Ostracoda (Crustacea) species composition and

0 downloads 0 Views 2MB Size Report
Jun 6, 2013 - Department of Biology, Faculty of Arts and Sciences, Abant Ä°zzet Baysal University, Bolu, Turkey. * Correspondence: kulkoyluoglu_o@ibu.edu.tr.
Turkish Journal of Zoology http://journals.tubitak.gov.tr/zoology/

Research Article

Turk J Zool (2017) 41: 686-695 © TÜBİTAK doi:10.3906/zoo-1512-36

Ostracoda (Crustacea) species composition and environmental correlates in different aquatic habitats of the Zonguldak and Bartın regions (Turkey) Okan KÜLKÖYLÜOĞLU*, Mehmet YAVUZATMACA, Meriç TANYERİ, Ozan YILMAZ Department of Biology, Faculty of Arts and Sciences, Abant İzzet Baysal University, Bolu, Turkey Received: 14.12.2015

Accepted/Published Online: 22.12.2016

Final Version: 17.07.2017

Abstract: In order to compare the ostracod species composition of the Zonguldak and Bartın regions of Turkey, samples were collected from 105 aquatic sites with 7 different habitats during June 2013. Thirteen and 18 species were identified from Bartın and Zonguldak, respectively. While all of the species are new reports for Bartın, 11 species are new for Zonguldak. Twenty-two species were common in both regions, with 40.9% similarities. Species abundance (49.2 individuals/site) was found to be greater in Zonguldak than in Bartın (33 individuals/site), but the number of species per sampling site was higher in Bartın (0.48 spp./site) than in Zonguldak (0.42 spp./site). Increasing the numbers of sampling sites did not increase the numbers of species. Among the habitat types, the numbers of species per site was the lowest in troughs (0.35 spp./site). Canonical correspondence analyses explained 78.3% of the correlation with relatively low variance (9.8%) between the 15 most common species and 4 environmental variables in the regions, where water temperature (F = 3.216; P = 0.002) and electrical conductivity (F = 2.525; P = 0.018) displayed strong correlation with the species. However, water temperature per se did not show a significant effect on the numbers of species (P > 0.05). Cosmopolitan species showed relatively high tolerance and optimum values to different environmental variables. Key words: Ostracods, cosmoecious species concept, species assemblages, ecological tolerance and optimum estimates, habitat suitability, climate change

1. Introduction The correlation between individual species composition and their ecological characteristics has been the subject of many different studies for several reasons. This is an especially important issue when effects of climatic change, along with anthropogenic disturbances, play one of the most critical roles in species diversity and habitat loss (Mattila et al., 2011). For example, climate change shows its face with an increase in the surface water temperature of aquatic habitats such as wetlands (Boer and de Groot, 1990; Čížková et al., 2013), lakes, streams (http:// www.climate-and-freshwater.info/), and small water bodies (e.g., ditches, ponds, springs) (Uçak et al., 2014). Increasing water temperature corresponds to elevated evaporation rates, causing a decrease in water depth and an increase salinity levels (Mourguiart and Carbonel, 1994; Külköylüoğlu et al., 2014). Such changes can happen in a period of time from a couple of hours to days, depending on several factors (e.g., season, water chemistry, rate of evaporation, water depth). There is increasing evidence that most (if not all) aquatic organisms show different ecological responses to such changes (e.g., Parmesan, * Correspondence: [email protected]

686

2006). Herein, the main concern is to understand the levels of such responses that individual species show for different environmental variables. If one knows how those responses occur, not only can some of those ecological and evolutionary processes be explained, but possible precautionary actions can be taken in habitats for future estimates. In aquatic ecosystems, different abiotic (e.g., dissolved oxygen, pH, temperature) and biotic (e.g., competition, predation) factors can be responsible for changes in species composition, while ecological variables show potential influence on the geographical range (e.g., elevation) of the species (Dennis et al., 2000). Ostracods, which are aquatic invertebrate crustaceans, have different levels of responses to such environmental changes; therefore, they can be used as bioindicators of the surrounding physical and chemical conditions. For example, a bottom-dependent ostracod, Limnocythere inopinata, is used as an indicator species of moderate to high salinity levels in alkaline waters (Cohen et al., 1983) of streams, lakes, and reservoirs with eutrophic conditions (Scharf, 1993; Kılıç, 2001; Külköylüoğlu and Dügel, 2004; Külköylüoğlu et al., 2014). Additionally, the

KÜLKÖYLÜOĞLU et al. / Turk J Zool species has a broad geographical range where it tolerates relatively wide ranges of some other variables. Similarly, two other cosmoecious (Külköylüoğlu, 2007) species (Candona neglecta and Ilyocypris bradyi) reported from lotic (Châtelliers and Marmonier, 1993; Mezquita et al., 1999) and lentic aquatic habitats (Rieradevall and Roca, 1995; Külköylüoğlu et al., 2007) are known to have high tolerances to temperature, pH, and redox potential (Akdemir, personal communication). In vivo experimental studies support the above perspective that some ostracods do have high tolerance ranges. This is the case for Physocypria kraepelini, which displayed high tolerances to ammonia, phosphate, and pH values in laboratory conditions (Yu et al., 2009). Similarly, Candona rectangulata is a common ostracod species in cold ( 0.05) effect on the number of species. Results revealed that increasing water temperature corresponds to an increased number of species per site in Bartın and Zonguldak while air temperature corresponds to a decreased number (Figure 3). Therefore, increasing numbers of sampling sites did not increase the number of species. Generally, species with cosmopolitan characteristics (e.g., I. bradyi, C. neglecta, H. incongruens, P. olivaceus) showed relatively higher tolerance values to different environmental variables than the means of the other species (Table 5). Thus, such species can be called “cosmoecious” species (but also see discussion below). 4. Discussion While all 13 species are new for Bartın, 11 of 18 species were new reports for Zonguldak. Hartmann (1964) was the first to report 4 ostracod species (I. decipiens, I. gibba, P. olivaceus, Pseudocandona eremita) from Zonguldak. Following this report, 6 more species (P. kraepelini, Eucypris virens, H. salina, H. incongruens, C. neglecta, C. vidua) were found in the region by Gülen (1985). An additional species (Potamocypris villosa) was also reported from the region by Kılıç (1997). Recently, Yavuzatmaca et al. (2012) encountered 2 species (I. bradyi, P. olivaceus)

689

KÜLKÖYLÜOĞLU et al. / Turk J Zool Table 2. Distribution of ostracod species among 7 different aquatic bodies. Abbreviations include number of species (No. Spp.), number of sites (No. sites), and number of species per site (Spp./site). No. Spp.

No. sites

Spp./site

Creek

15

21

0.714

Spring

5

5

1.00

Pond

5

4

1.25

Reservoir

1

1

1.00

Puddle

9

14

0.643

Stream

9

21

0.429

Trough

14

39

0.359

Table 3. Comparison of the number of species among 7 regions. Abbreviations include number of species (Num. Spp.), number of sites (Num. sites), number of species per site (Spp./site), and number of species per km2 (Spp./km2) in a given surface area (km2) of each region, with data from Yavuzatmaca et al. (2015)a, Külköylüoğlu et al. (2016)b, Akdemir and Külköylüoğlu (2011)c, Külköylüoğlu et al. (2012c)d, Külköylüoğlu et al. (2012a)e, and this study*. These regions are called provinces in Turkey. Regions

Area

Num. Spp.

