Optical TDM Devices and their Applications - Photonics ...

4 downloads 0 Views 3MB Size Report
H. Avramopoulos, C. Bintjas, K. Yiannopoulos, M. Kalyvas,. N. Pleros, S. Sygletos, G. Theophilopoulos, K. Vlachos, K. Zoiros. Collaboration with. L. Occhi, L.
Optical TDM Devices and their Applications Hercules Avramopoulos Photonics Communications Research Laboratory Department of Electrical and Computer Engineering National Technical University of Athens Athens, Greece PCRL

Research Group H. Avramopoulos, C. Bintjas, K. Yiannopoulos, M. Kalyvas, N. Pleros, S. Sygletos, G. Theophilopoulos, K. Vlachos, K. Zoiros

Collaboration with L. Occhi, L. Schares, G. Guekos, ETH Zurich R. Khera, J. R. Taylor, Imperial College S. Hansmann, H. Scholl, W. Hunziker, R. Dall’ Ara, Opto Speed S.A. W. Miller, Wavetek Wandel and Goltermann

PCRL

High speed optical TDM: general aspects z

Channel rate increase looks inevitable: line card reduction-cost reduction, network management complexity reduction, spectral efficiency improvement

z

Transeiver/switching node applications: mux/demux, scrambling, encryption, rate reduction, buffering, routing

z

Transmission applications: signal regeneration, wavelength conversion

z

Ultra-high speed all-optical switches: to perform on-the-fly, bit-wise, data processing and node control PCRL

Overview High frequency, wide-band optical switches and applications z

Nonlinear Optical Loop Mirror / Sagnac Interferometer Switch

z

Terahertz Optical Asymmetric Demultiplexer

z

Ultrafast Nonlinear Interferometer

z

Mach-Zehnder Interferometer

A wide-band application: Optical error rate measurements z

20 Gbps Optical Boolean XOR

z

20 Gbps Regenerative Optical Buffer

PCRL

Nonlinear Optical Loop Mirror / Fiber Sagnac Switch DATA AND CLK

DATA CLK

n2 , L

L Pp ~ λ_________ Α n2

To switch

z

differential π-phase

z

Kerr nonlinearity

z

L ~ 1 km for Pp~ 1 W

z

or Es ~ 1 pJ, for 1 ps pulse

z

or Pave ~ 500 mW for 50% duty PCRL

Nonlinear Optical Loop Mirror / Fiber Sagnac Switch ADVANTAGES z Kerr effect, fs response z no pattern effect z high performance z λ, polarization signal isolation z Boolean algebra compliant

DISADVANTAGES z long => instability z high power needed z specialty fiber for high performance

APPLICATIONS Boolean logic z signal processing z demultiplexing z

regeneration z memories z pulse shaping/compression z

PCRL

NOLM…: DEMUX from 640 Gbps to 10 Gbps Ultra high frequency-narrow band Pseudorandom 640 Gbps signal

Demultiplexed 10 Gb/s signal

Input pulses (Pseudo and fixed pattern)

Output pulses (Pseudo and fixed pattern) after 92 Km

From T. Yamamoto, E. Yoshida, K. Tamura, K. Yonenaga, M. Nakazawa, IEEE Photon. Technol. Lett.12, 353, 2000

PCRL

TOAD / SLALOM / SOA-Assisted Sagnac Switch DATA AND CLK

SOA Δx z

differential phase due to carrier dynamics

z

δφ ~ α ln(Gl/Gr)

z

not limited by slow gain dynamics

z

100’s fJ switching energy for few ps pulses

φl

φr

phase

CLK

time

δ-phase/transmission

DATA

time

=> low power amps adequate PCRL

TOAD/SLALOM/SOA-Assisted Sagnac Switch ADVANTAGES z low switching power/energy z easy to build z can be integrated z Boolean compliance at lower rates z reduce pattern effect with gain transparency

DISADVANTAGES z carrier dynamic dependence z SOA noise z performance dependence on pattern effect z differential delay limits speed

APPLICATIONS z memories z Boolean logic z logic elements z signal processing z counters/adders z demultiplexing z regeneration PCRL

TOAD…: ALL-OPTICAL BINARY COUNTER Multi-gate experiment

Output with LSB on RHS and MSB (230, 30th bit) on LHS.

