MATEC Web of Conferences 228, 01004 (2018) CAS 2018
https://doi.org/10.1051/matecconf/201822801004
Oscillatory Behavior of Euler Type Delay Dynamic Equations with p-Laplacian Like Operators Ying Sui, Yulong Shi, Yige Zhao and Zhenlai Han a College of Science, University of Jinan, Jinan, Shandong 250000, P R China
Abstract.
We
consider
the
Euler
type
delay
dynamic
equation
with
p-Laplacin
like
operators
( x (v) x (v) p2 ) a(v) x (v) x (v) p2 r(v) x( (v)) x( (v)) p2 0, where v [v0 )T . By using new inequality technique, we give some new criteria, which complement related contributions results.
1 Introduction We consider the Euler type dynamic equation with a pLaplacin like operator
( x (v ) x (v ) p 2 ) a ( v ) x (v ) x (v ) p 2 r (v) x( (v)) x( (v)) p 2 0 (1) where
v V , V [v0 , )T .
Assume that: (H1) p 2 is a real number, a, r
Crd (V, ℝ) satisfying
1 a ( v ) ( v ) 0 , r (v ) 0 . t
p 2
In (1), a (v) x (v ) x (v ) also called the damping term of this equation, oscillation of equations with damping term has attracted more and more attention, we refer the reader to [1-3]. Zhan [1] studied a dynamic equation
(a (v) ( x (v))) q(v) f ( ( x( (v)))) p(v) ( x (v)) 0
(2)
( s ) s 2 s , 1 , and a p q : T R p satisfying a R . The author consider the two cases where
2 Main
results
Lemma 1. ([4]) Assume q Crd (V, ℝ), q (v) μ (v) + 1 > 0. Then eq ( v0 ) 0 is a solution of the initial value
(H2) Crd (V T ) , v ( v ) , lim (v ) .
by using new technique, some new properties of (2) are obtained. Our objective of this paper are establishing some new oscillation criteria for equation (1) by using new transformation technique, which complement some known results. We consider that all functional inequalities are eventually established when v is sufficiently large in this paper.
problem
y (v) y (v)q (v) y (v0 ) 1 Lemma 2. ([4]) If
f is differentiable, then 1
( g n ) ng [hg (1 h) g ]n1 dh 0
where n is a constant. Further, letting 1
v0
1
1/( 1)
(a (v)e p a (v v0 ))
C (v )
1
(e a (v v0 )) p1 ( e (( v(vv))) ) p1 p (v) a
0
( (v))
(v ) ( (v))
and
v0
a
(a 1 (v)e p a (v v0 ))1/( 1)
Corresponding author:
[email protected]
© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
MATEC Web of Conferences 228, 01004 (2018) CAS 2018
https://doi.org/10.1051/matecconf/201822801004
p 1 1 (v) p 1 ( e ( s v )) s a 0 v r (v ) (v) (v) 0 v 1 v (e a ( s v0 )) p1 s e a (v v0 ) 0
(v )
(
e a (v v0 )
where
We claim that
that, for
satisfying
(v ) 0
v [v3 )T ,
x (v) x (v) p 2 ea1 (v v0 )
p p 1
x (v3 ) x (v3 ) p 2 ea1 (v3 v0 ) M 0
Crd1 (V R)
v3 [v2 )T and M 0 such
from (6) there exists
1 ) (e a (v v0 )) p1 , e a (v v0 )
( (v))
x (v) 0 v [v2 )T . If not, then
which yields
,
1
(v ) 0 .
1
x (v) (e a (v v0 )) p1 M p1 ,
Theorem 1. If (H1), (H2),
v0
then 1 p 1
(e a (v v0 )) v
(3)
v
1
1
x(v) x(v3 ) M p1 (e a ( s v0 )) p1 s v3
hold. If
lim sup v
C p ( s ) p ( ( s )) v0 [ ( s ) p p p 1 ( s ) e a ( s v 0 ) ] s v
From (3),
(4)
( x (v)) p 1 a (v) (( x (v)) p 1 ) ( x ( (v ))) p 1 r (v) 0 (7) In addition, from (6), for
v [v1 )T , v1 v0 , assume that x(v) 0 , x( (v)) 0 . From (1),
then
x(v) (e a (v v0 ))
e a ( v0 ) is a positive
solution of the problem
x (v )
Then from (5),
(v) p2 ea1 (v v0 )
( x (v) x (v)
p 2
p 2
(v )
v2
(e v
v2
a
1 p 1
( s v0 )) s
1
0
1
(e a ( s v0 )) p1 s
v
v2
1
(e a ( s v0 )) p1 s
(8)
Define a Ricati transformation (6)
) a(v) x (v) x (v) ea (v v0 )
r (v) x( (v)) x( (v)) ea (v v0 )
Hence,
1
v2
x( (v)) x 1 (v)
x (v) x (v) p2 (ea (v v0 )) ea (v v0 )e a (v v0 )
v
x (v ) (e a ( s v0 )) p1 s
then
ea (v v0 )( x (v) x (v) p2 ) ea (v v0 )ea (v v0 )
p11
Therefore,
y (v) a(v ) y (v) y (v0 ) 1
s v , we have
( x ( s )) p 1 ea1 ( s v0 ) ( x (v)) p 1 ea1 (v v0 )
a ( v ) x (v ) x (v ) p 2 ( x (v ) x ( v ) p 2 ) r (v) x( (v)) x( (v)) p 2 0 (5)
x (v) x
t
rewrite as
then (1) is oscillatory. Proof. Let x is a non-oscillatory solution of (1). For
From Lemma 1 we know that
lim x (v ) . Therefore, (1) can be
(v) ( x (v)) p 1 (v)ea1 (v v0 ) x1 p (v) (v) (v)e1a (v v0 )
p 2
Obviously,
0
x (v) 0 or x (v) 0 , v [v2 )T ,
v2 [v1 )T .
