Operating Room Planning with Random Surgery Times

0 downloads 0 Views 725KB Size Report
rooms' capacities used by emergency surgery are assumed to be random variables. .... First, K independent random samples are generated for each random ...
Mehdi LAMIRI, Johann DREO and Xiaolan XIE

Operating Room Planning  with Random Surgery Times  Abstract—This   paper   addresses   the   elective   surgery  planning   under   uncertainties   related   to   surgery   times   and  emergency surgery demands. Surgery times as well operating  rooms’ capacities used by emergency surgery are assumed to  be   random   variables.  The   planning   problem   consists   of  assigning   elective   patients   to   operating   rooms   (ORs)   over   a  planning horizon in order to minimize patients’ related costs  and expected  ORs’  overtime   costs.  The   planning   problem  is  first formulated as a stochastic mathematical program. Then,  a solution  approach  combining  Monte  Carlo  simulation  and  column   generation   has   been   proposed.   Computation  experiments show that the solution approach results in near­ optimal solutions in a reasonable computation time.

I.INTRODUCTION

O

perating   rooms  (ORs)  represent  the   hospital’s   largest  cost   center,   they   have   been   estimated   to   account   for  more   than   40%   of   total   expenses   [1].   Therefore,   many  different approaches for OR planning and scheduling have  been proposed in health care literature [2]­[6]. Nevertheless,  few   studies   considered   variability   related   to   OR’s  environment.  Variability is inherent to the world of health care; it arises  from   uncertainty   in   emergency   patients’   arrivals,  uncertainty in surgery times, medical staff availability, etc.  So the planning of surgical activities must take into account  these   uncertainties;   otherwise,   it   degrades   the   quality   of  service toward patients,  and generates additional costs  for  the hospital.  An   approach   to   deal   with   the   variability   of   elective  surgery  time  consists   of  assigning  planned  capacity  slack  (buffer­time)   to   ORs   [7].   But,   this   approach   does   not  consider   emergency   surgery   and   assumes   the   sum   of  surgery times  to be normally distributed. Elective surgery  planning  with an explicit modeling of random  emergency  Manuscript received April 30, 2007.  M. Lamiri is with the Ecole Nationale Superieure des Mines de Saint­ Etienne   (ENSM­SE),   Industrial   Engineering   and   Computer   Sciences  Division , 158 Cours Fauriel, 42023 Saint Etienne Cedex 2, France (phone:  +334 7742 6645; fax: +334 7742 6666; e­mail: [email protected]).  J.   Dreo   is   with   ENSM­SE,   Engineering   and   Health   Division   (e­mail:  [email protected]).  X.   Xie   is   with   ENSM­SE,   Engineering   and   Health   Division   (e­mail:  [email protected]).

surgery  has been  addressed [8]. However,  the uncertainty  related   to   elective   surgery   time   was   not   considered.   A  model for the advance scheduling of elective surgery under  uncertain   surgery   time   and   emergency   surgery   has   been  proposed  [9]. But, it concerns  a mono­period  model  with  aggregated capacity  and does not  specify the OR and the  surgery date for each elective case.  This   paper   addresses   the   elective   surgery   planning  problem   by   taking   into   account   uncertainties   related   to  surgery   time   and   emergency   surgery   demand.  Elective  patients can be planned starting from an earliest date with a  patient related cost depending on the operating room and on  the  date   of  surgery.   A  random  amount  of   each  operating  room’s capacity is used to serve emergency  patients.  The  planning   problem   consists   of   determining   a   plan   that  specifies the set of elective patients that would be operated  in   each  OR  in  each   period   over  a  planning  horizon.  The  surgery   plan   should   minimize   costs   related   to   the   over­ utilization of ORs and costs related to performing elective  surgeries.  The   planning   problem   is   first   modeled   as   a   stochastic  integer   program.   Monte   Carlo   simulation   is   then   used   to  approximate   the   problem   by   a   mixed­integer   program.   A  column­oriented   formulation   in   which   each   column  represents   a   possible   assignment   of   elective   patients   to   a  particular   OR   in   a   particular   period   is   then   derived.   The  linear relaxation of the latter formulation is then solved via  column generation. Feasible plan is derived from solution of  the relaxed problem by a heuristic, and improved by using  local improvement heuristics. The   remainder   of   the   paper   is   organized   as   follows.  Section   2   gives   a   stochastic   integer   programming  formulation of the planning problem. Section 3 presents an  approximation   of   the   planning   problem   by   using   Monte  Carlo simulation. Section 4 presents the column generation  approach,   the   pricing   problem,   and   the   construction   and  improvement   of   feasible   plan.   Numerical   results   of   the  optimization method are presented in Section 5. Section 6  presents   some   perspectives   concerning   the   use   of   meta­ heuristics   to   improve   the   column   generation   approach.  Section   7   concludes   the   paper   and   discusses   possible  extensions of this work.