Binary count from 213 (RHS) to 229 (LHS)

From A.J. Poustie, K.J. Blow, A.E. Kelly and R.J. Manning, ECOC 1999.

PCRL

TOAD…: DEMUX from 8x80 Gbps to 10 Gbps, High frequency-narrow band

All eight WDM channels in one time slot

From S. Diez, R. Ludwig and H.G. Weber, Electron. Lett.34, 803, 1998

All eight TDM channels in one WDM channel

PCRL

Ultrafast Nonlinear Interferometer DATA PMF

SOA

DATA AND CLK

Polarizer PMF

CLK

z

single arm interferometer

z

differential phase due to carrier dynamics

z

not limited by slow gain dynamics

z

few fJ switching energy for few ps pulses => loss optimized circuits may avoid amps PCRL

Ultrafast Nonlinear Interferometer ADVANTAGES z low switching power/energy z fast, 100 Gbps logic z high frequency and super-broadband z easy to build and isolate signals z can be integrated z Boolean compliant up to 40 Gbps

DISADVANTAGES z carrier dynamic dependence z SOA noise z performance dependence on pattern effect z differential delay limits speed

APPLICATIONS Boolean logic z signal processing z demultiplexing z

regeneration z memories z

PCRL

UNI: 100 Gbps BITWISE LOGIC NL Signal in

Xtal

UNI

BRF

100 GHz Soliton Compression Source

BRF

polarizer Band-pass Filter

SLA isolator

E /O Mod.

50/50 splitter

EDFA

Switch out

Polarization Rotator Voltage

12.5 GHz Fiber Laser

Control in

PMT

Sampling Source 0

2

4

6

Oscilloscope

8

Time (ms)

CLOCK STREAM λ = 1545 nm 1 0 0 G b /s con tro l

100 Gb/s AND λ = 1545 nm

Voltage

Voltage

CONTROL STREAM λ = 1554 nm

0

2

4

6

8

100 Gb/s INVERT λ = 1545 nm

T im e (m s)

0

2

4

6

8

Time (ms)

From K.L. Hall and K.A. Rauschenbach, Optics Letters 23, 1271, 1998

PCRL

UNI: REGENERATION AT 40 Gbps High frequency-broad band

40 Gbps input data stream (pump) 40 Gbps input pulse stream (probe) 40 Gbps regenerated data stream

40 Gbps 231-1 data regeneration back-to-back regenerated data signal

From I.D. Phillips, A.D. Ellis, H.J. Thiele, R.J. Manning and A.E. Kelly, Electron. Lett. 34, 2340, 1998

PCRL

Mach-Zehnder Interferometer Switch CLK MMI

DATA

SOA1 MMI

MMI SOA2

CLK

MMI

z

hybrid/monolithic MZI integration

z

differential phase in SOA’s by time delay

z

can be made polarization insensitive

φl

φr

phase

MZI configured for demuxing

time

δ-phase/transmission

delay

z

filter

time

as low as 1 fJ switching energy PCRL

Mach-Zehnder Interferometer Switch ADVANTAGES z

low switching energy (1 fJ/pulse)

z

large input signal dynamic range

z

stable, polarization insensitive

z

high frequency and broad band

z

has been integrated

DISADVANTAGES z carrier dynamics dependence z SOA noise z performance dependence on pattern effect

APPLICATIONS demultiplexing z regeneration z

wavelength conversion z NRZ to RZ conversion z

PCRL

MZI…: DEMUX FROM 168 Gbps to 10 Gbps

Cross correlation of input pulses

Cross correlation of demultiplexed pulse

From S. Nakamura, Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki and T. Sasaki, IEEE Photon. Technol. Lett. 12, 425, 2000

