Turkish Journal of Zoology http://journals.tubitak.gov.tr/zoology/
Research Article
Turk J Zool (2017) 41: 686-695 © TÜBİTAK doi:10.3906/zoo-1512-36
Ostracoda (Crustacea) species composition and environmental correlates in different aquatic habitats of the Zonguldak and Bartın regions (Turkey) Okan KÜLKÖYLÜOĞLU*, Mehmet YAVUZATMACA, Meriç TANYERİ, Ozan YILMAZ Department of Biology, Faculty of Arts and Sciences, Abant İzzet Baysal University, Bolu, Turkey Received: 14.12.2015
Accepted/Published Online: 22.12.2016
Final Version: 17.07.2017
Abstract: In order to compare the ostracod species composition of the Zonguldak and Bartın regions of Turkey, samples were collected from 105 aquatic sites with 7 different habitats during June 2013. Thirteen and 18 species were identified from Bartın and Zonguldak, respectively. While all of the species are new reports for Bartın, 11 species are new for Zonguldak. Twenty-two species were common in both regions, with 40.9% similarities. Species abundance (49.2 individuals/site) was found to be greater in Zonguldak than in Bartın (33 individuals/site), but the number of species per sampling site was higher in Bartın (0.48 spp./site) than in Zonguldak (0.42 spp./site). Increasing the numbers of sampling sites did not increase the numbers of species. Among the habitat types, the numbers of species per site was the lowest in troughs (0.35 spp./site). Canonical correspondence analyses explained 78.3% of the correlation with relatively low variance (9.8%) between the 15 most common species and 4 environmental variables in the regions, where water temperature (F = 3.216; P = 0.002) and electrical conductivity (F = 2.525; P = 0.018) displayed strong correlation with the species. However, water temperature per se did not show a significant effect on the numbers of species (P > 0.05). Cosmopolitan species showed relatively high tolerance and optimum values to different environmental variables. Key words: Ostracods, cosmoecious species concept, species assemblages, ecological tolerance and optimum estimates, habitat suitability, climate change
1. Introduction The correlation between individual species composition and their ecological characteristics has been the subject of many different studies for several reasons. This is an especially important issue when effects of climatic change, along with anthropogenic disturbances, play one of the most critical roles in species diversity and habitat loss (Mattila et al., 2011). For example, climate change shows its face with an increase in the surface water temperature of aquatic habitats such as wetlands (Boer and de Groot, 1990; Čížková et al., 2013), lakes, streams (http:// www.climate-and-freshwater.info/), and small water bodies (e.g., ditches, ponds, springs) (Uçak et al., 2014). Increasing water temperature corresponds to elevated evaporation rates, causing a decrease in water depth and an increase salinity levels (Mourguiart and Carbonel, 1994; Külköylüoğlu et al., 2014). Such changes can happen in a period of time from a couple of hours to days, depending on several factors (e.g., season, water chemistry, rate of evaporation, water depth). There is increasing evidence that most (if not all) aquatic organisms show different ecological responses to such changes (e.g., Parmesan, * Correspondence:
[email protected]
686
2006). Herein, the main concern is to understand the levels of such responses that individual species show for different environmental variables. If one knows how those responses occur, not only can some of those ecological and evolutionary processes be explained, but possible precautionary actions can be taken in habitats for future estimates. In aquatic ecosystems, different abiotic (e.g., dissolved oxygen, pH, temperature) and biotic (e.g., competition, predation) factors can be responsible for changes in species composition, while ecological variables show potential influence on the geographical range (e.g., elevation) of the species (Dennis et al., 2000). Ostracods, which are aquatic invertebrate crustaceans, have different levels of responses to such environmental changes; therefore, they can be used as bioindicators of the surrounding physical and chemical conditions. For example, a bottom-dependent ostracod, Limnocythere inopinata, is used as an indicator species of moderate to high salinity levels in alkaline waters (Cohen et al., 1983) of streams, lakes, and reservoirs with eutrophic conditions (Scharf, 1993; Kılıç, 2001; Külköylüoğlu and Dügel, 2004; Külköylüoğlu et al., 2014). Additionally, the
KÜLKÖYLÜOĞLU et al. / Turk J Zool species has a broad geographical range where it tolerates relatively wide ranges of some other variables. Similarly, two other cosmoecious (Külköylüoğlu, 2007) species (Candona neglecta and Ilyocypris bradyi) reported from lotic (Châtelliers and Marmonier, 1993; Mezquita et al., 1999) and lentic aquatic habitats (Rieradevall and Roca, 1995; Külköylüoğlu et al., 2007) are known to have high tolerances to temperature, pH, and redox potential (Akdemir, personal communication). In vivo experimental studies support the above perspective that some ostracods do have high tolerance ranges. This is the case for Physocypria kraepelini, which displayed high tolerances to ammonia, phosphate, and pH values in laboratory conditions (Yu et al., 2009). Similarly, Candona rectangulata is a common ostracod species in cold ( 0.05) effect on the number of species. Results revealed that increasing water temperature corresponds to an increased number of species per site in Bartın and Zonguldak while air temperature corresponds to a decreased number (Figure 3). Therefore, increasing numbers of sampling sites did not increase the number of species. Generally, species with cosmopolitan characteristics (e.g., I. bradyi, C. neglecta, H. incongruens, P. olivaceus) showed relatively higher tolerance values to different environmental variables than the means of the other species (Table 5). Thus, such species can be called “cosmoecious” species (but also see discussion below). 4. Discussion While all 13 species are new for Bartın, 11 of 18 species were new reports for Zonguldak. Hartmann (1964) was the first to report 4 ostracod species (I. decipiens, I. gibba, P. olivaceus, Pseudocandona eremita) from Zonguldak. Following this report, 6 more species (P. kraepelini, Eucypris virens, H. salina, H. incongruens, C. neglecta, C. vidua) were found in the region by Gülen (1985). An additional species (Potamocypris villosa) was also reported from the region by Kılıç (1997). Recently, Yavuzatmaca et al. (2012) encountered 2 species (I. bradyi, P. olivaceus)
689
KÜLKÖYLÜOĞLU et al. / Turk J Zool Table 2. Distribution of ostracod species among 7 different aquatic bodies. Abbreviations include number of species (No. Spp.), number of sites (No. sites), and number of species per site (Spp./site). No. Spp.
No. sites
Spp./site
Creek
15
21
0.714
Spring
5
5
1.00
Pond
5
4
1.25
Reservoir
1
1
1.00
Puddle
9
14
0.643
Stream
9
21
0.429
Trough
14
39
0.359
Table 3. Comparison of the number of species among 7 regions. Abbreviations include number of species (Num. Spp.), number of sites (Num. sites), number of species per site (Spp./site), and number of species per km2 (Spp./km2) in a given surface area (km2) of each region, with data from Yavuzatmaca et al. (2015)a, Külköylüoğlu et al. (2016)b, Akdemir and Külköylüoğlu (2011)c, Külköylüoğlu et al. (2012c)d, Külköylüoğlu et al. (2012a)e, and this study*. These regions are called provinces in Turkey. Regions
Area
Num. Spp.