Num. sites

Spp./site

Spp./km2

Adıyamana

7164

27

111

0.243

0.004

Bartın*

2079

13

27

0.481

0.006

Çankırıb

7388

25

114

0.219

0.003

15,272

23

48

0.479

0.002

14,346

32

68

0.471

0.002

10,115

29

57

0.509

0.003

3306

18

42

0.429

0.005

Diyarbakırc Kahramanmaraş

d

Van

e

Zonguldak

*

Table 4. CCA summary table includes 68 sampling sites (43 Zonguldak, 25 Bartın) with 15 species. Axes

1

2

3

4

Lengths of gradient

10.235

3.495

4.010

4.586

Eigenvalues

0.336

0.270

0.105

0.062

6.199

0.713

0.676

0.469

0.364

Species–environment correlations

Total inertia

Cumulative percentage variance of species data

5.4

9.8

11.5

12.5

of species–environment relation

43.4

78.3

91.9

100.0

Sum of all eigenvalues

6.199

Sum of all canonical eigenvalues

0.773

that were already known previously. Therefore, including these 12 species with our findings, the Zonguldak region has a total of 22 ostracod species. Differences in numbers

690

of species (richness) were not significant between these two regions, but compared with other regions in Turkey, the number of species was relatively low in both (Table

KÜLKÖYLÜOĞLU et al. / Turk J Zool Table 5. Tolerance (Tol) and optimum (Opt) estimates of 11 ostracods occurring 3 or more times during this study. Abbreviations: standard hydrogen electrode (SHE); dissolved oxygen (DO); electrical conductivity (EC); water temperature (Tw); elevation (Elev); number of occurrences (Count); maximum number of individuals (Max); Hill’s coefficient or measure of effective number of occurrences (N2).  

 

 

pH

SHE

DO

EC

Tw

Elev

Name

Count

Max

N2

Opt

Tol

Opt

Tol

Opt

Tol

Opt

Tol

Opt

Tol

Opt

Tol

Psychrodromus olivaceus

26

63

8.02

7.717

0.418

139.1

25.52

8.388

1.341

464.86

73.76

15.97

3.39

326.21

157.22

Ilyocypris bradyi

23

151

7.95

7.613

0.405

143.6

21.9

8.31

1.567

468.67

154.4

17.45

3.15

369.57

242.57

Heterocypris incongruens 21

249

7.1

7.486

0.374

147.1

18.73

7.548

1.394

482.78

140.98

18.61

3.15

303.67

256.38

Heterocypris salina

9

151

4.93

7.538

0.457

149.6

29.69

8.586

2.792

673.69

199.28

18.12

2.37

187.02

137.26

Heterocypris reptans

6

62

3.34

7.544

0.173

143.9

11.57

8.247

2.272

548.46

61.767

21.77

4.16

465.74

232.64

Candona neglecta

21

65

3.3

7.312

0.421

159.6

29.67

4.814

2.614

358.65

150.95

17.81

3.28

314.75

174.13

Potamocypris sp.

3

1

3

7.713

0.176

132.5

11.58

8.71

1.497

496.67

79.827

18.03

3.85

255.67

174.43

Limnocythere inopinata

4

7

2.58

7.958

0.222

115

12.63

7.209

0.765

400.79

123.37

22.78

0.86

102.86

126.41

Ilyocypris inermis

9

37

2.4

8.082

0.34

123.4

15.52

8.121

0.974

448.28

59.692

14.31

1.57

325.66

94.379

Cypridopsis vidua

3

10

2.31

8.022

0.351

111.5

21.18

7.205

0.794

334.16

112.66

22.45

2.38

183.53

87.879

Potamocypris variegata

3

31

2.08

7.884

0.575

119.8

33.75

7.354

0.215

285.83

87.123

21.88

2.07

349.02

301.39

Mean

11.64

75.2

4.27

7.715

0.356

135

21.07

7.681

1.475

451.17

113.07

19.02

2.75

289.43

180.43

Figure 2. CCA diagrams for (a) 4 variables (water temperature [Tw]; electrical conductivity [EC]; dissolved oxygen [DO]; pH) and (b) 15 ostracods in 68 sampling sites.

3). On the other hand, the average number of species per sampling site is higher in these regions than many others with similar species composition. For example, Külköylüoğlu et al. (2016) recently reported 25 species from 114 sites in Çankırı (Turkey), wherein the number of species per site (0.219) was the lowest among those listed

in Table 3. In contrast, there were 18 species found from 42 sites in Zonguldak where the number of species per site was about two times (0.429) greater than in Çankırı. In accordance with this comparison, Bartın, with about 50% less surface area than Zonguldak, had 13 ostracods collected from 27 sites. Among the other regions listed

691

KÜLKÖYLÜOĞLU et al. / Turk J Zool

Figure 3. Relationships among air temperature (Ta), water temperature (Tw), and number of species (Nuspp) in Bartın and Zonguldak.

in Table 3, however, Bartın showed a relatively high ratio of species per site (0.481). In contrast, the number of individuals found in Bartın (891 ind.) is about half that found in Zonguldak (2067 ind.). Thus, as seen in Table 3, our results support the idea of Külköylüoğlu et al. (2013) that increasing the number of sampling sites does not significantly increase the number of species, but the number of individuals per site may change. These authors suggested that efficiency and suitability of habitats, rather than number of sites, can increase the chance of finding more species and individuals. Perhaps this is because a habitat type is not suitable for the species, or it is not the right time (e.g., seasonality differences) for species to be present in those habitats. Finding low numbers of species is an important issue, since our sampling was done in a short time period in 7 different habitats, where the number of species was higher in creeks (15 spp.) than troughs (14 spp.), although the number of sampling sites was higher in troughs (39 sites) than creeks (21 sites) (Table 2). Considering artificial characteristics of troughs, finding low species richness is not surprising, since such habitats carry similar characteristics (Külköylüoğlu et al., 2013). Indeed, during the present study, most of the species with cosmopolitan characteristics were reported from troughs. Similar results were previously found in other regions of Turkey, such as Diyarbakır (Akdemir and Külköylüoğlu, 2011), Van (Külköylüoğlu et al., 2012a), Kahramanmaraş (Külköylüoğlu et al., 2012c), Ankara (Uçak et al., 2014), Adıyaman (Yavuzatmaca et al., 2015), and Çankırı (Külköylüoğlu et al., 2016). It is probable that such habitats

692

are generally good for cosmopolitan species with high tolerance ranges. For example, according to Table 5, four species (P. olivaceus, I. bradyi, H. incongruens, C. neglecta) with high tolerance (and/or optimum) levels are generally those with wide geographical occurrences. Such species are ecologically better adapted and locally more abundant, are usually the most frequently occurring species, and are socalled cosmoecious species (Külköylüoğlu, 2007). Similar characteristics can also be found in ostracods (Uçak et al., 2014) and different organisms such as zooplanktons (Başak et al., 2014) and pteridophytes (ferns and allied plants) (Kessler, 2002). Although cosmoecious species may indicate low water quality, they contribute important value to species diversity and cannot be ignored. As shown in Table 1, finding relatively high index values for 14 species, including 4 dominant cosmoecious species (I. bradyi, H. incongruens, P. olivaceus, C. neglecta), is of value for discussion. It is indeed interesting that Külköylüoğlu et al. (2013) found very similar results for these 4 ostracods (out of 9 species) collected from troughs of the Ankara region in Turkey. Once again, the results support the quantitative importance of cosmoecious species in species diversity. This may not account for the quality of habitats and/or communities. The species located closer to the center of the CCA diagram (Figure 2) are also those with wide tolerance and wide distributional ranges, while species with rare occurrences are scattered on the diagram. Although it is not certain, similar ecological characteristics of the species may be one of the reasons for their occurrence around

