Optimal Adaptive Feedback Control of a Network Buffer - Google Sites

0 downloads 221 Views 828KB Size Report
American control conference 2005. Portland, Oregon, USA - Juin 8-10 2005. Optimal Adaptive Feedback Control of a Network
Optimal Adaptive Feedback Control of a Network Buffer V. Guffens, G. Bastin UCL/CESAME (Belgium)

American control conference 2005 Portland, Oregon, USA - Juin 8-10 2005

Optimal Adaptive Feedback Control of a Network Buffer – p.1/19

Principle w Threshold DROP EXCESS

v Optimal Adaptive Feedback Control of a Network Buffer – p.2/19

Principle w Threshold 7.5

DROP EXCESS

Cost versus threshold

7.4 7.3

HIGH LOST

HIGH RETENTION TIME

7.2 7.1

v

×

7.0 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

Optimal Adaptive Feedback Control of a Network Buffer – p.2/19

Principle w

Find an adaptive threshold strategy that gives good trade-off

Threshold 7.5

DROP EXCESS

Cost versus threshold

7.4 7.3

HIGH LOST

HIGH RETENTION TIME

7.2 7.1

v

×

7.0 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

Optimal Adaptive Feedback Control of a Network Buffer – p.2/19

Outline

Model of a fifo queue with tail drop policy Optimal control (Pontryagin principle) Practical Implementation

Optimal Adaptive Feedback Control of a Network Buffer – p.3/19

PART I

Model of a fifo queue

Optimal Adaptive Feedback Control of a Network Buffer – p.4/19

Fluid flow model of a FIFO buffer average λ pps asynchronous arrival

x

service rate (average µ ) asynchronous departure

How many packets in the queue (average) ?

Optimal Adaptive Feedback Control of a Network Buffer – p.5/19

Fluid flow model of a FIFO buffer average λ pps

x

asynchronous arrival

service rate (average µ ) asynchronous departure

How many packets in the queue (average) ? λ

Queueing system theory

µ

50 40

λ= µ x 1+x

30 20

For M/M/1 system

10 buffer occupancy [packet] 0

10

20

30

40

50

Optimal Adaptive Feedback Control of a Network Buffer – p.5/19

Dynamical model (single queue) v(t)

x

w(t) service rate (average µ )

x˙ = v(t) − w(t)

Optimal Adaptive Feedback Control of a Network Buffer – p.6/19

Dynamical model (single queue) v(t)

x

w(t) service rate (average µ )

x˙ = v(t) − r(x(t)) µx w(t) = r(x(t)) = a+x For M/M/1 system (a=1)

λ

r(x) [pps] x−

µ

50

Equilibrium

40 30 20 10

buffer occupancy [packet] 0

10

20

30

40

50

Optimal Adaptive Feedback Control of a Network Buffer – p.6/19

Dynamical model (single queue) v(t)

x

w(t) service rate (average µ )

x˙ = v(t) − r(x(t)) Approximate dynamical extension to queueing theory

Optimal Adaptive Feedback Control of a Network Buffer – p.6/19

Experimental validation u(t) 10

[pps]

x

15 10 [s]

service rate ( µ=40[pps])

Optimal Adaptive Feedback Control of a Network Buffer – p.7/19

Experimental validation u(t) 10

[pps]

x

15 service rate ( µ=40[pps])

10 [s]

7 [p]

70 [s] Optimal Adaptive Feedback Control of a Network Buffer – p.7/19

Experimental validation u(t) 10

[pps]

x

15 service rate ( µ=40[pps])

10 [s]

7 [p]

70 [s] Optimal Adaptive Feedback Control of a Network Buffer – p.7/19

Experimental validation u(t) 10

[pps]

x

15 service rate ( µ=40[pps])

10 [s]

x [p] 0.7 0.6 0.5 0.4 0.3 0.2

Fluid flow model discrete event simulator

0.1

time [s]

0 0

10

20

30

40

50

60

70

Optimal Adaptive Feedback Control of a Network Buffer – p.7/19

Influence of parameter a Fluid flow model: x˙ = u(t) − buffer load [p] x 9 8

µ = 15[pps]

24

[pps]

20

7

16

6

12

input rate u(t)