Num. sites
Spp./site
Spp./km2
Adıyamana
7164
27
111
0.243
0.004
Bartın*
2079
13
27
0.481
0.006
Çankırıb
7388
25
114
0.219
0.003
15,272
23
48
0.479
0.002
14,346
32
68
0.471
0.002
10,115
29
57
0.509
0.003
3306
18
42
0.429
0.005
Diyarbakırc Kahramanmaraş
d
Van
e
Zonguldak
*
Table 4. CCA summary table includes 68 sampling sites (43 Zonguldak, 25 Bartın) with 15 species. Axes
1
2
3
4
Lengths of gradient
10.235
3.495
4.010
4.586
Eigenvalues
0.336
0.270
0.105
0.062
6.199
0.713
0.676
0.469
0.364
Species–environment correlations
Total inertia
Cumulative percentage variance of species data
5.4
9.8
11.5
12.5
of species–environment relation
43.4
78.3
91.9
100.0
Sum of all eigenvalues
6.199
Sum of all canonical eigenvalues
0.773
that were already known previously. Therefore, including these 12 species with our findings, the Zonguldak region has a total of 22 ostracod species. Differences in numbers
690
of species (richness) were not significant between these two regions, but compared with other regions in Turkey, the number of species was relatively low in both (Table
KÜLKÖYLÜOĞLU et al. / Turk J Zool Table 5. Tolerance (Tol) and optimum (Opt) estimates of 11 ostracods occurring 3 or more times during this study. Abbreviations: standard hydrogen electrode (SHE); dissolved oxygen (DO); electrical conductivity (EC); water temperature (Tw); elevation (Elev); number of occurrences (Count); maximum number of individuals (Max); Hill’s coefficient or measure of effective number of occurrences (N2).
pH
SHE
DO
EC
Tw
Elev
Name
Count
Max
N2
Opt
Tol
Opt
Tol
Opt
Tol
Opt
Tol
Opt
Tol
Opt
Tol
Psychrodromus olivaceus
26
63
8.02
7.717
0.418
139.1
25.52
8.388
1.341
464.86
73.76
15.97
3.39
326.21
157.22
Ilyocypris bradyi
23
151
7.95
7.613
0.405
143.6
21.9
8.31
1.567
468.67
154.4
17.45
3.15
369.57
242.57
Heterocypris incongruens 21
249
7.1
7.486
0.374
147.1
18.73
7.548
1.394
482.78
140.98
18.61
3.15
303.67
256.38
Heterocypris salina
9
151
4.93
7.538
0.457
149.6
29.69
8.586
2.792
673.69
199.28
18.12
2.37
187.02
137.26
Heterocypris reptans
6
62
3.34
7.544
0.173
143.9
11.57
8.247
2.272
548.46
61.767
21.77
4.16
465.74
232.64
Candona neglecta
21
65
3.3
7.312
0.421
159.6
29.67
4.814
2.614
358.65
150.95
17.81
3.28
314.75
174.13
Potamocypris sp.
3
1
3
7.713
0.176
132.5
11.58
8.71
1.497
496.67
79.827
18.03
3.85
255.67
174.43
Limnocythere inopinata
4
7
2.58
7.958
0.222
115
12.63
7.209
0.765
400.79
123.37
22.78
0.86
102.86
126.41
Ilyocypris inermis
9
37
2.4
8.082
0.34
123.4
15.52
8.121
0.974
448.28
59.692
14.31
1.57
325.66
94.379
Cypridopsis vidua
3
10
2.31
8.022
0.351
111.5
21.18
7.205
0.794
334.16
112.66
22.45
2.38
183.53
87.879
Potamocypris variegata
3
31
2.08
7.884
0.575
119.8
33.75
7.354
0.215
285.83
87.123
21.88
2.07
349.02
301.39
Mean
11.64
75.2
4.27
7.715
0.356
135
21.07
7.681
1.475
451.17
113.07
19.02
2.75
289.43
180.43
Figure 2. CCA diagrams for (a) 4 variables (water temperature [Tw]; electrical conductivity [EC]; dissolved oxygen [DO]; pH) and (b) 15 ostracods in 68 sampling sites.
3). On the other hand, the average number of species per sampling site is higher in these regions than many others with similar species composition. For example, Külköylüoğlu et al. (2016) recently reported 25 species from 114 sites in Çankırı (Turkey), wherein the number of species per site (0.219) was the lowest among those listed
in Table 3. In contrast, there were 18 species found from 42 sites in Zonguldak where the number of species per site was about two times (0.429) greater than in Çankırı. In accordance with this comparison, Bartın, with about 50% less surface area than Zonguldak, had 13 ostracods collected from 27 sites. Among the other regions listed
691
KÜLKÖYLÜOĞLU et al. / Turk J Zool
Figure 3. Relationships among air temperature (Ta), water temperature (Tw), and number of species (Nuspp) in Bartın and Zonguldak.
in Table 3, however, Bartın showed a relatively high ratio of species per site (0.481). In contrast, the number of individuals found in Bartın (891 ind.) is about half that found in Zonguldak (2067 ind.). Thus, as seen in Table 3, our results support the idea of Külköylüoğlu et al. (2013) that increasing the number of sampling sites does not significantly increase the number of species, but the number of individuals per site may change. These authors suggested that efficiency and suitability of habitats, rather than number of sites, can increase the chance of finding more species and individuals. Perhaps this is because a habitat type is not suitable for the species, or it is not the right time (e.g., seasonality differences) for species to be present in those habitats. Finding low numbers of species is an important issue, since our sampling was done in a short time period in 7 different habitats, where the number of species was higher in creeks (15 spp.) than troughs (14 spp.), although the number of sampling sites was higher in troughs (39 sites) than creeks (21 sites) (Table 2). Considering artificial characteristics of troughs, finding low species richness is not surprising, since such habitats carry similar characteristics (Külköylüoğlu et al., 2013). Indeed, during the present study, most of the species with cosmopolitan characteristics were reported from troughs. Similar results were previously found in other regions of Turkey, such as Diyarbakır (Akdemir and Külköylüoğlu, 2011), Van (Külköylüoğlu et al., 2012a), Kahramanmaraş (Külköylüoğlu et al., 2012c), Ankara (Uçak et al., 2014), Adıyaman (Yavuzatmaca et al., 2015), and Çankırı (Külköylüoğlu et al., 2016). It is probable that such habitats
692
are generally good for cosmopolitan species with high tolerance ranges. For example, according to Table 5, four species (P. olivaceus, I. bradyi, H. incongruens, C. neglecta) with high tolerance (and/or optimum) levels are generally those with wide geographical occurrences. Such species are ecologically better adapted and locally more abundant, are usually the most frequently occurring species, and are socalled cosmoecious species (Külköylüoğlu, 2007). Similar characteristics can also be found in ostracods (Uçak et al., 2014) and different organisms such as zooplanktons (Başak et al., 2014) and pteridophytes (ferns and allied plants) (Kessler, 2002). Although cosmoecious species may indicate low water quality, they contribute important value to species diversity and cannot be ignored. As shown in Table 1, finding relatively high index values for 14 species, including 4 dominant cosmoecious species (I. bradyi, H. incongruens, P. olivaceus, C. neglecta), is of value for discussion. It is indeed interesting that Külköylüoğlu et al. (2013) found very similar results for these 4 ostracods (out of 9 species) collected from troughs of the Ankara region in Turkey. Once again, the results support the quantitative importance of cosmoecious species in species diversity. This may not account for the quality of habitats and/or communities. The species located closer to the center of the CCA diagram (Figure 2) are also those with wide tolerance and wide distributional ranges, while species with rare occurrences are scattered on the diagram. Although it is not certain, similar ecological characteristics of the species may be one of the reasons for their occurrence around