2
(v) 0 . Then
(9)
MATEC Web of Conferences 228, 01004 (2018) CAS 2018
https://doi.org/10.1051/matecconf/201822801004
(v )
(v )
x 1 p ( v ) ( v ) ( e a1 ( v v 0 ) ( x (v ))
) ( x 1 p ( v ) ( v ) )
p 1
( e a1 ( v v 0 ) ( x ( (
(v ) e a (v v0 )
(v )
p 1
)
)
(v )( p 1)(e a (v v0 )) p1
(v )
(v ))
p 1
( ( v ) e a1 ( v v 0 ) )
(v )
(10)
(v ))
p 1
( (v ) 1 (v ) e a1 (v v0 ) (v ))
p 1
p 1
1 p11
(13)
(v ) From the inequality (see [5])
(v )
1 E 1 1 1 1 1 [G ( 1) ]E n G n (G E ) n n n G 0 E 0 n 1
) x 1 p ( ( v ) ) x 1 p ( v )
(v )(( x (v ))
(v )e a1 (v v0 ) (v )
e a1 ( v v 0 ) ) (x
e a1 ( v v 0 ) )
define
( ( v ) e a1 ( v v 0 ) ) ( v )
G ( 1 (v) (v)) ,
From Lemma 2, we have
( x p 1 (v))
E (ea1 (v v0 ) (v))
we have
1
[ x(v)(1 h) x (v)h] p 2 dh x (v)( p 1) (11)
0
x p 2 (v)( p 1) x (v )
( 1 (v) (v) ea1 (v v0 ) (v))
1 p11
( (v))
1 p11
1 p11
p p 1
( (v)) 1 p11
Then from (6) and (9)–(11),
(v )
( e (( v(vv))) ) p1 ( p 1) 1 1 ( (v)) p
( (v))(ea (v v0 ))
( p 1) 1
(14)
1
a
(v ) r (v ) x p 1 ( ( v )) (v ) (v ) ( v ) e a ( v v 0 ) x p 1 ( v )
p 1
x ( ( v ))( p 1) x 1 ( v ) ( (ex a ((vv)) v0 ) )
x ( v ) ( v ) (
p 1
1
x 1 p ( v ) ( ( x
(v ) r (v ) ( v ) (v ) (v) e a (v v0 )
1 (v ) 1 v 1 1 p v (e a ( s v0 )) s ( v (e a ( s v0 )) p1 s ) 2 2
) (v )
x 1 p ( ( v ) ) ( ( x e a (v v0 ))
(v ))
e a (v v0 )
1
( x ( v )) p 1 e a ( v v0 )
)
1 p 1
x
p
1
0
From (13), (14),
(v )
1 p 1
1
( (v))C (v) (v) (e a (v v0 )) p1
( ( v ))
( e a1 ( v v 0 ) ( v )) ( t )
1 p11
p
( (v)) (v)( p 1) p1 ( (v ))
Define
(12)
1
1
G p1 (v)( p 1) p1 1 ( (v))
From (6)
(e (v v )) p1 0 x ( (v)) a (e (v v )) p11 a 0 x(v) x( (v)). 1
1
(e a (v v0 )) p ( (v ))
x (v),
and
E C p 1 (v ) ( (v))(
Then, from (8), (9) and (12),
1
p1 p
(v ) p1
p (e a (v v0 )) p ( p 1) p ) 1 Applying variation of the Young inequality
3
(15)
MATEC Web of Conferences 228, 01004 (2018) CAS 2018 p
https://doi.org/10.1051/matecconf/201822801004
p
1
E p1 ( p 1) 1 G p1 G ( p 1) 1 pE p1
v
( s ) H (v s )s (v2 ) H (v v2 )
v2
v
we have 1
(e a (v v0 )) p1
1 p11
1 p11
( ( s )) H s (v s)s.