PCRL

MZI…: 40 Gbps 3R Regeneration

BER measurements back-to back 3R at different wavelengths 3R at same wavelength

From S. Fischer, D. Dulk, E. Gamper, W. Vogt, E. Gini, H. Melchior, W. Hunziker, D. Nesset and A.D. Ellis, Electron. Lett. 35, 2047, 1999

PCRL

Wideband Application: All-Optical Error Rate Measurement PRINCIPLE OF OPERATION Transmitter • generates an optical PRBS with shift register and XOR Receiver

• extracts optical clock from incoming PRBS • optical clock drives identical reference PRBS generator • XOR compares reference PRBS with incoming PRBS • outcome bits are stored in error counter • error counter is a regenerative loop memory and bit sampler PCRL

All-Optical Error Rate Measurement Receiver

Transmitter

Pseudorandom Pattern Generator

Pseudorandom Pattern Generator

Linear Feedback Register with XOR

Linear Feedback Shift Register with XOR

Optical Power Supply Modules

XOR Comparator

Error Counter

XOR Optical Gate

Regenerative Loop Memory

Optical Gain Modules

Clock Recovery

Fiber Ring Laser

SOA-Assisted Optical Gate

PCRL

Optical PRBS Generator Pseudo-Random Data Pattern Generator Output Sequence n-stage Shift Register 1 1

1 2

m

m+1

n

Optical XOR

Clock PCRL

20 Gbps Boolean XOR

z

Address & Header Recognition

z

Decision & Comparator Circuits

z

Pattern Matching

z

Data Encoding & Encryption

z

Combined with an Optical Regenerative Buffer to implement a Pseudo Random Binary Sequence

PCRL

20 Gbps Boolean XOR A XOR B

Pattern A 11111111111111111111111111111111111111111

Pattern B

SOA-ASSISTED UNI GATE 10101010000000010101010111111110101010100

01010101111111101010101000000001010101011

20 GHz Clock

UNI experiment photograph

PCRL

20 Gbps Boolean XOR EDFA 1 50:50

UNI gate XOR circuit z Controls A and B write operation on Clock z bulk 1.5 mm SOA z 9 ps Controls & Clock z

EDFA 2

Doubler Pulse Generator

80:20 45o PBS

Signal Generator

LD2 10 GHz 9 ps, 1554.6 nm

MOD

Att.

SOA

x Att.

Truth Table: A B CLK X 0 0 1 0 0 1 1 1 1 0 1 1 1 1 1 0

LD1 10 GHz 9 ps, 1545.2 nm

70:30

CLK

ODL A Control A

70:30

Att. ODL B Control B PM Fiber S U

PBS

x 0

45

PCRL

20 Gbps Boolean XOR A=0, B=0

Pattern A

Logical A, B=0

Pattern B

A=0, Logical B

Logical A, Logical B PCRL

20 Gbps Boolean XOR RESULTS z

All Optical Boolean XOR on Pseudo Data Pattern at 20 Gbps

z

10 fJ switching Energy

z

30 ps switching window

z

Low Pattern Effect

PCRL

20 Gbps Regenerative Optical Buffer

z

z

z

z

Regenerative Memory built with Optical Shift Register (Fiber) and a UNI gate Combined with the XOR Gate can be used to Implement a Pseudo Random Binary Sequence Used for the Implementation of an Error Counter Circuit to Infer the Bit Error Rate Used for Optical Packet Storage/Regeneration

PCRL

20 Gbps Regenerative Optical Buffer Clock Output Memory Content after 7 Circulations

Input Load-Up Sequence

SOA-ASSISTED UNI GATE Control Loop Memory

PCRL

20 Gbps Regenerative Optical Buffer Data Packet Generator

LD1 10 GHz 9 ps, 1545.2 nm

Att.

EDFA 1 50:50 ODL 1

Signal Generator 2

Pulse Generator 2

PM Fiber

45 0

PBS

Doubler

MOD2

x

Pulse Generator 1

Signal Generator 1

MOD1

LD2 10 GHz 9 ps, 1554.6 nm

45 0

PM Fiber

Att.