KÜLKÖYLÜOĞLU et al. / Turk J Zool the center (Yılmaz and Külköylüoğlu, 2006; Akdemir and Külköylüoğlu, 2014). According to CCA results (Table 4), water temperature and electrical conductivity (including salinity) were the two most influential factors on species. Among the species, H. reptans was the only one showing a positive correlation with water temperature (Rs = 0.943; P < 0.01). However, correlation of some ostracod species with temperature and electrical conductivity is already known. For example, we found I. bradyi in all types of habitats (except dams) within the water temperature range of 12.1 to 21.6 °C. This corresponds to earlier reports that the species, having broad geographical occurrence in different ecological conditions, has been frequently collected from a variety of habitats (Meisch, 2000; Külköylüoğlu et al., 2007, 2014), along with wide ranges of water temperature values from 5.8 to 25.7 °C (Külköylüoğlu et al., 2012b; Külköylüoğlu, 2013). Similarly, another well-known species, H. incongruens, was the second most frequently occurring species encountered in almost all water bodies (except dams), where the species showed positive correlations with water volume and depth. This supports earlier reports (Meisch, 2000; Mischke et al., 2003; Li et al., 2010) that H. incongruens mostly prefers shallow stagnant water bodies, where it can tolerate high levels of fluctuations in different environmental variables including water temperature, dissolved oxygen, pH, and salinity (for more details, see Külköylüoğlu, 2013). For example, during the present study, minimum (11.1 °C) and maximum (22.9 °C) water temperature ranges were measured in waters where H. incongruens was collected. This fits well with the previous records (6 °C and 31.7 °C) of Mezquita et al. (1999) and Külköylüoğlu et al. (2012b), respectively. The third most common species, P. olivaceus, is a typical species of troughs, ponds, pools, ditches, springs, and spring-related water bodies (Meisch, 2000; Rossetti et al., 2006). Recent studies (Külköylüoğlu et al., 2012b; Akdemir and Külköylüoğlu, 2014; Uçak et al., 2014) revealed that although the species may prefer well-oxygenated water bodies, the tolerance levels of P. olivaceus to different environmental variables are much higher than previously known. These results are concordant with our results, in which the species did not show any significant correlation to variables. The last most frequently occurring cosmoecious species, C. neglecta, is known for its relatively high tolerance levels to low-oxygenated water bodies polluted with organically rich materials (Meisch, 2000; Külköylüoğlu, 2013). Külköylüoğlu et al. (2012a) reported a high tolerance value (tk = 8.21) of the species to water temperature in aquatic habitats of the Van region (eastern Turkey), while it showed the lowest tolerance to electrical conductivity. We encountered the species in temperature ranges from 12.1
to 22.7 °C in almost all types of habitats (except dams). This range corresponds to the earlier reports (Külköylüoğlu, 2013). Our results for these 4 species displayed a good match to the study of Yavuzatmaca et al. (2015), who found the same 4 cosmoecious species (though in different order, as C. neglecta, H. incongruens, I. bradyi, and P. olivaceus) with broader tolerance ranges than the noncosmopolitans. Other than these most common species, the rest of the 18 species did not show significant differences and/ or correlations with the environmental variables (unless otherwise indicated). Therefore, we did not focus on them. However, this does not mean that these species should be ignored, and we hope that the data presented here will be used in future studies along with others. As mentioned above, climate changes (here referring to air temperature changes) can also be considered as an important factor in species richness. Indeed, many studies underlined that changes in air temperature can alter species diversity (including both richness and abundances) of aquatic habitats over long periods of time (months, years, or decades) (McCombie, 1959; Kothandaraman and Evans, 1972; Livingstone and Lotter, 1998; Johnson et al., 2014). Most of these studies dealt with large and deep water bodies such as oceans, lakes, rivers, and river catchments (e.g., Johnson et al., 2014). In contrast, our study was done in shallow water bodies in a short period of time limited to 4 days in June. Although such habitats exhibit quick responses to air temperature changes on a daily basis, interpretation of our results on the “air–water temperature and species” relationship may not be generalized at the moment due to limited sampling time. On the other hand, Boer and de Groot (1990) argued that increasing air temperature will cause a rise in water temperature and evaporation that will eventually have an effect on inland wetlands due to internal eutrophication, salinization, desiccation, and invasion of thermophilous species. Inasmuch as there is a predominance of the most common species, whose tolerance levels to temperature and salinity changes are high, we can support the conclusion of Boer and de Groot (1990). In addition, we support habitat suitability proposed within the habitat diversity hypothesis as a better explanation for ostracod distribution and diversity in these shallow aquatic bodies. Furthermore, the results imply that species richness is possibly much higher in both regions than currently presented here. Therefore, we suggest that nonmarine ostracods can be found in almost all types of water bodies as long as the conditions are suitable for them. Acknowledgment We would like to thank Dr Randy Gibson (USGS, Texas, USA) for his comments and suggestions on an earlier draft of this work.
693
KÜLKÖYLÜOĞLU et al. / Turk J Zool References Akdemir D, Külköylüoğlu O (2011). Freshwater Ostracoda (Crustacea) of Diyarbakır Province including a new report for Turkey. Turk J Zool 35: 671-675.
Kessler M (2002). Range size and its ecological correlates among the pteridophytes of Carrasco National Park, Bolivia. Global Ecol Biogeogr 11: 89-102.
Akdemir D, Külköylüoğlu O (2014). Preliminary study on distribution, diversity, and ecological characteristics of nonmarine Ostracoda (Crustacea) from the Erzincan region (Turkey). Turk J Zool 38: 421-431.
Kılıç M (1997). Ostracoda (Crustacea) fauna of the Black Sea shore. PhD, İstanbul University, İstanbul, Turkey (in Turkish with abstract in English).
Başak E, Aygen C, Külköylüoğlu O (2014). Taxonomy, distribution, and ecology of Crustacean zooplankton in trough waters of Ankara (Turkey). Turk J Zool 38: 1-10. Birks HJB, Line JM, Juggins S, Stevenson AC, ter Braak CJF (1990). Diatoms and pH reconstruction. Phil Trans R Soc 327: 263278. Boer MM, de Groot RS (1990). Landscape-Ecological Impacts of Climatic Change. Amsterdam: IOS Press. Bronshtein ZS (1947). Freshwater Ostracoda. Fauna of the USSR, Crustaceans, Vol. 2 (1). Moscow, USSR: Zoologicheskiy Institut Akademii Nauk SSSR (in Russian).
Kılıç M (2001). Recent Ostracoda (Crustacea) fauna of the Black Sea coasts of Turkey. Turk J Zool 25: 375-388. Kothandaraman V, Evans RL (1972). Use of Air-Water Relationships for Predicting Water Temperature. Report of Investigation 69. Urbana, IL, USA: Illinois State Water Survey. Külköylüoğlu O (2003a). A new report and the loss of Scottia pseudobrowniana KEMPF, 1971 (Ostracoda) from a limnocrene spring in Bolu, Turkey. Crustaceana 76: 257-384. Külköylüoğlu O (2003b). First report of the genus Isocypris (Ostracoda) from Turkey: taxonomy, ecology, and general distribution. Crustaceana 75: 1083-1093.
Châtelliers MCD, Marmonier P (1993). Ecology of benthic and interstitial ostracods of the Rhône River, France. J Crust Biol 13: 268-279.