( (v))( p 1)
( (v)) (v) ( (v))C (v )
From (17), (19) and (20), we have (16)
t
( s ) H ( v s ) s
p ( (v))( p p e a (v v0 ) p 1 (v)) 1 C p (v)
t2
v
C ( s) H (v s)) ( ( s )) v2
Using (16) in (15), we conclude that
t
t2
[ ( s )
H s (v s )s (v2 ) H (v v2 )
C (v) ( ( s )) ]s (v2 ) p p p 1 ( s )e a ( s t0 ) p
p
v
( v s )
( ( s))
(21)
( ( s )) H (v s )s
h (v s ) H
p 1 p
v2
(v s ) 1 ( ( s )) ( ( s ))s
(v2 ) H (v v2 ) v
1
( p 1)(e a ( s v0 )) p1 ( s )
1 p11
v2
1 p11
( ( s ))
( ( s )) H (v s ) s
Define
G
1 p11
1
( ( s))( p 1)(e a ( s v0 )) p1
( s) H (v s)
(17)
C ( s ) H (v s ) H s (v s ) H
1 p11
v
satisfying
( ( s )) h(v s ) H
1 p11
v2
D {(v s ) v0 s v v s V } ) belongs to a class H if (i) H (v v ) 0 , v v0 , H (v s ) 0 , v s v0 ; (ii) H has a rd-continuous -partial derivative s H (v s ) 0 on D0 with the second variable and p 1 p
1
(e a ( s v0 )) p1 ( s )( p 1)
This contradiction completes the proof. Further, a function H Crd ( D [0 )) (where
1
(20)
v2
p1 p
(v s ) h (v s ) ( ( s)) u ( (v))
E
Theorem 2. If (H1), (H2), and (3) hold, and for H , v2 V , 1 lim sup H (v v ) [ ( s) H (v s)
H
.
t
v
( p p
here
p 1
2
1
Using the inequality
t0
( s )e a ( s v )) h (v s )]s p
1
(18)
Ev Gv ( 1) 1
h (v s ) max{h(v s ), 0} . Then (1) is
we have
oscillatory. Proof. Let
x is a non-oscillatory solution of (1). x(v) 0 , x( (v)) 0 , v [v1 )T , v1 v0 . Define (v ) as (9), then by Theorem 1, we obtain (15).
t
h (v s) t2
v
Then
v2
v
v2
v
1
) ( ( s ))
v
v
( s ) H (v s )s
( ( s )) H
p 1 p
(v s ) ( ( s)) s
1
( ( s))(e a ( s t0 )) p1 ( p 1) ( s ) H (v s) v
hp (v s ) s p p p 1 ( s )e a ( s v)
1 p11
1 hp (v s ) e ( s v ) ( s ) H (v s ) s p p 1 v2 a p ( s) v
.
(19)
v2
which contradicts (18). The proof is complete.
Then
4
( ( s))s
(22)
(v2 ) H (v v2 )
( ( s)) H (v s) s
( ( s )) H (v s)C ( s)s
1
By (22), (21),
p p1
v2
1 p11
v2
1 p11 1
v2
( s ) H ( v s ) s
(e a ( s v0 )) p1 ( s )( p 1)(
E 1 G 0 G
MATEC Web of Conferences 228, 01004 (2018) CAS 2018
https://doi.org/10.1051/matecconf/201822801004
3 Conclusion
2.
This paper is concerned with a delay dynamic equation of Euler type with p-Laplacin like operators, by using new transformation and inequality technique with specific analytical skills, new criteria for the oscillation of the equations are established. under condition (3) holds. It is a interesting problem for future research of develop a different method to study equation (1) under the condition that integral formulae of (3) bounded.
3. 4. 5.
Acknowledgements This study was funded by Shandong Provincial Science Foundation (ZR2016AM17, ZR2017MA043), and the Natural Foundation of China (617043180).
6.
References 1.
Q. Zhan, Oscillation of second-order half-linear delay dynamic equations with damping on time scales, J. Compt. Apl. Math. 235 (2011) 1180–1188.
5
Q. Ha, F. Lu, Oscillation theorem for suprlinear second order damped differental equations, Apl. Math. Compt, 217 (2011) 7126–7131. Y. Bolt, Oscillation criteria for nonlinear secondorder difference equations with a nonlinear damped term, Apl. math. Let. 18 (2005) 329–338. M. Boher, A. Peterson, Dynamic Equations on Time Scales: An Intrducton with Applications, Birkhäser, Boston, 2001. J. Jiag, X. Li, Oscillation of second order nonlinear neutral differental equations, Apl. Math. Compt, 135 (2003) 531–540. Y. Sui, and S. Sun, Oscillation of third order dynamic equation with mixed arguments on time scales, Adv. Diff. Eq., DOI. org/10.1186/s 1366 -018-1654-3. Y. Sui, Z. Han, Oscillation of third-order nonlinear dynamic equation with damping term, J. Apl. Math. Compt. (2018) 58, DOI. org/10.1007/s12190-0171158-4