SOA

70:30

x

U PBS

S

Memory’s loop

50:50

EDFA 2 ODL 2 Att.

UNI gate memory circuit z recirculating pattern written on Clock z

bulk 1.5 mm SOA z 9 ps Controls & Clock z

PCRL

20 Gbps Regenerative Optical Buffer Input packet

Stored packet

Input bit pattern Stored bit pattern

Other stored packets

40x packet regenerative recirculation

PCRL

20 Gbps Regenerative Optical Buffer RESULTS z

Capability to write & store variable length 20 Gbps data packets up to 20 Kbit

z

Storage energy 33 fJ/bit

z

Data packet regeneration for more than 42 times or 20 μs

z

30 ps switching window

PCRL

Optical Error Rate Measurements

PCRL

Conclusions we have: z different high speed all-optical switches/logic units z compliant with Boolean algebra to build optical logic circuits z some with low switching energy z proven subsystems to perform limited but not trivial functionality z a lead to applications as channel rates increase for the future we need: z effort towards logic module integration into optical cards z effort towards commercialization PCRL

References A.D. Ellis, D.M. Patrick, D. Flannery, R.J. Manning, D.A.O Davies and D.M. Spirit, J. Lightwave Technol 13, 761, 1995 z M.Eiselt, W. Pieper and H.G. Weber, J. Lightwave Technol 13, 2099, 1995 z J.P. Sokoloff, P.R. Prucnal, I. Glesk and M. Kane,IEEE Photon. Technol. Lett. 5, 787, 1993 z N.S. Patel, K.L. Hall and K.A. Rauschenbach, Optics Letters 21, 1466, 1996 z N.S. Patel, K.L. Hall and K.A. Rauschenbach, IEEE Photon. Technol. Lett. 8, 1695, 1996 z S. Nakamura, Y. Ueno and K. Tajima, IEEE Photon. Technol. Lett. 10, 1575, 1998 z S. Nakamura, Y. Ueno, K. Tajima J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki and T. Sasaki, IEEE Photon. Technol. Lett. 12, 425, 2000 z D. Wolfson, A. Kloch, T. Fjelde, C. Janz, B. Dagens and M. Renaud, IEEE Photon. Technol. Lett. 12, 332, 2000 z T. Yamamoto, E. Yoshida and M. Nakazawa, Electron. Lett. 34, 1013, 1998 z S. Diez, R. Ludwig and H.G. Weber, Photon. Technol. Lett.11, 60, 1999 z S. Fischer, M. Dulk, E. Gamper, W. Vogt, E. Gini, H. Melchior, W. Hunziker, D. Nesset abd A.D. Ellis, Electron. Lett. 35, 2047, 1999 z T. Yamamoto, E. Yoshida, K. Tamura, K. Yonenaga, M. Nakazawa, IEEE Photon. Technol. Lett.12, 353, 2000 z A.J. Poustie, A.E. Kelly, R.J. Manning and K.J. Blow, ECOC 1999 z A.J. Poustie, K.J. Blow, A.E. Kelly and R.J. Manning, Opt.Commun. 154, 277, 1998 z T. Yamamoto, E. Yoshida, K. Tamura, K. Yonenaga and M. Nakazawa, Photon. Technol. Lett.12, 353, 2000 z K.L. Hall and K.A. Rauschenbach, Opt. Lett. 23, 1271, 1998 z I.D. Phillips, A.D. Ellis, H.J. Thiele, R.J. Manning and A.E. Kelly, Electron. Lett. 34, 2340, 1998 z Y. Ueno, S. Nakamura, H. Hatakeyama, T. Tamanuki, T. Sasaki and K. Tajima,ECOC 2000 z C. Bintjas, M. Kalyvas, G. Theofilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann and R. Dall’ Ara, IEEE Photon. Technol. Lett. 12, 834, 2000 z M. Kalyvas, C. Bintjas, K. Zoiros, T. Houbavlis, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, H. Hansmann and R. Dall’ Ara, Electron. Lett. 36, 1050, 2000 z

PCRL