Külköylüoğlu O (2005). Ecological requirements of freshwater Ostracoda (Crustacea) in two limnocrene springs (Bolu, Turkey). Ann Limnol Int J Lim 41: 237-246.
Čížková H, Květ J, Comín FA, Laiho R, Pokorný J, Pithart D (2013). Actual state of European wetlands and their possible future in the context of global climate change. Aquat Sci 75: 3-26.
Külköylüoğlu O (2007). Ostracod pseudorichness: is it real? Poster presentation. In: EOM VI; 3–7 September 2007; Frankfurt, Germany. p. 61.
Cohen AC, Dussinger R, Richardson J (1983). Lacustrine paleochemical interpretations based on Eastern and Southern African ostracods. Palaeogeogr Palaeoclimatol Palaeoecol 43: 129-151.
Külköylüoğlu O (2013). Diversity, distribution and ecology of nonmarine Ostracoda (Crustacea) in Turkey: application of pseudorichness and cosmoecious species concepts. In: Recent Research Developments in Ecology, Vol. 4. Trivandrum, India: Transworld Research Network, pp. 1-18.
Dennis DLH, Donato B, Sparks TH, Pollard E (2000). Ecological correlates of island incidence and geographical range among British butterflies. Biodivers Conserv 9: 343-359. Gotelli NJ, Chao A (2013). Measuring and estimating species richness, species diversity, and biotic similarity from sampling data. In: Levin SA, editor. Encyclopedia of Biodiversity. Amsterdam: Academic Press, pp. 195-211.
Külköylüoğlu O, Akdemir D, Sarı N, Yavuzatmaca M, Altınbağ C, Başak E (2013). Distribution and ecology of Ostracoda (Crustacea) from troughs in Turkey. Turk J Zool 37: 277-287. Külköylüoğlu O, Dügel M (2004). Ecology and spatiotemporal patterns of Ostracoda (Crustacea) from Lake Gölcük (Bolu, Turkey). Arch Hydrobiol 160: 67-83.
Gülen D (1985). Bisexual Ostracoda (Crustacea) populations in Anatolia. İstanbul Üniversitesi Fen Fakültesi Biyoloji Mecmuası (Seri B) 50: 81-86.
Külköylüoğlu O, Dügel M, Kılıç M (2007). Ecological requirements of Ostracoda (Crustacea) in a heavily polluted shallow lake, Lake Yeniçağa (Bolu, Turkey). Hydrobiologia 585: 119-133.
Hartmann G (1964). Asiatische Ostracoden. Int Rev Ges Hidrobiol Syst Beih 3: 1-154 (in German).
Külköylüoğlu O, Sarı, N, Akdemir D (2012a). Distribution and ecological requirements of Ostracods (Crustacea) at high elevational ranges in Northeastern Van (Turkey). Ann Limnol Int J Lim 48: 39-51.
Johnson MF, Wilby RL, Toone JA (2014). Inferring air-water temperature relationships from river and catchment properties. Hydrol Process 28: 2912-2928. Juggins S (2003). C2 User Guide: Software for Ecological and Palaeoecological Data Analysis and Visualization. Newcastle upon Tyne, UK: University of Newcastle. Karanovic I (2012). Recent Freshwater Ostracods of the World. Berlin, Germany: Springer-Verlag. Kempf EK (1997). Index and Bibliography of Nonmarine Ostracoda. Vol. 109, Part 6. Köln, Germany: Geologischen Instituts der Universitat zu Köln.
694
Külköylüoğlu O, Sarı N, Akdemir D, Yavuzatmaca M, Altınbağ C (2012b). Distribution of sexual and asexual Ostracoda (Crustacea) from different altitudinal ranges in the Ordu Region of Turkey: testing the Rapoport rule. High Alt Med Biol 13: 126-137. Külköylüoğlu O, Sarı N, Dügel M, Dere Ş, Dalkıran N, Aygen C, Dinçer SÇ (2014). Effects of limnoecological changes on the Ostracoda (Crustacea) community in a shallow lake (Lake Çubuk, Turkey). Limnologica 46: 99-108.
KÜLKÖYLÜOĞLU et al. / Turk J Zool Külköylüoğlu O, Vinyard GL (2000). Distribution and ecology of freshwater Ostracoda (Crustacea) collected from springs of Nevada, Idaho, and Oregon: a preliminary study. West N Am Nat 60: 291-303.
Rieradevall M, Roca JR (1995). Distribution and population dynamics of ostracodes (Crustacea, Ostracoda) in a karstic lake: Lake Banyoles (Catalonia, Spain). Hydrobiologia 10: 189196.
Külköylüoğlu O, Yavuzatmaca M, Akdemir D, Sarı N (2012c). Distribution and local species diversity of freshwater Ostracoda in relation to habitat in Kahramanmaraş Province of Turkey. Int Rev Hydrobiol 97: 247-261.
Rossetti G, Martens K, Meisch C, Tavernelli S, Pieri V (2006). Small is beautiful: diversity of freshwater ostracods (Crustacea, Ostracoda) in marginal habitats of the province of Parma (northern Italy). J Limnol 65: 121-131.
Külköylüoğlu O, Yavuzatmaca M, Sarı N, Akdemir D (2016). Elevational distribution and species diversity of freshwater Ostracoda (Crustacea) in Çankırı region (Turkey). J Fresh Ecol 31: 219-230.
Scharf B (1993). Ostracoda (Crustacea) from eutrophic and oligotrophic maar lakes of the Eifel (Germany) in the Late and Post Glacial. In: McKenzie KG, Jones PJ, editors. Ostracoda in the Earth and Life Sciences. Proceedings of the 11th International Symposium on Ostracoda Warrnambool; 8–12 July 1991. Rotterdam, the Netherlands: A.A. Balkema, pp. 453463.
Li X, Liu W, Zhang L, Sun Z (2010). Distribution of recent ostracod species in the Lake Qinghai area in northwestern China and its ecological significance. Ecol Indic 10: 880-890. Livingstone DM, Lotter AF (1998). The relationship between air and water temperatures in lakes of the Swiss Plateau: a case study with palæolimnological implications. J Paleolimnol 18: 181198.
Seaby RM, Henderson PA (2006). Species Diversity and Richness Version 4. Lymington, UK: Pisces Conservation Ltd.
Magurran AE (1988). Ecological Diversity and its Measurement. Princeton, NJ, USA: Princeton University Press.
Smith RJ, Matzke-Karasz R, Kamiya T, Ikeda Y (2002). Scottia birigida sp. nov. (Cypridoidea: Ostracoda) from western Honshu, Japan and a key to the subfamily Scottiinae Bronstein, 1947. Zootaxa 126: 1-20.
Mattila N, Kaitala V, Komonen A, Päivinen J, Kotiaho JS (2011). Ecological correlates of distribution change and range shift in butterflies. Insect Conserv Diver 4: 239-246.
ter Braak CJF (1987). The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio 69: 69-77.
McCombie AM (1959). Some relations between air temperatures and the surface water temperatures of lakes. Limnol Oceanogr 4: 252-258.
ter Braak CJF, Barendregt LG (1986). Weighted averaging of species indicator values: its efficiency in environmental calibration. Math Biosci 78: 57-72.
Meisch C (2000). Freshwater Ostracoda of Western and Central Europe. Volume 1 of Süßwasserfauna von Mitteleuropa. Heidelberg, Germany: Spektrum Akademischer Verlag, Heidelberg.