KÜLKÖYLÜOĞLU et al. / Turk J Zool the center (Yılmaz and Külköylüoğlu, 2006; Akdemir and Külköylüoğlu, 2014). According to CCA results (Table 4), water temperature and electrical conductivity (including salinity) were the two most influential factors on species. Among the species, H. reptans was the only one showing a positive correlation with water temperature (Rs = 0.943; P < 0.01). However, correlation of some ostracod species with temperature and electrical conductivity is already known. For example, we found I. bradyi in all types of habitats (except dams) within the water temperature range of 12.1 to 21.6 °C. This corresponds to earlier reports that the species, having broad geographical occurrence in different ecological conditions, has been frequently collected from a variety of habitats (Meisch, 2000; Külköylüoğlu et al., 2007, 2014), along with wide ranges of water temperature values from 5.8 to 25.7 °C (Külköylüoğlu et al., 2012b; Külköylüoğlu, 2013). Similarly, another well-known species, H. incongruens, was the second most frequently occurring species encountered in almost all water bodies (except dams), where the species showed positive correlations with water volume and depth. This supports earlier reports (Meisch, 2000; Mischke et al., 2003; Li et al., 2010) that H. incongruens mostly prefers shallow stagnant water bodies, where it can tolerate high levels of fluctuations in different environmental variables including water temperature, dissolved oxygen, pH, and salinity (for more details, see Külköylüoğlu, 2013). For example, during the present study, minimum (11.1 °C) and maximum (22.9 °C) water temperature ranges were measured in waters where H. incongruens was collected. This fits well with the previous records (6 °C and 31.7 °C) of Mezquita et al. (1999) and Külköylüoğlu et al. (2012b), respectively. The third most common species, P. olivaceus, is a typical species of troughs, ponds, pools, ditches, springs, and spring-related water bodies (Meisch, 2000; Rossetti et al., 2006). Recent studies (Külköylüoğlu et al., 2012b; Akdemir and Külköylüoğlu, 2014; Uçak et al., 2014) revealed that although the species may prefer well-oxygenated water bodies, the tolerance levels of P. olivaceus to different environmental variables are much higher than previously known. These results are concordant with our results, in which the species did not show any significant correlation to variables. The last most frequently occurring cosmoecious species, C. neglecta, is known for its relatively high tolerance levels to low-oxygenated water bodies polluted with organically rich materials (Meisch, 2000; Külköylüoğlu, 2013). Külköylüoğlu et al. (2012a) reported a high tolerance value (tk = 8.21) of the species to water temperature in aquatic habitats of the Van region (eastern Turkey), while it showed the lowest tolerance to electrical conductivity. We encountered the species in temperature ranges from 12.1

to 22.7 °C in almost all types of habitats (except dams). This range corresponds to the earlier reports (Külköylüoğlu, 2013). Our results for these 4 species displayed a good match to the study of Yavuzatmaca et al. (2015), who found the same 4 cosmoecious species (though in different order, as C. neglecta, H. incongruens, I. bradyi, and P. olivaceus) with broader tolerance ranges than the noncosmopolitans. Other than these most common species, the rest of the 18 species did not show significant differences and/ or correlations with the environmental variables (unless otherwise indicated). Therefore, we did not focus on them. However, this does not mean that these species should be ignored, and we hope that the data presented here will be used in future studies along with others. As mentioned above, climate changes (here referring to air temperature changes) can also be considered as an important factor in species richness. Indeed, many studies underlined that changes in air temperature can alter species diversity (including both richness and abundances) of aquatic habitats over long periods of time (months, years, or decades) (McCombie, 1959; Kothandaraman and Evans, 1972; Livingstone and Lotter, 1998; Johnson et al., 2014). Most of these studies dealt with large and deep water bodies such as oceans, lakes, rivers, and river catchments (e.g., Johnson et al., 2014). In contrast, our study was done in shallow water bodies in a short period of time limited to 4 days in June. Although such habitats exhibit quick responses to air temperature changes on a daily basis, interpretation of our results on the “air–water temperature and species” relationship may not be generalized at the moment due to limited sampling time. On the other hand, Boer and de Groot (1990) argued that increasing air temperature will cause a rise in water temperature and evaporation that will eventually have an effect on inland wetlands due to internal eutrophication, salinization, desiccation, and invasion of thermophilous species. Inasmuch as there is a predominance of the most common species, whose tolerance levels to temperature and salinity changes are high, we can support the conclusion of Boer and de Groot (1990). In addition, we support habitat suitability proposed within the habitat diversity hypothesis as a better explanation for ostracod distribution and diversity in these shallow aquatic bodies. Furthermore, the results imply that species richness is possibly much higher in both regions than currently presented here. Therefore, we suggest that nonmarine ostracods can be found in almost all types of water bodies as long as the conditions are suitable for them. Acknowledgment We would like to thank Dr Randy Gibson (USGS, Texas, USA) for his comments and suggestions on an earlier draft of this work.

693

KÜLKÖYLÜOĞLU et al. / Turk J Zool References Akdemir D, Külköylüoğlu O (2011). Freshwater Ostracoda (Crustacea) of Diyarbakır Province including a new report for Turkey. Turk J Zool 35: 671-675.

Kessler M (2002). Range size and its ecological correlates among the pteridophytes of Carrasco National Park, Bolivia. Global Ecol Biogeogr 11: 89-102.

Akdemir D, Külköylüoğlu O (2014). Preliminary study on distribution, diversity, and ecological characteristics of nonmarine Ostracoda (Crustacea) from the Erzincan region (Turkey). Turk J Zool 38: 421-431.

Kılıç M (1997). Ostracoda (Crustacea) fauna of the Black Sea shore. PhD, İstanbul University, İstanbul, Turkey (in Turkish with abstract in English).

Başak E, Aygen C, Külköylüoğlu O (2014). Taxonomy, distribution, and ecology of Crustacean zooplankton in trough waters of Ankara (Turkey). Turk J Zool 38: 1-10. Birks HJB, Line JM, Juggins S, Stevenson AC, ter Braak CJF (1990). Diatoms and pH reconstruction. Phil Trans R Soc 327: 263278. Boer MM, de Groot RS (1990). Landscape-Ecological Impacts of Climatic Change. Amsterdam: IOS Press. Bronshtein ZS (1947). Freshwater Ostracoda. Fauna of the USSR, Crustaceans, Vol. 2 (1). Moscow, USSR: Zoologicheskiy Institut Akademii Nauk SSSR (in Russian).

Kılıç M (2001). Recent Ostracoda (Crustacea) fauna of the Black Sea coasts of Turkey. Turk J Zool 25: 375-388. Kothandaraman V, Evans RL (1972). Use of Air-Water Relationships for Predicting Water Temperature. Report of Investigation 69. Urbana, IL, USA: Illinois State Water Survey. Külköylüoğlu O (2003a). A new report and the loss of Scottia pseudobrowniana KEMPF, 1971 (Ostracoda) from a limnocrene spring in Bolu, Turkey. Crustaceana 76: 257-384. Külköylüoğlu O (2003b). First report of the genus Isocypris (Ostracoda) from Turkey: taxonomy, ecology, and general distribution. Crustaceana 75: 1083-1093.

Châtelliers MCD, Marmonier P (1993). Ecology of benthic and interstitial ostracods of the Rhône River, France. J Crust Biol 13: 268-279.

Külköylüoğlu O (2005). Ecological requirements of freshwater Ostracoda (Crustacea) in two limnocrene springs (Bolu, Turkey). Ann Limnol Int J Lim 41: 237-246.

Čížková H, Květ J, Comín FA, Laiho R, Pokorný J, Pithart D (2013). Actual state of European wetlands and their possible future in the context of global climate change. Aquat Sci 75: 3-26.

Külköylüoğlu O (2007). Ostracod pseudorichness: is it real? Poster presentation. In: EOM VI; 3–7 September 2007; Frankfurt, Germany. p. 61.

Cohen AC, Dussinger R, Richardson J (1983). Lacustrine paleochemical interpretations based on Eastern and Southern African ostracods. Palaeogeogr Palaeoclimatol Palaeoecol 43: 129-151.

Külköylüoğlu O (2013). Diversity, distribution and ecology of nonmarine Ostracoda (Crustacea) in Turkey: application of pseudorichness and cosmoecious species concepts. In: Recent Research Developments in Ecology, Vol. 4. Trivandrum, India: Transworld Research Network, pp. 1-18.