II.PROBLEM STATEMENT   Consider  an operating theatre  composed  of  S  operating  rooms, a finite horizon of H periods (days), and a set of N  elective   patients   waiting   to   be   planned.   The   planning  problem consists of determining the set of elective patients  to be operated in each operating room in each period. In the  rest of the paper, we refer to an OR s ∈{1,…, S} in a given  period (day) t ∈{1,…, H} as an “OR­day” (s, t). Each elective patient  i∈{1,…,  N} has an operating time  di. This time includes surgery duration and an allowance for  the necessary cleaning and pre­surgery preparation. In this  work operating times are assumed to be random variables.  Let  f di (x) , be the distribution function of di. Each elective patient  i, has also a release date  ei  which  represents the earliest period to operate the patient. Starting  from the earliest date the elective patient can be planned in  any   period   with   an   assignment   cost   depending   on   the  surgery   date   and   on   the   OR   where   the   surgery   will   be  performed. Let aits represent the cost of performing elective  case i in the OR­day (s, t) for t ∈{ei ,…, H, H+1} and s ∈ {1,…,S}. A “fictitious” period H+1 is added to the planning  horizon in order to gather elective patients that are rejected  from   the   current   planning.   Rejected   patients   will   not   be  operated within the planning horizon, but will be considered  in the next horizon. So ai(H+1)s is the cost of rejecting the case  i  from   the   current   planning.   Obviously,   this   cost   is   OR­ independent, i.e., ai(H+1)s = ai(H+1)s’ for any s, s’∈{1,…,S}, and  can be simply denoted by ai(H+1). These assignment costs can  be   used   to   model   several   situations   .e.g.,   hospitalization  costs,   ORs’   availabilities,   patient’s   and   surgeon’s  preferences, etc. ORs are used to perform elective and emergency surgery.  Emergency   patients   cannot   be   planned   in   advance;   they  arrive   randomly   and   require   an   immediate   surgical  intervention. More specifically, emergency surgery demand  must  be met on the day of arrival  whatever  the available  capacity. In this work, we consider that a random portion of  each OR­day capacity is used to serve emergency patients.  Let  Wts  be the capacity, i.e. the total OR time, needed for  emergency cases operated in OR­day (s, t). It is assumed to  be a random variable with the density function fWts(x). Each   OR­day   (s,  t)   has   a   regular   capacity  Tts,   i.e.,   the  number   of   hours   available   on   regular   time.   If   the   total  duration   of   emergency   and   planned   elective   surgeries  exceeds the regular capacity, then overtime is needed. Let  cts be the cost per time unit of overtime in OR­day (s, t).

The   overall   objective   is   to   assign   elective   patients   to  different   OR­days   in   order   to   minimize   elective   patients’  related costs  and ORs expected overtime costs.  Let  Xits  ∈ {0,1} be the decision variables, with Xits = 1 if elective case  i is performed in the OR­day (s, t) and 0 otherwise; with the  convention   that  Xi,H+1,s  =   1   implies   that   elective   case  i  is  rejected   from   the   current   planning   horizon.   The   surgery  planning problem is formulated as follows (general problem  GP):  J* = min J(X) =  

N H 1 S i 1 t  ei s 1 H

S

t 1 s 1

aits X its



cts E Wts 

N i 1

d i X its  Tts





(1)

subject to: H 1 S t  ei s 1

X its  1 ,   i

(2)

Xits {0, 1},   i,t,s (3)    The expectation E[.] is with respect to the distribution of  Wts 

N i 1

d i X its , and (y)+ = max {0, y}. 

The objective function (1) seeks to minimize the sum of  the expected ORs overtime costs and the elective patients’  related   costs.   Constraints   (2)   guarantee   that  each  elective  case is assigned exactly to one OR­day. Constraints (3) are  the integrity constraints. Problem (GP) is a stochastic combinatorial problem. By  using   a   polynomial   transformation   of   the   3­partition  problem, it can be easily proved that (GP) is strongly NP­ hard. On the other hand, evaluating the expected values E[.]  in the objective function (1) involves multiples numerical  integrations; an additional source of difficulty. In the next  section, we present a solution method that combines Monte  Carlo simulation and column generation. III.MONTE CARLO APPROXIMATION In order to overcome the difficulties induced by multiple  numerical integrations, a Monte Carlo sampling technique is  used to approximate the stochastic planning problem (GP)  by a deterministic optimization problem. This approach is  also   known   as   the   sample   path   method   or   the   stochastic  counterpart method [10]. First,  K  independent  random  samples  are  generated  for  each random variable. More specifically, for each elective  1 K patient i, K samples d i ,..., d i of operating time are randomly  generated; and for each OR­day (s, t), K samples  Wts ,...,Wts   1

K

of   emergency   capacity   requirement   are   also   randomly 

generated.  Then,   using   the   generated   samples,   expectations   in   the  criteria   (1)   are   approximated   by   their   sample   averages.  Consequently,   the   “true”   problem   (GP)   can   be  approximated by a sample average approximation  problem  (P): JK = min JK(X) =