Uçak S, Külköylüoğlu O, Akdemir D, Başak E (2014). Distribution, diversity and ecological characteristics of freshwater Ostracoda (Crustacea) in wetland sites of the Ankara region, Turkey. Wetlands 34: 309-324.
Mezquita F, Hernandez R, Rueda J (1999). Ecology and distribution of ostracods in a polluted Mediterranean river. Palaeogeogr Palaeoclimatol Palaeoecol 148: 87-103.
Wojtasik B, Kuczyńska-Wiśnik D (2012). Temperature shock tolerance and heat shock proteins in Arctic freshwater ostracod Candona rectangulata: preliminary results. Pol Polar Res 33: 199-206.
Mischke S, Herzschuh U, Kürschner H, Fuchs D, Zhang J, Meng F, Sun Z (2003). Sub-Recent Ostracoda from Qilian Mountains (NW China) and their ecological significance. Limnologica 33: 280-292. Mourguiart P, Carbonel P (1994). A quantitative method of palaeolake-level reconstruction using ostracod assemblages: an example from the Bolivian Altiplano. Hydrobiologia 255: 183-193. Nüchterlein H (1969). Freshwater ostracods from Franconia: a contribution to the knowledge of systematics and ecology of Ostracoda. Int Revue Ges Hydrobiol 54: 223-287. Parmesan C (2006). Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37: 637-69.
Yavuzatmaca M, Külköylüoğlu O, Sarı N, Başak E, Mengi H (2012). Ostracoda (Crustacea) from freshwater caves in the western Black Sea region of Turkey. Cave and Karst Science 39: 53-58. Yavuzatmaca M, Külköylüoğlu O, Yılmaz O (2015). Distributional patterns of non-marine Ostracoda (Crustacea) in Adiyaman Province (Turkey). Ann Limnol Int J Limnology 51: 101-113. Yılmaz F, Külköylüoğlu O (2006). Tolerance, optimum ranges, and ecological requirements of freshwater Ostracoda (Crustacea) in Lake Aladağ (Bolu, Turkey). Ecol Res 21: 165-173. Yu N, Zhao Q, Li E, Chen S, Chen L (2009). An updated and annotated checklist of recent nonmarine ostracods from China. Zootaxa 2067: 29-50.
695
Helvacılar-Ünsallar Mah. Trough
Perşembe exit puddle
Nebioğlu creel
Z30
Z31
Z32
Bakiler köyü creek
Filyos stream
Bodaç köyü yolu creek
Z27
Z28
Namazgah köyü trough
Z26
Z29
Aktarlar köyü creek
Gökcebey yolu trough
Z23
Dağdemirciler köyü trough
Dursunlar-Yanıklar Mah. Trough
Z22
Z24
Kızılbel köyü creek
Z21
Z25
Dereli köyü spring
Unnamed trough
Z19
Z20
Bülüncek köyü trough
Burunkaya trough
Z17
Z18
Muratlı köyü trough
Eceler köyü puddle
Z15
Z16
Alparslan köyü trough
Yılanlıca creek
Z13
İsabeyli trough
Z12
Z14
Eveyikli köyü creek
Seyisoğlu köyü trough
Z10
Z11
Yeşilada köyü trough
Aksu barajı-pond
Z8
Z9
Mendeller Mah. creek
Akçabey yolu pond
Sabun köyü trough
Z5
Z6
Unnamed pond
Z4
Z7
Gürbüzler köyü creek
Unnamed trough
Z2
Z3
Station name
Unnamed puddle
StaNu
Z1
8.06
7.7
7.49
8.01
7.48
8.33
7.85
7.13
7.68
6.89
8.04
7.68
7.12
6.92
7.05
7.99
8.04
7.85
8.23
7.46
7.75
7.32
8.13
8.34
7.61
8.16
8.23
7.62
8.02
7.9
8.27
8.21
pH
123.395
141.405
153.755
124.965
156.375
105.3
131.57
176.48
144.425
187.63
123.45
142.51
175.46
214.475
179.62
124.65
122.045
131.51
112.625
157.455
140.35
167.385
121.82
109.83
147.35
118.555
116.52
147.475
125.005
131.685
115.24
117.98
SHE
9.29
5.82
5.74
7.28
6.03
7.67
9.27
7.94
8.14
4.77
10.15
7.08
7.02
1.12
7.09
8.1
8.05
14.12
8.75
8.44
7.37
9.26
9.37
8.9
7.23
8.13
9.71
4.22
3.01
6.82
9.02
8.32
DO
95.7
63.6
61.5
78.6
60.8
86.1
104.7
76.8
84.6
49.6
108.4
77.5
72.1
10.9
72.8
89.5
88.5
160.6
94.1
86.4
78.6
86.2
91.4
87.9
75.4
83.3
95.3
44.6
31.5
73.2
87.6
80.9
% DO
511
511
673
531
714
349.1
471.3
556
593
683
460.8
538
670
540
884
610
605
635
428.2
568
542
474.1
431.6
295.5
712
356.1
405.5
566
252.6
624
404.9
467.2
EC
16.7
19.3
18.3
18.9
15.5
21
21.2
13.8
16.5
16.8
18
19.6
16.6
13.5
16.2
20
19.7
21.6
18.5
16.3
18
12.1
14.2
14.8
18
16.3
14.2
17.5
17.3
18.1
13.4
13.8
Tw
21.9
19.5
18
15.1
22.2
23.2
22.4
24.5
24.4
25.8
27.7
27.8
25.1
26.3
23.6
25.5
23
24.6
26.3
30.9
26.7
29.8
32.7
26
24.7
25.3
21.1
24.9
25.6
21.3
18.4
14.2
Ta
759
760.4
745.6
762.2
752.6
755.9
741.9
733.6
754.1
744.6
742.3
751.5
750.5
754.4
758.5
735.5
755.7
738.6
753.5
751.2
715.5
719.8
733.2
724.4
734
743.7
748.9
722.3
737.6
725.3
736.9
728
Atmp
53.2
65.4
64.5
82
62.1
63.2
60.3
51.4
61.8
49.2
46.6
41.9
43.7
46.6
44.8
44.2
50
48.7
44.5
43.2
46.3
32
33.4
38.6
44.2
41.8
54.3
42
44.7
53.2
64.2
76.2
Mo
Ele
139
3.6
1.9
2.8
9.3
0
0
2.1
1.6
0
1.9
54
32
194
10
132
76
669?
326
667?
