Pablo Artal

3 downloads 0 Views 2MB Size Report
Jun 8, 2014 - Pablo Artal. LABORATORIO DE OPTICA. UNIVERSIDAD DE MURCIA, SPAIN. Using Adaptive Optics. Technology for Visual Testing:.
06/08/2014

Using Adaptive Optics Technology for Visual Testing: a Personal Adventure

Pablo Artal LABORATORIO DE OPTICA

UNIVERSIDAD DE MURCIA,

SPAIN

Funded by: Bio-Optics: Design and Application (BODA) Hawaii (EEUU), April 2013

LABORATORIO DE OPTICA, UNIVERSIDAD DE MURCIA

http://lo.um.es

1

06/08/2014

You are welcome to visit my blog:

http://pabloartal.blogspot.com/

Adaptive optics in the eye from retinal imaging to vision analyzers from correcting to manipulating the eye’s aberrations from liquid crystals spatial light modulators to deformable mirrors and liquid crystals again

2

06/08/2014

wave-front sensor

wave-front corrector

1998: retinal imaging with LC

30 min arc

3

06/08/2014

AO Vision Analyzer Active element

Original eye

+ +

Test

Modified eye

= =

membrane mirror H-S sensor IR diode laser

LO·UM closed-loop real-time (25 Hz) AO (Fernández, Iglesias & Artal, Optics Letters, 2001)

4

06/08/2014

Adaptive optics in the eye from liquid crystal spatial light modulators to deformable mirrors and liquid crystal devices again! …toward low cost and reliable wave-front correctors

our use of the wave-front corrector technology 2001 2005

2009 1998 2004

5

06/08/2014

Adaptive optics in the eye from the lab to the clinic …toward practical applications

Early laboratory version of the AO Vision Analyzer wavefront sensor (H-S)

stimulus generator

DM

IR laser

control

2005

6

06/08/2014

Voptica proptotype of the AO Vision Analyzer

2012

Clinical, compact version Adaptive Optics Vision Analyzer

2013

7

06/08/2014

Eye’s Optics

Objective characterization

Adaptive Optics Vision Analyzer

Visual testing Subjective analysis

Eye’s Optics

Objective characterization

Adaptive Optics Vision Analyzer

Visual testing Vision correction

Subjective analysis

Optical Solutions

8

06/08/2014

Adaptive Optics Vision Analyzer (AOVA) LCOS Micro-display (spatial light modulator) H-S

Voptica visual 

smart optics

H-S LCOS

9

06/08/2014

Adaptive Optics Vision Analyzer I. Objective HS refraction and aberration measurements

Adaptive Optics Vision Analyzer II. Visual testing (VA, CSF, etc…) under any optics and different object distances…

10

06/08/2014

Adaptive Optics Vision Analyzer II. Visual testing (VA, CSF, etc…) under any optics and different object distances…

Adaptive optics in the eye from one eye… to TWO …our approach to deal with the two eyes

11

06/08/2014

“Easy” BINOCULAR AO system with deformable mirrors Visual Test P‘

WM

Visual Test P‘

WM WS

WS P

Eye 2

Eye 1

Our approach for a BINOCULAR AO vision analyzer FULL CONTROL OF ABERRATIONS (PHASE) AND AMPLITUDE (PUPIL TRANSMISSION) Phase

Holoeye Pluto-VIS 1920x1080 px Pixel pitch: 8 m Interface: DVI

Amplitude

WF sensing

Holoeye LC-2002

800x600 px Pixel pitch: 32 m Interface: VGA

12

06/08/2014

Our approach for a BINOCULAR AO vision analyzer LC-modulator (phase)

Microprojector

E LC-modulator (amplitude) E

E

Our approach for a BINOCULAR AO vision analyzer LC-modulator (phase) H-S WFS Flip mirror

Microprojector

E LC-modulator (amplitude) E

E

13

06/08/2014

Our approach for a BINOCULAR AO vision analyzer Dichroic mirror

Pupil control camera

E LC-modulator (amplitude)

IR led E

E

Our approach for a BINOCULAR AO vision analyzer

stereovision

E

E

14

06/08/2014

Schwarz et al. Opt. Letters 36, 24, 4779-4781 (2011)

Applications of adaptive optics vision analyzers -

New (or revisited) experiments in Vision research

- Interactive design/testing of new ophthalmic solutions - Visual function assessment - Visual outcomes optimization

15

06/08/2014

How aberrations affect vision at LOW luminance conditions?