Dennis DLH, Donato B, Sparks TH, Pollard E (2000). Ecological correlates of island incidence and geographical range among British butterflies. Biodivers Conserv 9: 343-359. Gotelli NJ, Chao A (2013). Measuring and estimating species richness, species diversity, and biotic similarity from sampling data. In: Levin SA, editor. Encyclopedia of Biodiversity. Amsterdam: Academic Press, pp. 195-211.

Külköylüoğlu O, Akdemir D, Sarı N, Yavuzatmaca M, Altınbağ C, Başak E (2013). Distribution and ecology of Ostracoda (Crustacea) from troughs in Turkey. Turk J Zool 37: 277-287. Külköylüoğlu O, Dügel M (2004). Ecology and spatiotemporal patterns of Ostracoda (Crustacea) from Lake Gölcük (Bolu, Turkey). Arch Hydrobiol 160: 67-83.

Gülen D (1985). Bisexual Ostracoda (Crustacea) populations in Anatolia. İstanbul Üniversitesi Fen Fakültesi Biyoloji Mecmuası (Seri B) 50: 81-86.

Külköylüoğlu O, Dügel M, Kılıç M (2007). Ecological requirements of Ostracoda (Crustacea) in a heavily polluted shallow lake, Lake Yeniçağa (Bolu, Turkey). Hydrobiologia 585: 119-133.

Hartmann G (1964). Asiatische Ostracoden. Int Rev Ges Hidrobiol Syst Beih 3: 1-154 (in German).

Külköylüoğlu O, Sarı, N, Akdemir D (2012a). Distribution and ecological requirements of Ostracods (Crustacea) at high elevational ranges in Northeastern Van (Turkey). Ann Limnol Int J Lim 48: 39-51.

Johnson MF, Wilby RL, Toone JA (2014). Inferring air-water temperature relationships from river and catchment properties. Hydrol Process 28: 2912-2928. Juggins S (2003). C2 User Guide: Software for Ecological and Palaeoecological Data Analysis and Visualization. Newcastle upon Tyne, UK: University of Newcastle. Karanovic I (2012). Recent Freshwater Ostracods of the World. Berlin, Germany: Springer-Verlag. Kempf EK (1997). Index and Bibliography of Nonmarine Ostracoda. Vol. 109, Part 6. Köln, Germany: Geologischen Instituts der Universitat zu Köln.

694

Külköylüoğlu O, Sarı N, Akdemir D, Yavuzatmaca M, Altınbağ C (2012b). Distribution of sexual and asexual Ostracoda (Crustacea) from different altitudinal ranges in the Ordu Region of Turkey: testing the Rapoport rule. High Alt Med Biol 13: 126-137. Külköylüoğlu O, Sarı N, Dügel M, Dere Ş, Dalkıran N, Aygen C, Dinçer SÇ (2014). Effects of limnoecological changes on the Ostracoda (Crustacea) community in a shallow lake (Lake Çubuk, Turkey). Limnologica 46: 99-108.

KÜLKÖYLÜOĞLU et al. / Turk J Zool Külköylüoğlu O, Vinyard GL (2000). Distribution and ecology of freshwater Ostracoda (Crustacea) collected from springs of Nevada, Idaho, and Oregon: a preliminary study. West N Am Nat 60: 291-303.

Rieradevall M, Roca JR (1995). Distribution and population dynamics of ostracodes (Crustacea, Ostracoda) in a karstic lake: Lake Banyoles (Catalonia, Spain). Hydrobiologia 10: 189196.

Külköylüoğlu O, Yavuzatmaca M, Akdemir D, Sarı N (2012c). Distribution and local species diversity of freshwater Ostracoda in relation to habitat in Kahramanmaraş Province of Turkey. Int Rev Hydrobiol 97: 247-261.

Rossetti G, Martens K, Meisch C, Tavernelli S, Pieri V (2006). Small is beautiful: diversity of freshwater ostracods (Crustacea, Ostracoda) in marginal habitats of the province of Parma (northern Italy). J Limnol 65: 121-131.

Külköylüoğlu O, Yavuzatmaca M, Sarı N, Akdemir D (2016). Elevational distribution and species diversity of freshwater Ostracoda (Crustacea) in Çankırı region (Turkey). J Fresh Ecol 31: 219-230.

Scharf B (1993). Ostracoda (Crustacea) from eutrophic and oligotrophic maar lakes of the Eifel (Germany) in the Late and Post Glacial. In: McKenzie KG, Jones PJ, editors. Ostracoda in the Earth and Life Sciences. Proceedings of the 11th International Symposium on Ostracoda Warrnambool; 8–12 July 1991. Rotterdam, the Netherlands: A.A. Balkema, pp. 453463.

Li X, Liu W, Zhang L, Sun Z (2010). Distribution of recent ostracod species in the Lake Qinghai area in northwestern China and its ecological significance. Ecol Indic 10: 880-890. Livingstone DM, Lotter AF (1998). The relationship between air and water temperatures in lakes of the Swiss Plateau: a case study with palæolimnological implications. J Paleolimnol 18: 181198.

Seaby RM, Henderson PA (2006). Species Diversity and Richness Version 4. Lymington, UK: Pisces Conservation Ltd.

Magurran AE (1988). Ecological Diversity and its Measurement. Princeton, NJ, USA: Princeton University Press.

Smith RJ, Matzke-Karasz R, Kamiya T, Ikeda Y (2002). Scottia birigida sp. nov. (Cypridoidea: Ostracoda) from western Honshu, Japan and a key to the subfamily Scottiinae Bronstein, 1947. Zootaxa 126: 1-20.

Mattila N, Kaitala V, Komonen A, Päivinen J, Kotiaho JS (2011). Ecological correlates of distribution change and range shift in butterflies. Insect Conserv Diver 4: 239-246.

ter Braak CJF (1987). The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio 69: 69-77.

McCombie AM (1959). Some relations between air temperatures and the surface water temperatures of lakes. Limnol Oceanogr 4: 252-258.

ter Braak CJF, Barendregt LG (1986). Weighted averaging of species indicator values: its efficiency in environmental calibration. Math Biosci 78: 57-72.

Meisch C (2000). Freshwater Ostracoda of Western and Central Europe. Volume 1 of Süßwasserfauna von Mitteleuropa. Heidelberg, Germany: Spektrum Akademischer Verlag, Heidelberg.

Uçak S, Külköylüoğlu O, Akdemir D, Başak E (2014). Distribution, diversity and ecological characteristics of freshwater Ostracoda (Crustacea) in wetland sites of the Ankara region, Turkey. Wetlands 34: 309-324.

Mezquita F, Hernandez R, Rueda J (1999). Ecology and distribution of ostracods in a polluted Mediterranean river. Palaeogeogr Palaeoclimatol Palaeoecol 148: 87-103.

Wojtasik B, Kuczyńska-Wiśnik D (2012). Temperature shock tolerance and heat shock proteins in Arctic freshwater ostracod Candona rectangulata: preliminary results. Pol Polar Res 33: 199-206.

Mischke S, Herzschuh U, Kürschner H, Fuchs D, Zhang J, Meng F, Sun Z (2003). Sub-Recent Ostracoda from Qilian Mountains (NW China) and their ecological significance. Limnologica 33: 280-292. Mourguiart P, Carbonel P (1994). A quantitative method of palaeolake-level reconstruction using ostracod assemblages: an example from the Bolivian Altiplano. Hydrobiologia 255: 183-193. Nüchterlein H (1969). Freshwater ostracods from Franconia: a contribution to the knowledge of systematics and ecology of Ostracoda. Int Revue Ges Hydrobiol 54: 223-287. Parmesan C (2006). Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37: 637-69.