203
242
2.7 0
149
107
62
318
95
275
108
129
655
492
338
406
339
232
165
467
294
437
312
360
9.4
1.5
5.8
1.8
4.1
1.8
1.5
3.4
1.5
2
0
4.5
5.4
5.4
2.3
1.5
2.4
0
0
2.3
Wi
41 26 781 N, 032 15 297 E
41 25 639 N, 032 10 745 E
41 22 701 N, 032 10 020 E
41 28 373 N, 032 05 229 E
41 20 045 N, 032 06 624 E
41 18 170 N, 032 09 775 E
41 18 527 N, 032 11 937 E
41 21 262 N, 032 14 493 E
41 19 286 N, 032 09 831 E
41 21 342 N, 032 11 439 E
41 22 196 N, 032 12 480 E
41 22 932 N, 032 12 444 E
41 26 644 N, 032 07 855 E
41 25 118 N, 032 02 566 E
41 23 199 N, 032 04 336 E
41 22 932 N, 032 00 329 E
41 20 907 N, 032 01 404 E
41 19 303 N, 031 59 668 E
41 15 639 N, 031 58 973 E
41 15 128 N, 032 01 904 E
41 12 743 N, 031 54 031 E
41 10 398 N, 031 50 500 E
41 09 093 N, 031 50 499 E
41 05 378 N, 031 46 478 E
41 04 728 N, 031 51 881 E
41 02 542 N, 031 53 154 E
41 07 218 N, 031 53 492 E
41 07 815 N, 031 54 592 E
41 09 069 N, 031 56 018 E
41 08 015 N, 031 56 640 E
41 08 117 N, 031 58 359 E
41 05 588 N, 032 00 945E
Coordinates
6/7/2013
6/7/2013
6/7/2013
6/7/2013
6/6/2013
6/6/2013
6/6/2013
6/6/2013
6/6/2013
6/6/2013
6/6/2013
6/6/2013
6/6/2013
6/6/2013
6/6/2013
6/6/2013
6/6/2013
6/6/2013
6/6/2013
6/6/2013
6/6/2013
6/6/2013
6/6/2013
6/6/2013
6/6/2013
6/6/2013
6/6/2013
6/6/2013
6/6/2013
6/6/2013
6/6/2013
6/6/2013
Date
0.55
0.33
0.33
0.44
0.55
0.33
0.28
0.33
0.55
0.44
0.55
0.44
0.28
De
4.4
6.6
0.99
3.74
3.08
2.64
2.64
1.76
2.42
2.42
3.08
0.88
0.99
Le
0.44
0.44
0.88
0.55
0.66
0.66
0.44
0.44
0.44
0.55
0.44
0.44
0.44
Wd
1.06
0.96
0.29
0.91
1.12
0.57
0.33
0.26
0.59
0.59
0.75
0.17
0.12
Vo
Appendix 1. Measurements of 6 aquatic variables (pH, redox potential [SHE], dissolved oxygen [DO], percent oxygen saturation [% DO], electrical conductivity [EC], water temperature [Tw]), 4 atmospheric variables (air temperature [Ta], atmospheric pressure [Atmp], moisture [Mo], wind speed [Wi]), and geographical data (elevation [Ele] and coordinates) from 105 sites in Zonguldak (Z1–Z56) and Bartın (B1–B49). Abbreviations for troughs: StaNu (Station number), De (depth [m]), Le (length [m]), Wd (width [m]), Vo (volume [m3]).
KÜLKÖYLÜOĞLU et al. / Turk J Zool
1
2
7.89
7.49
Aşağıdere köyü stream
Yenikışla exit belderesi stream
Bağdatlı köyü (Aksu stream)
B11
B12
B13
Hasankadı köyü trough
Eyyüpler köyü road trough
B9
B10
8.2
Akbaş köyü creek
Hanyeri exit stream
B7
B8
7.99
7.84
8.02
8.02
7.1
7.66
8.13
Hasankadı road creek
Bakioğlu school road stream
B5
7.38
7.53
7.45
7.85
7.64
7.86
7.84
7.88
7.43
7.71
7.82
8.44
8.66
7.55
8.11
8
8.19
7.53
6.98
7.16
8.09
7.76
7.58
7.28
7.29
7.88
6.77
B6
Hocaoğlu köyü stream
Ecikler köyü road trough
B3
B4
Şabankadı köyü trough
Yenihamidiye köyü road puddle
Kabalar köyü road trough
Z56
B1
Yeşilyurt köyü creek
Z55
B2
İsafakılı köyü roada creek
Alaplı exit stream
Z53
Z54
Ruşanlar köyü creek
Ardınyayla köyü road trough
Z51
Z52
Aydınlar köyü stream
Yarışlı köyü exit creek
Z49
Z50
Kızılcapınar köyü trough
Kızılcapınar dam exit stream
Z47
Z48
Alacabük köyü trough
Kızılcapınar köyü road trough
Z45
Z46
Akşeyhler köyü trough
Ebegümeci köyü exit stream
Z43
Z44
Marıkpınarı köyü exit puddle
Bozca köyü puddle
Z41
Z42
Tasmacı köyü exit water
Ulutan lake
Z39
Z40
Cumayanı puddle
Beycuma road puddle
Z37
Z38
Şirinköy stream
Muslu köyü yolu trough
Z35
Z36
Filyos stream
Filyos stream exit
Z33
Z34
119.68
136.62
122.315
121.71
178.465
156.36
114.46
146.505
116.33
128.87
158.425
152.725
156.96
132.85
134.005
124.44
119.3
119.915
148.705
129.91
123.125
87.21
71.465
135.91
108.325
112.43
101.865
142.75
175.195
161.43
105.465
131.24
139.355
158.275
157.895
125.67
185.945
6.53
9.53
7.56
7.36
7.5
7.21
7.45
7.81
7.63
7.76
5.94
6.51
1.63
8.01
12.81
7.49
7
9.16
7.3
4.22
6.83
7.47
12.15
10.38
9.31
14.11
7.39
9.93
4.91
4.27
7.94
7.4
6.01
7.22
7.84
7.75
1.7
74.1
92.5
85.5
83.6
71.1
71.3
80
78.2
85.6
77.7
66.2
67.2
16.6
88.4
144.6
77.7
85.5
105.3
76
48.1
78.9
88.3
160.9
133.4
102.4
165.3
85.7
103.3
48.5
46
96.1
74.4
64
72.9
77.5
76.9
17.1
637
176.6
390.6
533
514
551
394.2
488.6
465
428.4
628
502
764
736
444.9
583
297.6
523
525
539
478.2
275.8
288.3
511
397.1
375.6
288.6
407
423.2
264.7
282.1
325.8
429.1
243.2
472.5
382.9
424
21.8
14.2
21.9
21.6
12.9
14.6
18.6
15.3
20.8
15.2
20.5
16.5
16.6
20
21.3
17.4
25
21.9
17.3
21.6
22.5
23.6
26.9
25.6
20.5
22.8
22.9
18
14.7
18.8
24.9
15.4
18.3
15.5
14.7
15.2
15.7
21.7
26.1
30.5
28.6
26.6
25.6
26.1
26.6
29.3
26.1
25.3
26.2
27.7
23.1
24.8
24.6
24.1
25.8
26.2
28.1
28.6
26.7
26
26.3
24.6
23.3
25.9
25.9
21.7
24.4
21.6
25.2
23.6
22
22.6
21.7
20.7
757.4
731
748.4
742.5
707.8
716.7
734.5
743
752.6
745.5
744.6
752.8
758
756
754.9
750.3
759.6
755.2
733.7
754.1
757.9
757
754.2
734.3
742.8
726
739.5
731
713.7
725.5
745.4
729.1
737.1
742.6
732.2
752.5
757.9
69.5
46.2
32.8
40.8
38.2
40.4
47.8
46.7
41.7
44.8
49.7
50.4
51.4
48.7
61.6
61.3
63.6
58.7
54.7
45.5
41.6
50.8
42.3
46.7
48.9
50.9
50.1
57.1
60.5
57.8
66.5
52.6
57.3
67.8
64.2
64.7
77.8
3.8
2.1
4.3
1.7
2.4
2.5
2.8
4.1
1.6
2.1
2.3
2.8
0
1.8
0
5.6
13.2
8.8
0
2.4
2.1
2.5
5.5
5.4
8.1
12.2
7.5
2.9
3.7
4.9
12.4
1.5
2.4
3.2
1.5
0
0
3
352
169
239
636
517
312
215
97
185
679?