N H 1 S i 1 t  ei s 1



  

aits X its

H t 1

H t 1

cts s 1 K S

K k 1

cts E Wtsk  K s 1 S



W

k ts

N i 1



N i 1

d X its  Tts k i

d ik X its  Tts









(4)

subject to: (2) and (3) We note that (P) can be transformed into a mixed integer  program,   and   that   its   optimal   solution   converges  exponentially   fast   to   the   optimal   solution   of   the   “true”  problem (GP), as K increases [11].  However,   problem   (P)   is   still   strongly   NP­hard.  In   the  next  section  we  present  a column  generation  approach  to  find a near optimal solution for (P).  IV.SOLUTION METHODOLOGY  The main steps of this approach are as follows: (i) derive  a column  generation  reformulation  of  the  “approximated”  planning problem (P), called master problem; (ii) solve the  LP­relaxation   of   the   master   problem   using   column  generation; (iii) derive a feasible plan from the solution of  the LP­relaxation of the master problem; (iv) improve the  feasible plan using local optimization. A.Column generation approach In this sub­section, a column formulation for the planning  problem is presented. A column represents a “plan” for one  operating   room   in   one   day.   A   plan  p  is   defined   by   the  followings binary variables: 1   if  patient i is assigned to plan  p, yip  0 otherwise. ztsp 

1 if  plan  p is assigned to OR ­ day  s,t  , 0 otherwise.

Then   the   plan  p  can   be   represented   by [y p ,z p ]  [(y1 p ,..., yNp ),(z1 p ,...,z(H S )p )] .   The   first  N  entries,  given   by  yp,   represent   the   set   of   patients   assigned   to   the  plan. The next  H×S  entries, i.e.,  zp, indicate to which OR­ day(s) the plan is assigned.   Let Ω be the set of all possible feasible plans. A plan p is  feasible   if   it   is   assigned   to   exactly   one   OR­day   (i.e.,

t ,s

ztsp  1 )   and   respects   patients’   earliest   periods.   The 

expected cost Cp of plan p can be expressed as follows: Cp 

t ,s

ztsp

i

yip aits  Ots  y p 

   (5)

where Ots(yp) is the expected overtime cost of OR­day (s, t)  Ots  y p    cts K 

K k 1

W



k ts

i

yip dik  Tts





   (6)

Remark 1:   if  yp  = 0, then the expected overtime cost is  Ots  0    cts K 

K k 1

 Wtsk  Tts 



,   i.e.,   if   no   elective 

patient is assigned to OR­day (s, t) overtime may occurs due  to emergency surgery, and the expected cost is Ots(0). Using the new notation, problem (P) consists in selecting  a   subset   of   feasible   plans.   Let  λp  for  pΩ   be   a   binary  decision   variable   indicating   whether   a   feasible   plan  p  is  selected (λp  =1) or not (λp  =0). The planning problem can  now be formulated as follows: min       



p∈OMEGA

 i

C p λp

aiH 1 (1 

p 

yip ip ) 

t ,s

Ots (0) (1 

j 

ztsp ip )

   (7) 

subject to: p 



p∈OMEGA

yip ip  

 1  i  1,...,N , 

z tsp λp ≤1

(8)

,    t  1..H ,s  1..S

(9)

λp {0,1},  ∀ p∈OMEGA (10) The objective function is composed  of three parts. The  first   part   corresponds   to   the   cost   of   selected   plans.   The  second part is the cost incurred by patients assigned to the  fictitious period H+1, i.e., not assigned to any selected plan.  And the third part represents costs related to OR­days that  do not have a corresponding selected plan and hence do not  receive   any   elective   patient   (Remark   1).   Constraints   (8)  guarantee that each patient is planned in at most one OR­ day within the planning horizon. Constraints (9) ensure that  at most one feasible plan is selected for each OR­day. a y  O  0  z .   Then,   the  Let C%  C  p

p

i

iH 1

ip

t ,s

ts

tsp

problem can be restated as follows (called master problem  MP): % min i aiH 1  t ,s Ots  0   p  C p  p                          (11) Subject to: (8), (9) and (10). The   master   problem   is   an   integer   linear   programming  problem   with   a   huge   number   of   columns.   The   linear  relaxation of the MP (called LMP, linear master problem) is  solved by column generation. Instead of considering all the 

columns  of LMP explicitly,  column generation employs  a  restricted   master   problem   (RMP)   that   considers   only   a  subset Ω’Ω of all possible columns and a pricing problem  that   generates   promising   new   columns   [12][13].   The  algorithm follows a loop in which the RMP is solved, and  the   dual   solution   (called   also   simplex   multipliers)   is  transmitted   to   the   pricing   problem   in   order   to   find   the  column with the most favorable reduced cost. If a favorable  column  exists,  it is inserted into  the RMP;  otherwise, the  algorithm stops. B.Column generation subproblem  The   pricing   problem   can   be   decomposed   into  H×S   column generation subproblems (CGts), also called pricing  sub­problems, one for each OR­day, that identifies a column  of minimal reduced cost: *              ts = min  ts  y p   Ots  0    ts N

 subject to: 

i 1

 a%its   i  yip  Ots  y p 

(12)

yip = 0 , i  with t  ei yip{0,1},   i  1,...,N

(13)

method is explained.  Depending   on   the   value   of  πts  the   heuristic   performs  differently.   If  πts  =   0,   the   heuristic   constructs   a   negative  reduced cost column (if any exists).  If  πts