Yavuzatmaca M, Külköylüoğlu O, Sarı N, Başak E, Mengi H (2012). Ostracoda (Crustacea) from freshwater caves in the western Black Sea region of Turkey. Cave and Karst Science 39: 53-58. Yavuzatmaca M, Külköylüoğlu O, Yılmaz O (2015). Distributional patterns of non-marine Ostracoda (Crustacea) in Adiyaman Province (Turkey). Ann Limnol Int J Limnology 51: 101-113. Yılmaz F, Külköylüoğlu O (2006). Tolerance, optimum ranges, and ecological requirements of freshwater Ostracoda (Crustacea) in Lake Aladağ (Bolu, Turkey). Ecol Res 21: 165-173. Yu N, Zhao Q, Li E, Chen S, Chen L (2009). An updated and annotated checklist of recent nonmarine ostracods from China. Zootaxa 2067: 29-50.

695

Helvacılar-Ünsallar Mah. Trough

Perşembe exit puddle

Nebioğlu creel

Z30

Z31

Z32

Bakiler köyü creek

Filyos stream

Bodaç köyü yolu creek

Z27

Z28

Namazgah köyü trough

Z26

Z29

Aktarlar köyü creek

Gökcebey yolu trough

Z23

Dağdemirciler köyü trough

Dursunlar-Yanıklar Mah. Trough

Z22

Z24

Kızılbel köyü creek

Z21

Z25

Dereli köyü spring

Unnamed trough

Z19

Z20

Bülüncek köyü trough

Burunkaya trough

Z17

Z18

Muratlı köyü trough

Eceler köyü puddle

Z15

Z16

Alparslan köyü trough

Yılanlıca creek

Z13

İsabeyli trough

Z12

Z14

Eveyikli köyü creek

Seyisoğlu köyü trough

Z10

Z11

Yeşilada köyü trough

Aksu barajı-pond

Z8

Z9

Mendeller Mah. creek

Akçabey yolu pond

Sabun köyü trough

Z5

Z6

Unnamed pond

Z4

Z7

Gürbüzler köyü creek

Unnamed trough

Z2

Z3

Station name

Unnamed puddle

StaNu

Z1

8.06

7.7

7.49

8.01

7.48

8.33

7.85

7.13

7.68

6.89

8.04

7.68

7.12

6.92

7.05

7.99

8.04

7.85

8.23

7.46

7.75

7.32

8.13

8.34

7.61

8.16

8.23

7.62

8.02

7.9

8.27

8.21

pH

123.395

141.405

153.755

124.965

156.375

105.3

131.57

176.48

144.425

187.63

123.45

142.51

175.46

214.475

179.62

124.65

122.045

131.51

112.625

157.455

140.35

167.385

121.82

109.83

147.35

118.555

116.52

147.475

125.005

131.685

115.24

117.98

SHE

9.29

5.82

5.74

7.28

6.03

7.67

9.27

7.94

8.14

4.77

10.15

7.08

7.02

1.12

7.09

8.1

8.05

14.12

8.75

8.44

7.37

9.26

9.37

8.9

7.23

8.13

9.71

4.22

3.01

6.82

9.02

8.32

DO

95.7

63.6

61.5

78.6

60.8

86.1

104.7

76.8

84.6

49.6

108.4

77.5

72.1

10.9

72.8

89.5

88.5

160.6

94.1

86.4

78.6

86.2

91.4

87.9

75.4

83.3

95.3

44.6

31.5

73.2

87.6

80.9

% DO

511

511

673

531

714

349.1

471.3

556

593

683

460.8

538

670

540

884

610

605

635

428.2

568

542

474.1

431.6

295.5

712

356.1

405.5

566

252.6

624

404.9

467.2

EC

16.7

19.3

18.3

18.9

15.5

21

21.2

13.8

16.5

16.8

18

19.6

16.6

13.5

16.2

20

19.7

21.6

18.5

16.3

18

12.1

14.2

14.8

18

16.3

14.2

17.5

17.3

18.1

13.4

13.8

Tw

21.9

19.5

18

15.1

22.2

23.2

22.4

24.5

24.4

25.8

27.7

27.8

25.1

26.3

23.6

25.5

23

24.6

26.3

30.9

26.7

29.8

32.7

26

24.7

25.3

21.1

24.9

25.6

21.3

18.4

14.2

Ta

759

760.4

745.6

762.2

752.6

755.9

741.9

733.6

754.1

744.6

742.3

751.5

750.5

754.4

758.5

735.5

755.7

738.6

753.5

751.2

715.5

719.8

733.2

724.4

734

743.7

748.9

722.3

737.6

725.3

736.9

728

Atmp

53.2

65.4

64.5

82

62.1

63.2

60.3

51.4

61.8

49.2

46.6

41.9

43.7

46.6

44.8

44.2

50

48.7

44.5

43.2

46.3

32

33.4

38.6

44.2

41.8

54.3

42

44.7

53.2

64.2

76.2

Mo

Ele

139

3.6

1.9

2.8

9.3

0

0

2.1

1.6

0

1.9

54

32

194

10

132

76

669?

326

667?

203

242

2.7 0

149

107

62

318

95

275

108

129

655

492

338

406

339

232

165

467

294

437

312

360

9.4

1.5

5.8

1.8

4.1

1.8

1.5

3.4

1.5

2

0

4.5

5.4

5.4

2.3

1.5

2.4

0

0

2.3

Wi

41 26 781 N, 032 15 297 E

41 25 639 N, 032 10 745 E

41 22 701 N, 032 10 020 E

41 28 373 N, 032 05 229 E

41 20 045 N, 032 06 624 E

41 18 170 N, 032 09 775 E

41 18 527 N, 032 11 937 E

41 21 262 N, 032 14 493 E

41 19 286 N, 032 09 831 E

41 21 342 N, 032 11 439 E

41 22 196 N, 032 12 480 E

41 22 932 N, 032 12 444 E

41 26 644 N, 032 07 855 E

41 25 118 N, 032 02 566 E

41 23 199 N, 032 04 336 E

41 22 932 N, 032 00 329 E

41 20 907 N, 032 01 404 E

41 19 303 N, 031 59 668 E

41 15 639 N, 031 58 973 E

41 15 128 N, 032 01 904 E

41 12 743 N, 031 54 031 E

41 10 398 N, 031 50 500 E

41 09 093 N, 031 50 499 E

41 05 378 N, 031 46 478 E

41 04 728 N, 031 51 881 E

41 02 542 N, 031 53 154 E

41 07 218 N, 031 53 492 E

41 07 815 N, 031 54 592 E

41 09 069 N, 031 56 018 E

41 08 015 N, 031 56 640 E

41 08 117 N, 031 58 359 E

41 05 588 N, 032 00 945E

Coordinates

6/7/2013

6/7/2013

6/7/2013

6/7/2013

6/6/2013

6/6/2013

6/6/2013

6/6/2013

6/6/2013

6/6/2013

6/6/2013

6/6/2013

6/6/2013

6/6/2013

6/6/2013

6/6/2013

6/6/2013

6/6/2013

6/6/2013

6/6/2013

6/6/2013

6/6/2013

6/6/2013

6/6/2013

6/6/2013

6/6/2013

6/6/2013

6/6/2013

6/6/2013

6/6/2013

6/6/2013

6/6/2013

Date

 

 

0.55

 

 

 

 

0.33

 

0.33

0.44

 

 

 

0.55

0.33

 

0.28

 

0.33

0.55

0.44

 

 

0.55

 

 

0.44

 

0.28

 

 

De

 

 

4.4

 

 

 

 

6.6

 

0.99

3.74

 

 

 

3.08

2.64

 

2.64

 

1.76

2.42

2.42

 

 

3.08

 

 

0.88

 

0.99

 

 

Le

 

 

0.44

 

 

 

 

0.44

 

0.88

0.55

 

 

 

0.66

0.66

 

0.44

 

0.44

0.44

0.55

 

 

0.44

 

 

0.44

 

0.44

 

 

Wd

1.06

0.96

0.29

0.91

1.12

0.57

0.33

0.26

0.59

0.59

0.75

0.17

0.12

Vo

Appendix 1. Measurements of 6 aquatic variables (pH, redox potential [SHE], dissolved oxygen [DO], percent oxygen saturation [% DO], electrical conductivity [EC], water temperature [Tw]), 4 atmospheric variables (air temperature [Ta], atmospheric pressure [Atmp], moisture [Mo], wind speed [Wi]), and geographical data (elevation [Ele] and coordinates) from 105 sites in Zonguldak (Z1–Z56) and Bartın (B1–B49). Abbreviations for troughs: StaNu (Station number), De (depth [m]), Le (length [m]), Wd (width [m]), Vo (volume [m3]).