122
65
82
60
115
7
55
295
72
29
41
74
286
186
388
235
341
517
396
154
357
262
187
297
66
5
41 32 896 N, 032 05 017 E
41 23 819 N, 032 29 079 E
41 26 510 N, 032 25 342 E
41 24 145 N, 032 23 450 E
41 22 511 N, 032 23 276 E
41 21 255 N, 032 23 146 E
41 20 911 N, 032 21 062 E
41 23 989 N, 032 19 464 E
41 26 426 N, 032 20 363 E
41 26 189 N, 032 18 854 E
41 25 474 N, 032 17 983 E
41 26 297 N, 032 18 086 E
41 29 442 N, 032 20 056 E
41 28 116 N, 032 16 506 E
41 06 932 N, 031 23 859 E
41 07 252 N, 031 24 967 E
41 08 979 N, 031 24 476 E
41 07 887 N, 031 28 987 E
41 08 029 N, 031 32 729 E
41 12 755 N, 031 31 032 E
41 16 205 N, 031 33 387 E
41 16 205 N, 031 33 386 E
41 14 111 N, 031 36 990 E
41 13 236 N, 031 40 132 E
41 15 079 N, 031 41 531 E
41 15 721 N, 031 42 681 E
41 17 193 N, 031 42 142 E
41 19 903 N, 031 43 934 E
41 20 185 N, 031 46 362 E
41 23 334 N, 031 48 426 E
41 25 205 N, 031 47 990 E
41 23 878 N, 031 52 859 E
41 25 757 N, 031 53 615 E
41 29 053 N, 031 53 248 E
41 29 118 N, 031 58 506 E
41 30 079 N, 031 58 190 E
41 32 753 N, 032 00 189 E
6/8/2013
6/7/2013
6/7/2013
6/7/2013
6/7/2013
6/7/2013
6/7/2013
6/7/2013
6/7/2013
6/7/2013
6/7/2013
6/7/2013
6/7/2013
6/7/2013
6/9/2013
6/9/2013
6/9/2013
6/9/2013
6/9/2013
6/9/2013
6/9/2013
6/9/2013
6/9/2013
6/9/2013
6/9/2013
6/9/2013
6/9/2013
6/9/2013
6/9/2013
6/9/2013
6/9/2013
6/9/2013
6/9/2013
6/9/2013
6/9/2013
6/9/2013
6/9/2013
0.5
0.22
0.28
0.44
0.33
0.22
0.11
0.28
0.22
0.22
0.22
1.32
1.1
1.54
3.08
3.08
1.54
1.54
1.1
2.2
0.88
1.76
0.66
0.55
0.44
0.66
0.55
0.22
0.66
0.44
0.33
0.33
0.44
0.44
0.13
0.19
0.89
0.56
0.07
0.11
0.14
0.16
0.06
0.17
KÜLKÖYLÜOĞLU et al. / Turk J Zool
Yazıcılar köyü trough
Esenyurt köyü trough
Yukarı ihsaniye köyü puddle
B47
B49
Saraydüzü köyü mevki spring
B46
B48
Aliobası köyü puddle
Makaracı köyü exit trough
B44
Curunlu yolu puddle
B43
B45
Sarıderesi stream
Gölderesi şelalesi stream
B41
B42
Yahyayazıcılar köyü creek
B40
İğneciler köyü spring
B37
Ağaköy stream
Aşağıçerci köyü stream
B36
Dereli mah. Stream
Çerde road trough
B35
B38
Kayacılar köyü creek
B34
B39
Esbey köyü stream
Aydınlar köyü entrance creek
B32
Unnamed stream branch
B31
B33
Çukurbaşu köyü trough
Kayaarkası spring
B29
Kışla köyü road trough
B28
B30
Akpınar köyü trough
Gergece şelalesi creek
B26
Ulukaya şelalesi puddle
B25
B27
Uluyayla road spring
Kestane mevki trough
B23
Doruca Şahinci köyü Çayırlı Mah. Creek
B22
B24
Aşağıemirce köyü trough
Dodurga road puddle
B20
Derecik Mah. trough
B19
B21
Kalecik köyü exit trough
Bahçecik köyü stream
B17
Üçsaray köyü mevki trough
B16
B18
Uluköy trough
Zafer köyü road pond
B14
B15
7.27
7.39
7
7.59
7.02
7.34
6.98
7.85
7.92
7.69
7.55
7.12
7.5
7.49
7.54
7.4
7.14
7.73
7.4
7.81
7.09
7.08
7.55
7.62
6.61
8.47
7.5
7.19
7.4
7.65
7.53
7.12
7.7
7.38
7.49
7.03
155.91
147.38
171.82
135.07
174.135
148.765
174.735
127.53
120.72
133.255
142.075
165.51
141.95
148.835
142.6
155.35
167.385
134.72
152.81
130.145
171.535
167.225
140.175
140.065
195.945
87.18
148.59
164.475
152.78
134.455
137.825
163.875
134.32
151.045
142.305
169.765
7.42
3.04
7.68
9.18
5.57
8.32
8.43
13.07
9.24
7.98
7.68
6.89
8.85
9.42
7.53
10
4.08
7.04
6.44
9.19
8.58
7.42
6.19
7.49
5.98
9.54
8.51
9.23
8.1
6.21
7.53
6.69
6.85
7.49
8.17
10.44
81.8
35.1
81.7
108.5
53.2
98
84.3
129.3
98.5
85.5
80.7
72.1
97.2
86.2
78.3
88.8
40.2
68.9
62
88.4
79
80
67.7
74.1
57.7
109.7
80.1
88.8
77.4
69.1
90.6
73.3
71.5
78.8
92.3
113.7
228.8
536
605
791
409.2
495.6
645
176.2
428.8
653
410.8
469.5
363.7
300.3
556
280.5
445.2
560
551
674
514
1160
487.1
450.3
522
251.8
388.5
429.7
521
453.3
497.6
785
401.5
545
507
658
19.6
21.8
18.2
23.2
13.1
22.9
15.1
14.8
18.2
18.3
17.5
17.6
20
11.1
17
10
14.1
14.2
13.6
13.7
11.1
18.5
19.5
14.9
13.7
21.8
12.4
13.5
13.8
20.3
24.5
19.5
18.2
17.7
21.3
18.9
23.1
24.1
26.7
25.9
24.9
25.7
24.9
21
27.5
29.5
27.8
27.1
28.4
31.5
26.7
25.6
26.2
24.4
24.1
23.2
21.2
24.3
28.1
19.5
20.2
22.3
25.1
25.5
26.8
29.9
30.5
24
29
23.3
30.6
29.5
704.4
755
753.7
754.5
730.5
729.3
743.2
741.8
735.3
741.9
756.7
722
735.7
730.2
734.5
710.1
710.4
728.1
720.7
732.8
738.9
756.4
754.9
741.3
755
730.6
711.9
710.6
717.7
745.2
743.6
737.9
744
718.8
726.2
717.8
42.5
57.8
49.2
46.8
47.3
51.6
62.2
