*. Hence a s i m i l a r argument i m p l i e s : (37)
~ ( c h ~ t - C ( t ) ) * x i ~ (I + ~B) -11ch~t I ~x~
I t f o l l o w s from (36) and (37) (see [ 6 ] p.92) and the p r o o f is complete in t h i s case.
Note t h a t (38)
CASE 2. chpt : O. D'Alembert's functional
that
{= chpt~ p ( C ( t ) )
equation gives:
0 ~ p ( C ( t ) ) •
e
p(C(t/2)).
On the Other hand, we obtain from the i d e n t i t y : (I/2)chpt = (ch(pt/2) -VZ/2)(ch(pt/2) + ;~/2) (39){p'/chpt=O}
= {p'/ch(pt/2)=#E/2} U {p2/ch(pt/2)=-#~/2}
Now, by h y p o t h e s i s : {p'/ Then (39)
chpt:O}
c p(A)
and
Suplp(p' chpt=O
A)-II