KÜLKÖYLÜOĞLU et al. / Turk J Zool

1

2

7.89

7.49

Aşağıdere köyü stream

Yenikışla exit belderesi stream

Bağdatlı köyü (Aksu stream)

B11

B12

B13

Hasankadı köyü trough

Eyyüpler köyü road trough

B9

B10

8.2

Akbaş köyü creek

Hanyeri exit stream

B7

B8

7.99

7.84

8.02

8.02

7.1

7.66

8.13

Hasankadı road creek

Bakioğlu school road stream

B5

7.38

7.53

7.45

7.85

7.64

7.86

7.84

7.88

7.43

7.71

7.82

8.44

8.66

7.55

8.11

8

8.19

7.53

6.98

7.16

8.09

7.76

7.58

7.28

7.29

7.88

6.77

B6

Hocaoğlu köyü stream

Ecikler köyü road trough

B3

B4

Şabankadı köyü trough

Yenihamidiye köyü road puddle

Kabalar köyü road trough

Z56

B1

Yeşilyurt köyü creek

Z55

B2

İsafakılı köyü roada creek

Alaplı exit stream

Z53

Z54

Ruşanlar köyü creek

Ardınyayla köyü road trough

Z51

Z52

Aydınlar köyü stream

Yarışlı köyü exit creek

Z49

Z50

Kızılcapınar köyü trough

Kızılcapınar dam exit stream

Z47

Z48

Alacabük köyü trough

Kızılcapınar köyü road trough

Z45

Z46

Akşeyhler köyü trough

Ebegümeci köyü exit stream

Z43

Z44

Marıkpınarı köyü exit puddle

Bozca köyü puddle

Z41

Z42

Tasmacı köyü exit water

Ulutan lake

Z39

Z40

Cumayanı puddle

Beycuma road puddle

Z37

Z38

Şirinköy stream

Muslu köyü yolu trough

Z35

Z36

Filyos stream

Filyos stream exit

Z33

Z34

119.68

136.62

122.315

121.71

178.465

156.36

114.46

146.505

116.33

128.87

158.425

152.725

156.96

132.85

134.005

124.44

119.3

119.915

148.705

129.91

123.125

87.21

71.465

135.91

108.325

112.43

101.865

142.75

175.195

161.43

105.465

131.24

139.355

158.275

157.895

125.67

185.945

6.53

9.53

7.56

7.36

7.5

7.21

7.45

7.81

7.63

7.76

5.94

6.51

1.63

8.01

12.81

7.49

7

9.16

7.3

4.22

6.83

7.47

12.15

10.38

9.31

14.11

7.39

9.93

4.91

4.27

7.94

7.4

6.01

7.22

7.84

7.75

1.7

74.1

92.5

85.5

83.6

71.1

71.3

80

78.2

85.6

77.7

66.2

67.2

16.6

88.4

144.6

77.7

85.5

105.3

76

48.1

78.9

88.3

160.9

133.4

102.4

165.3

85.7

103.3

48.5

46

96.1

74.4

64

72.9

77.5

76.9

17.1

637

176.6

390.6

533

514

551

394.2

488.6

465

428.4

628

502

764

736

444.9

583

297.6

523

525

539

478.2

275.8

288.3

511

397.1

375.6

288.6

407

423.2

264.7

282.1

325.8

429.1

243.2

472.5

382.9

424

21.8

14.2

21.9

21.6

12.9

14.6

18.6

15.3

20.8

15.2

20.5

16.5

16.6

20

21.3

17.4

25

21.9

17.3

21.6

22.5

23.6

26.9

25.6

20.5

22.8

22.9

18

14.7

18.8

24.9

15.4

18.3

15.5

14.7

15.2

15.7

21.7

26.1

30.5

28.6

26.6

25.6

26.1

26.6

29.3

26.1

25.3

26.2

27.7

23.1

24.8

24.6

24.1

25.8

26.2

28.1

28.6

26.7

26

26.3

24.6

23.3

25.9

25.9

21.7

24.4

21.6

25.2

23.6

22

22.6

21.7

20.7

757.4

731

748.4

742.5

707.8

716.7

734.5

743

752.6

745.5

744.6

752.8

758

756

754.9

750.3

759.6

755.2

733.7

754.1

757.9

757

754.2

734.3

742.8

726

739.5

731

713.7

725.5

745.4

729.1

737.1

742.6

732.2

752.5

757.9

69.5

46.2

32.8

40.8

38.2

40.4

47.8

46.7

41.7

44.8

49.7

50.4

51.4

48.7

61.6

61.3

63.6

58.7

54.7

45.5

41.6

50.8

42.3

46.7

48.9

50.9

50.1

57.1

60.5

57.8

66.5

52.6

57.3

67.8

64.2

64.7

77.8

3.8

2.1

4.3

1.7

2.4

2.5

2.8

4.1

1.6

2.1

2.3

2.8

0

1.8

0

5.6

13.2

8.8

0

2.4

2.1

2.5

5.5

5.4

8.1

12.2

7.5

2.9

3.7

4.9

12.4

1.5

2.4

3.2

1.5

0

0

3

352

169

239

636

517

312

215

97

185

679?

122

65

82

60

115

7

55

295

72

29

41

74

286

186

388

235

341

517

396

154

357

262

187

297

66

5

41 32 896 N, 032 05 017 E

41 23 819 N, 032 29 079 E

41 26 510 N, 032 25 342 E

41 24 145 N, 032 23 450 E

41 22 511 N, 032 23 276 E

41 21 255 N, 032 23 146 E

41 20 911 N, 032 21 062 E

41 23 989 N, 032 19 464 E

41 26 426 N, 032 20 363 E

41 26 189 N, 032 18 854 E

41 25 474 N, 032 17 983 E

41 26 297 N, 032 18 086 E

41 29 442 N, 032 20 056 E

41 28 116 N, 032 16 506 E

41 06 932 N, 031 23 859 E

41 07 252 N, 031 24 967 E

41 08 979 N, 031 24 476 E

41 07 887 N, 031 28 987 E

41 08 029 N, 031 32 729 E

41 12 755 N, 031 31 032 E

41 16 205 N, 031 33 387 E

41 16 205 N, 031 33 386 E

41 14 111 N, 031 36 990 E

41 13 236 N, 031 40 132 E

41 15 079 N, 031 41 531 E

41 15 721 N, 031 42 681 E

41 17 193 N, 031 42 142 E

41 19 903 N, 031 43 934 E

41 20 185 N, 031 46 362 E

41 23 334 N, 031 48 426 E

41 25 205 N, 031 47 990 E

41 23 878 N, 031 52 859 E

41 25 757 N, 031 53 615 E

41 29 053 N, 031 53 248 E

41 29 118 N, 031 58 506 E

41 30 079 N, 031 58 190 E

41 32 753 N, 032 00 189 E

6/8/2013

6/7/2013

6/7/2013

6/7/2013

6/7/2013

6/7/2013

6/7/2013

6/7/2013

6/7/2013

6/7/2013

6/7/2013

6/7/2013

6/7/2013

6/7/2013

6/9/2013

6/9/2013

6/9/2013

6/9/2013

6/9/2013

6/9/2013

6/9/2013

6/9/2013

6/9/2013

6/9/2013

6/9/2013

6/9/2013

6/9/2013

6/9/2013

6/9/2013

6/9/2013

6/9/2013

6/9/2013

6/9/2013

6/9/2013

6/9/2013

6/9/2013

6/9/2013

 