72.3
51.9
36.8
50.9
47.3
38.7
33.5
54.8
49.2
45.5
55.1
56.2
52.2
58
51.5
49.2
66.1
59.8
60.6
43.1
36.7
40.2
33.8
33.3
41.9
39.7
44.6
38.2
33.2
4.4
0
1.5
0
0
1.5
2
8.4
1.6
0
2.8
3.6
2.2
0
1.8
0
0
0
2.6
2.4
4.7
2.5
2.1
0
1.7
3.1
0
2.9
0
1.7
5.2
9.1
2.6
5
8.2
2.8
670
38
52
65
339
358
182
209
283
207
40
434
276
339
285
567
565
371
456
327
272
44
77
231
73
359
575
580
499
184
204
268
199
488
413
520
41 25 158 N, 032 31 498 E
41 32 118 N, 032 07 007 E
41 32 809 N, 032 15 898 E
41 33 385 N, 032 17 569 E
41 41 284 N, 032 25 303 E
41 42 956 N, 032 26 221 E
41 46 105 N, 032 31 060 E
41 49 453 N, 032 38 379 E
41 45 781 N, 032 35 327 E
41 46 441 N, 032 32 621 E
41 46 432 N, 032 32 633 E
41 39 230 N, 032 47 428 E
41 37 768 N, 032 42 631 E
41 37 899 N, 032 38 411 E
41 36 861 N, 032 37 172 E
41 36 708 N, 032 33 406 E
41 38 650 N, 032 34 725 E
41 41 855 N, 032 39 753 E
41 42 481 N, 032 42 118 E
41 40 986 N, 032 34 766 E
41 39 352 N, 032 29 759 E
41 37 459 N, 032 27 274 E
41 38 597 N, 032 25 832 E
41 41 732 N, 032 24 711 E
41 39 546 N, 032 23 883 E
41 40 295 N, 032 45 814 E
41 34 079 N, 032 43 240 E
41 33 956 N, 032 43 600 E
41 32 479 N, 032 38 414 E
41 34 118 N, 032 36 977 E
41 32 472 N, 032 36 229 E
41 30 643 N, 032 32 460 E
41 28 248 N, 032 37 488 E
41 27 248 N, 032 37 487 E
41 25 785 N, 032 34 693 E
41 24 687 N, 032 32 232 E
6/7/2013
6/8/2013
6/8/2013
6/8/2013
6/8/2013
6/8/2013
6/8/2013
6/8/2013
6/8/2013
6/8/2013
6/8/2013
6/8/2013
6/8/2013
6/8/2013
6/8/2013
6/8/2013
6/8/2013
6/8/2013
6/8/2013
6/8/2013
6/8/2013
6/8/2013
6/8/2013
6/8/2013
6/8/2013
6/7/2013
6/7/2013
6/7/2013
6/7/2013
6/7/2013
6/7/2013
6/7/2013
6/7/2013
6/7/2013
6/7/2013
6/7/2013
0.66
0.33
0.33
0.22
0.44
0.55
0.44
0.15
0.55
0.44
0.88
0.33
2.42
5.06
4.4
0.88
2.2
4.62
4.4
3.74
2.75
3.74
3.08
1.32
0.44
0.44
0.44
0.66
0.44
0.55
0.33
0.88
0.44
0.66
0.44
0.66
0.73
0.64
0.09
0.64
1.12
1.06
0.19
1.33
0.72
1.79
0.19
1.05
KÜLKÖYLÜOĞLU et al. / Turk J Zool
3
4
Ca
StaNu
Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
Z10
Z11
Z12
Z13
Z14
Z15
Z16
Z17
Z18
Z19
Z20
Z21
Z22
Z23
Z24
Z25
Z26
Z27
Z28
Z29
Z30
Z31
13
3
1
1
3
Cn
1c
1j; 1c; 1v
3v
Csp
Co
4v
1v
Cs
Cv
1c
16c; 5v
Cds
1v
2v
Es
Fb
Hc
1c; 9v
Hrs
121
7
133
5
Hi
30
Hr
4
151
63
2
55
51
14
21
Hs
7v
3v
5v; 4c
1c
1v
6v
Hsp
1
151
5
3
25
2
28
51
4
63
Ib
63
Id
4
Igi
Ig
1
3
5
37
Ii
2v
3v
1v
4v
1c; 3v
8v; 2c
1v
11c; 10v
Isp
Li
Pa
8
3
Pf
21
Pfu
Pv
Ps
Psp
2
Pz
Pes
1
2
3
12
2
63
3
8
13
4
21
Po
Pos
20c
Ts
Appendix 2. Number of living ostracods (single number), juveniles (j), valves (v), and carapaces (c) in 105 sites in Zonguldak and Bartın. Abbreviations: Ca, Candona angulata; Cn, C. neglecta; Csp, Candona sp.; Co, Cypria ophthalmica; Cs, Cypria sp.; Cv, Cypridopsis vidua; Cds, Cypridopsis sp.; Es, Eucypris sp.; Fb, Fabaeformiscandona balatonica; Hc, Herpetocypris chevreuxi; Hrs, Herpetocypris sp.; Hi, Heterocypris incongruens; Hr, H. reptans; Hs, H. salina; Hsp, Heterocypris sp.; Ib, Ilyocypris bradyi; Id, I. decipiens; Ig, I. getica; Igi, I. gibba; Ii, I. inermis; Isp, Ilyocypris sp.; Li, Limnocythere inopinata; Pa, Potamocypris arcuata; Pf, P. fallax; Pfu, P. fulva; Ps, P. smaragdina; Pv, P. variegata; Psp, Potamocypris sp.; Pz, Prionocypris zenkeri; Pes, Pseudocandona sp.; Po, Psychrodromus olivaceus; Pos, Psychrodromus sp.; Ts, Tonnacypris sp.; StaNu, Station number. Note sites without species.
KÜLKÖYLÜOĞLU et al. / Turk J Zool
1
Z32
Z33
Z34
Z35
Z36
Z37
Z38
Z39
Z40
Z41
Z42
Z43
Z44
Z45
Z46
Z47
Z48
Z49
Z50
Z51
Z52
Z53
Z54
Z55
Z56
B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
8
7
65
1
3
4
1v
1v
1v
1v
1j,3v
1c
1j
2v
3v
1v
51
10
3
1c
16c; 5v
3c
1j; 5v
7
1
31
3
6
5
13
46
3
1
3
40
1
11
62
81
3v
1v
1v; 1j
3v
2v
3
43
41
10
17
15
105
1
1
5
1
2
4
5
5v
1v
2v
2v
1v
2v
2v
13v
1v
10v
1
1
7
5
20
4
31
1
1
2
6
26
1
20
63
1
1
2v
KÜLKÖYLÜOĞLU et al. / Turk J Zool
5
6
B47
B48
B49
B35
2
B34
B46
B33
B32
B31
B45
B30
B44
B29
B28
B43
B27
B26
B42
B25
B24
B23
B41
B22
B40
B21
B20
B39
B19
B18
B38
B17
B16
B15
B36
B14
B37
B13
1
2
1
4
1v
1v
1v
1j; 3ca
3ca
4
1
121
6
120
249
1
3
5
129
5ca; 1v
1v
1v
2ca; 11v
1ca
6v
3
2
1
41
8
1
1
9v
7v
4v
1v
4v
1ca
15ca; 10v
1ca
2v
2
15
1
1v
2
8
2
6
7
1
7
KÜLKÖYLÜOĞLU et al. / Turk J Zool