8

5

4

4 3

0 0

1

2

3

4

a=0.01

1

decreasing value of a

0 0

1

2

5 [s]

a=1

2

−1

µx a+x

3

4

5 time [s] Optimal Adaptive Feedback Control of a Network Buffer – p.8/19

PART II

Optimal control

Optimal Adaptive Feedback Control of a Network Buffer – p.9/19

Optimal control : Cost function x

arriving packets

w

u

v Buffer

d dropped packets

departing packets

x˙ = f (x, t) = u(t) −

µx a+x

0 6 u(t) 6 w

L(x, t, u) = waiting packets + weight X lost packets = x(t) + R(w(t) − u(t))

Optimal Adaptive Feedback Control of a Network Buffer – p.10/19

Optimal control : Cost function x

arriving packets

w

departing packets

u

x˙ = f (x, t) = u(t) −

v Buffer

d

µx a+x

0 6 u(t) 6 w

dropped packets

L(x, t, u) = waiting packets + weight X lost packets = x(t) + R(w(t) − u(t)) J(x, tf , u) =

R tf 0

L(x, t, u)dt

COST

Optimal Adaptive Feedback Control of a Network Buffer – p.10/19

Problem Resolution

x w

u d

Buffer

v

HAMILTONIAN

PONTRYAGIN

OPTIMAL TRAJECTORY

Optimal Adaptive Feedback Control of a Network Buffer – p.11/19

Problem Resolution H(x, t, u) = L(x, t, u) + pf (x, t)   = x(t) + R w − u(t)

PONTRYAGIN

x w

u d

Buffer

v

µx  + p u(t) − a+x 

OPTIMAL TRAJECTORY

Optimal Adaptive Feedback Control of a Network Buffer – p.11/19

Problem Resolution H(x, t, u) = L(x, t, u) + pf (x, t)   = x(t) + R w − u(t) u∗ = arg.min0≤u(t)≤w H(x∗ , t, u) aµ p(tf ) = 0 p˙ = −1 + p 2 (a + x) x˙ = f (x, t)

x w

u d

Buffer

v

µx  + p u(t) − a+x 

OPTIMAL TRAJECTORY

Optimal Adaptive Feedback Control of a Network Buffer – p.11/19

Problem Resolution H(x, t, u) = L(x, t, u) + pf (x, t)   = x(t) + R w − u(t) u∗ = arg.min0≤u(t)≤w H(x∗ , t, u) aµ p(tf ) = 0 p˙ = −1 + p 2 (a + x) x˙ = f (x, t)

x w

u d

Buffer

v

µx  + p u(t) − a+x 

   0 p>R   u∗ = w p using , drop packets so as if λ to control xˆ at its singular value xsing

Optimal Adaptive Feedback Control of a Network Buffer – p.15/19

Fluid flow measures ∆ = Sampling time interval N = number of packets τ = total retention time

Optimal Adaptive Feedback Control of a Network Buffer – p.16/19

Fluid flow measures N ˆ λ = ∆ τ ˆ T = N

: average rate : average retention time

The average buffer length is calculated using the Little’s formula τ ˆ ˆ xˆ = λT = ∆

Optimal Adaptive Feedback Control of a Network Buffer – p.16/19

On-line model identification ^λ

µx a+x

50 40 30

^ ) ^ k, λ (x k

20 10 0

10

20

aest = arg.mina

30

K X i=1

40

50

^x

2 µˆ xi ˆi −λ a + xˆi

+ first order filtering Optimal Adaptive Feedback Control of a Network Buffer – p.17/19

Results (discrete event queue) 12

xsing

ixhat x_star threshold

threshold

10

ˆ 1) measured rate λ 2) calculated singular rate using 3) measured buffer occupancy xˆ 4) calculated singular buffer occupancy xsing 5) adaptive threshold

8

6

4

^x

2

0 0

10

20

30 time [s]

40

50

60

1200 lambdaihat u_sing

using

1000

800

600



400

200

0 0

10

20

µ = 1000 w = 200, 1111, 200, 2000, . . .

30 time [s]

40

50

60

Optimal Adaptive Feedback Control of a Network Buffer – p.18/19

Results (discrete event queue) Cost

20 Experimental result

19 18 17 Cost obtained with adaptive threshold

16 15 1

3

5

7

9

11

13

15

Threshold

Optimal Adaptive Feedback Control of a Network Buffer – p.18/19

Conclusion

Nearly optimal closed loop control of a FIFO queue Obtained with SIMPLE and PRACTICAL network measurements

Optimal Adaptive Feedback Control of a Network Buffer – p.19/19

Conclusion

Nearly optimal closed loop control of a FIFO queue Obtained with SIMPLE and PRACTICAL network measurements Thank you !

Optimal Adaptive Feedback Control of a Network Buffer – p.19/19

Suggest Documents