 

 

 

0.5

0.22

 

 

 

 

0.28

 

 

0.44

0.33

 

 

 

0.22

 

 

 

 

0.11

0.28

0.22

 

0.22

 

 

 

 

 

 

0.22

 

 

 

 

 

 

1.32

1.1

 

 

 

 

1.54

 

 

3.08

3.08

 

 

 

1.54

 

 

 

 

1.54

1.1

2.2

 

0.88

 

 

 

 

 

 

1.76

 

 

 

 

 

 

0.66

0.55

 

 

 

 

0.44

 

 

0.66

0.55

 

 

 

0.22

 

 

 

 

0.66

0.44

0.33

 

0.33

 

 

 

 

 

 

0.44

 

 

0.44

0.13

0.19

0.89

0.56

0.07

0.11

0.14

0.16

0.06

0.17

KÜLKÖYLÜOĞLU et al. / Turk J Zool

Yazıcılar köyü trough

Esenyurt köyü trough

Yukarı ihsaniye köyü puddle

B47

B49

Saraydüzü köyü mevki spring

B46

B48

Aliobası köyü puddle

Makaracı köyü exit trough

B44

Curunlu yolu puddle

B43

B45

Sarıderesi stream

Gölderesi şelalesi stream

B41

B42

Yahyayazıcılar köyü creek

B40

İğneciler köyü spring

B37

Ağaköy stream

Aşağıçerci köyü stream

B36

Dereli mah. Stream

Çerde road trough

B35

B38

Kayacılar köyü creek

B34

B39

Esbey köyü stream

Aydınlar köyü entrance creek

B32

Unnamed stream branch

B31

B33

Çukurbaşu köyü trough

Kayaarkası spring

B29

Kışla köyü road trough

B28

B30

Akpınar köyü trough

Gergece şelalesi creek

B26

Ulukaya şelalesi puddle

B25

B27

Uluyayla road spring

Kestane mevki trough

B23

Doruca Şahinci köyü Çayırlı Mah. Creek

B22

B24

Aşağıemirce köyü trough

Dodurga road puddle

B20

Derecik Mah. trough

B19

B21

Kalecik köyü exit trough

Bahçecik köyü stream

B17

Üçsaray köyü mevki trough

B16

B18

Uluköy trough

Zafer köyü road pond

B14

B15

7.27

7.39

7

7.59

7.02

7.34

6.98

7.85

7.92

7.69

7.55

7.12

7.5

7.49

7.54

7.4

7.14

7.73

7.4

7.81

7.09

7.08

7.55

7.62

6.61

8.47

7.5

7.19

7.4

7.65

7.53

7.12

7.7

7.38

7.49

7.03

155.91

147.38

171.82

135.07

174.135

148.765

174.735

127.53

120.72

133.255

142.075

165.51

141.95

148.835

142.6

155.35

167.385

134.72

152.81

130.145

171.535

167.225

140.175

140.065

195.945

87.18

148.59

164.475

152.78

134.455

137.825

163.875

134.32

151.045

142.305

169.765

7.42

3.04

7.68

9.18

5.57

8.32

8.43

13.07

9.24

7.98

7.68

6.89

8.85

9.42

7.53

10

4.08

7.04

6.44

9.19

8.58

7.42

6.19

7.49

5.98

9.54

8.51

9.23

8.1

6.21

7.53

6.69

6.85

7.49

8.17

10.44

81.8

35.1

81.7

108.5

53.2

98

84.3

129.3

98.5

85.5

80.7

72.1

97.2

86.2

78.3

88.8

40.2

68.9

62

88.4

79

80

67.7

74.1

57.7

109.7

80.1

88.8

77.4

69.1

90.6

73.3

71.5

78.8

92.3

113.7

228.8

536

605

791

409.2

495.6

645

176.2

428.8

653

410.8

469.5

363.7

300.3

556

280.5

445.2

560

551

674

514

1160

487.1

450.3

522

251.8

388.5

429.7

521

453.3

497.6

785

401.5

545

507

658

19.6

21.8

18.2

23.2

13.1

22.9

15.1

14.8

18.2

18.3

17.5

17.6

20

11.1

17

10

14.1

14.2

13.6

13.7

11.1

18.5

19.5

14.9

13.7

21.8

12.4

13.5

13.8

20.3

24.5

19.5

18.2

17.7

21.3

18.9

23.1

24.1

26.7

25.9

24.9

25.7

24.9

21

27.5

29.5

27.8

27.1

28.4

31.5

26.7

25.6

26.2

24.4

24.1

23.2

21.2

24.3

28.1

19.5

20.2

22.3

25.1

25.5

26.8

29.9

30.5

24

29

23.3

30.6

29.5

704.4

755

753.7

754.5

730.5

729.3

743.2

741.8

735.3

741.9

756.7

722

735.7

730.2

734.5

710.1

710.4

728.1

720.7

732.8

738.9

756.4

754.9

741.3

755

730.6

711.9

710.6

717.7

745.2

743.6

737.9

744

718.8

726.2

717.8

42.5

57.8

49.2

46.8

47.3

51.6

62.2

72.3

51.9

36.8

50.9

47.3

38.7

33.5

54.8

49.2

45.5

55.1

56.2

52.2

58

51.5

49.2

66.1

59.8

60.6

43.1

36.7

40.2

33.8

33.3

41.9

39.7

44.6

38.2

33.2

4.4

0

1.5

0

0

1.5

2

8.4

1.6

0

2.8

3.6

2.2

0

1.8

0

0

0

2.6

2.4

4.7

2.5

2.1

0

1.7

3.1

0

2.9

0

1.7

5.2

9.1

2.6

5

8.2

2.8

670

38

52

65

339

358

182

209

283

207

40

434

276

339

285

567

565

371

456

327

272

44

77

231

73

359

575

580

499

184

204

268

199

488

413

520

41 25 158 N, 032 31 498 E

41 32 118 N, 032 07 007 E

41 32 809 N, 032 15 898 E

41 33 385 N, 032 17 569 E

41 41 284 N, 032 25 303 E

41 42 956 N, 032 26 221 E

41 46 105 N, 032 31 060 E

41 49 453 N, 032 38 379 E

41 45 781 N, 032 35 327 E

41 46 441 N, 032 32 621 E

41 46 432 N, 032 32 633 E

41 39 230 N, 032 47 428 E

41 37 768 N, 032 42 631 E

41 37 899 N, 032 38 411 E

41 36 861 N, 032 37 172 E

41 36 708 N, 032 33 406 E

41 38 650 N, 032 34 725 E

41 41 855 N, 032 39 753 E

41 42 481 N, 032 42 118 E

41 40 986 N, 032 34 766 E

41 39 352 N, 032 29 759 E

41 37 459 N, 032 27 274 E

41 38 597 N, 032 25 832 E

41 41 732 N, 032 24 711 E

41 39 546 N, 032 23 883 E

41 40 295 N, 032 45 814 E

41 34 079 N, 032 43 240 E

41 33 956 N, 032 43 600 E

41 32 479 N, 032 38 414 E

41 34 118 N, 032 36 977 E

41 32 472 N, 032 36 229 E

41 30 643 N, 032 32 460 E

41 28 248 N, 032 37 488 E

41 27 248 N, 032 37 487 E

41 25 785 N, 032 34 693 E

41 24 687 N, 032 32 232 E

6/7/2013

6/8/2013

6/8/2013

6/8/2013

6/8/2013

6/8/2013

6/8/2013

6/8/2013

6/8/2013

6/8/2013

6/8/2013

6/8/2013

6/8/2013

6/8/2013

6/8/2013

6/8/2013

6/8/2013

6/8/2013

6/8/2013

6/8/2013

6/8/2013

6/8/2013

6/8/2013

6/8/2013

6/8/2013

6/7/2013

6/7/2013

6/7/2013

6/7/2013

6/7/2013

6/7/2013

6/7/2013

6/7/2013

6/7/2013

6/7/2013

6/7/2013

0.66

 

0.33

 

 

0.33

 

 

 

 

 

 

 

 

 

0.22

 

 

 

 

 

0.44

0.55

 

0.44

 

0.15

 

 

 

0.55

0.44

 

0.88

0.33

 

2.42

 

5.06

 

 

4.4

 

 

 

 

 

 

 

 

 

0.88

 

 

 

 

 

2.2

4.62

 

4.4

 

3.74

 

 

 

2.75

3.74

 

3.08

1.32

 

 

0.44

0.44

 

 

 

 

 

 

 

 

 

0.44

 

 

 

 

 

0.66

0.44

 

0.55

 

0.33

 

 

 

0.88

0.44

0.66

0.44

0.66

0.73

0.64

0.09

0.64

1.12

1.06

0.19

1.33

0.72

1.79

0.19

1.05

KÜLKÖYLÜOĞLU et al. / Turk J Zool

3

4

Ca

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

StaNu

Z1

Z2

Z3

Z4

Z5

Z6

Z7

Z8

Z9

Z10

Z11

Z12

Z13

Z14

Z15

Z16

Z17

Z18

Z19

Z20

Z21

Z22

Z23

Z24

Z25

Z26

Z27

Z28

Z29

Z30

Z31

 

 

 

 

 

 

 

 

 

 

 

 

13

 

 

 

 

 

 

 

3

 

 

1

 

1

 

3

 

 

 

Cn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1c

1j; 1c; 1v

 

 

 

 

 

 

3v

 

Csp

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Co

 

 

 

 

 

 

 

4v

1v

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cv

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1c

 

 

16c; 5v

 

 

 

Cds

 

1v

 

 

 

 

 

 

 

 

2v

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Es

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fb

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hc

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1c; 9v

 

 

 

Hrs

 

 

 

 

 

121

 

 

 

7

 

 

 

 

133

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

Hi

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

 

 

 

 

 

Hr

 

 

 

 

 

 

 

 

 

 

 

4

 

151

 

 

63

2

55

 

 

 

 

51

 

 

14

 

21

 

 

Hs

7v

 

3v

 

 

 

5v; 4c

 

 

 

 

 

1c

 

 

1v

 

 

 

 

 

 

 

 

 

 

 

6v

 

 

 

Hsp

 

 

 

1

 

151

 

 

5

 

 

 

3

25

 

 

 

2

 

28

51

 

4

 

 

63

 

 

 

 

 

Ib

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

63

 

 

 

 

Id

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Igi

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ig

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

5

37

Ii

 

2v

3v

 

1v

 

 

 

 

 

 

 

 

 

 

4v

 

 

1c; 3v

 

 

 

 

8v; 2c

1v

 

 

11c; 10v

 

 

 

Isp

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Li

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pa

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

3

 

 

 

 

 

 

 

 

Pf

 

 

 

21

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pfu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

Pv

 

 

 

 

 

 

 

 

 

 

Ps

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Psp

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

Pz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pes

 

 

 

 

 

1

2

 

 

3

 

 

 

 

 

 

 

 

12

2

63

3

8

 

 

 

13

 

 

4

21

Po

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pos

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20c

 

 

 

 

 

 

 

 

 

 

 

Ts

Appendix 2. Number of living ostracods (single number), juveniles (j), valves (v), and carapaces (c) in 105 sites in Zonguldak and Bartın. Abbreviations: Ca, Candona angulata; Cn, C. neglecta; Csp, Candona sp.; Co, Cypria ophthalmica; Cs, Cypria sp.; Cv, Cypridopsis vidua; Cds, Cypridopsis sp.; Es, Eucypris sp.; Fb, Fabaeformiscandona balatonica; Hc, Herpetocypris chevreuxi; Hrs, Herpetocypris sp.; Hi, Heterocypris incongruens; Hr, H. reptans; Hs, H. salina; Hsp, Heterocypris sp.; Ib, Ilyocypris bradyi; Id, I. decipiens; Ig, I. getica; Igi, I. gibba; Ii, I. inermis; Isp, Ilyocypris sp.; Li, Limnocythere inopinata; Pa, Potamocypris arcuata; Pf, P. fallax; Pfu, P. fulva; Ps, P. smaragdina; Pv, P. variegata; Psp, Potamocypris sp.; Pz, Prionocypris zenkeri; Pes, Pseudocandona sp.; Po, Psychrodromus olivaceus; Pos, Psychrodromus sp.; Ts, Tonnacypris sp.; StaNu, Station number. Note sites without species.

KÜLKÖYLÜOĞLU et al. / Turk J Zool

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

Z32

Z33

Z34

Z35

Z36

Z37

Z38

Z39

Z40

Z41

Z42

Z43

Z44

Z45

Z46

Z47

Z48

Z49

Z50

Z51

Z52

Z53

Z54

Z55

Z56

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B12

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

 

 

 

 

 

 

 

 

65

 

1

3

 

 

 

4

 

 

1v

 

 

1v

1v

 

1v

 

 

1j,3v

 

 

 

 

 

1c

 

1j

 

2v

 

 

 

 

 

 

 

 

 

 

 

 

 

3v

 

 

1v

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

51

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1c

 

 

16c; 5v

 

 

 

 

3c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1j; 5v  

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

31

 

3

 

6

 

 

 

 

 

 

 

 

5

13

 

46

 

 

3

1

 

 

 

 

 

 

 

 

 

 

 

 

3

40

1

 

 

 

 

 

 

11

 

 

 

 

62

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

81

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3v

 

 

 

 

 

 

 

1v

 

 

 

 

1v; 1j

 

 

3v

 

 

 

 

 

 

 

 

 

2v

 

3

 

 

 

 

 

 

 

 

 

 

 

43

 

 

41

10

 

 

 

 

17

 

 

 

 

 

 

 

15

105

 

1

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

5v

 

1v

 

 

2v

2v

 

 

 

 

 

 

 

1v

2v

 

 

 

 

 

 

 

2v

 

13v

1v

 

 

 

 

 

 

 

 

 

10v

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

1

 

 

7

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

31

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

6

 

 

 

26

 

1

 

 

 

 

 

 

20

 

 

 

 

 

63

 

 

1

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2v

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

KÜLKÖYLÜOĞLU et al. / Turk J Zool

5

6

 

 

 

B47

B48

B49

 

B35

 

2

B34

B46

 

B33

 

 

B32

 

 

B31

B45

 

B30

B44

 

B29

 

 

B28

B43

 

B27

 

 

B26

B42

 

B25

 

 

B24

 

 

B23

B41

 

B22

B40

 

B21

 

 

B20

B39

 

B19

 

 

B18

B38

 

B17

 

 

B16

 

 

B15

B36

 

B14

B37

 

B13

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

4

 

 

1v

 

 

 

 

 

 

 

 

1v

 

1v

 

 

1j; 3ca

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3ca

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

121

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

120

 

249

1

 

 

 

 

 

 

 

 

 

 

3

5

129

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5ca; 1v

 

 

 

 

 

 

 

 

 

1v

1v

 

 

 

 

 

 

 

 

 

 

 

 

2ca; 11v

 

 

1ca

 

 

6v

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

1

 

 

 

 

 

41

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

9v

 

7v

 

 

 

4v

1v

 

 

 

 

4v

 

 

1ca

 

 

 

 

 

 

 

 

 

 

15ca; 10v

 

 

 

 

 

 

1ca

 

2v

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1v

 

 

 

 

2

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

6

 

 

 

7

1

 

 

 

 

 

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

KÜLKÖYLÜOĞLU et al. / Turk J Zool