Visual acuity as a function of luminance Visual benefit of correcting aberrations is present at all luminances! Aberrations corrected

1

VA

Normal aberrations

0,1

-3

-2

-1

Log (cd/m2)

0

1

16

06/08/2014

Night myopia revisited with an AO vision analyzer

Artal et al. PLOS One (2012)

Relative defocus shift of the best focus position for different luminance (white light, non corrected aberrations)

Relative defocus (D)

1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 1

0

-1

-2

-3

-4

-5

2

Luminance (Log cd/m )

17

06/08/2014

Relative defocus shift with and without accommodation error for different luminances

Relative defocus (D)

1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0

--- Normal --- Removing measuring accommodation error 1

0

-1

-2

-3

-4

-5

2

Luminance (Log cd/m )

Applications of adaptive optics vision analyzers -

New (or revisited) experiments in Vision research

- Interactive design/testing of new ophthalmic solutions - Visual function assessment - Visual outcomes optimization

18

06/08/2014

“Traditional” approach Phase profile design

?

Prototype implementation

Clinical testing

Mass production

“AO-based” approach Phase profile design Adaptive optics vision analyzer Prototype implementation Clinical testing Mass production

19

06/08/2014

Applications of adaptive optics vision analyzers -

New (or revisited) experiments in Vision research

- Interactive design/testing of new ophthalmic solutions - Visual function assessment - Visual outcomes optimization

Quality of vision under any optical solution… with AOVA

? 20

06/08/2014

EXAMPLE I: Light Adjustable Lenses (LALs) LALs* allow nearly PERFECT refractive outcomes after cataract surgery… h h

"locking"

*

Voptica Adaptive Optics Vision Analyzer

Surgery Two weeks Corneal estabilization

adjustment + lock-ins

21

06/08/2014

Combining monovision and asphericity… ”binocular asphericity” IN REAL patients with LALs…

Monocular Visual Acuity vs distance BINOCULAR, ONE EYE WITH NEGATIVE SA (sample:4) (normal aberrations, far eye) FAR EYE [-0.75, 0D] [+0.09, +0.25m], NEAR EYE [-2.25, -1.25D] [-0.08, -0.23m] 1.2 1.1

20/20

VISUAL ACUITY

1.0 0.9

20/25 J1 20/30 J2

0.8 0.7 0.6

20/40 J3

0.5 0.4 0.3 0.2 0.1 0.0

300

400

600

FAR

DISTANCE (mm)

22

06/08/2014

Monocular Visual Acuity vs distance BINOCULAR, ONE EYE WITH NEGATIVE SA (sample:4) with negative spherical aberration! FAR EYE [-0.75, 0D] [+0.09, +0.25m], NEAR EYE [-2.25, -1.25D] [-0.08, -0.23m] 1.2 1.1

20/20

VISUAL ACUITY

1.0 0.9

20/25 J1 20/30 J2

0.8 0.7 0.6

20/40 J3

0.5 0.4 0.3 0.2 0.1 0.0

300

400

600

FAR

DISTANCE (mm)

Monocular (“far” eye) Monocular (“near” aspheric eye) BINOCULAR, ONE EYE WITH NEGATIVE SA (sample:4) FAR EYE [-0.75, 0D] [+0.09, +0.25m], NEAR EYE [-2.25, -1.25D] [-0.08, -0.23m] 1.2 1.1

20/20

VISUAL ACUITY

1.0 0.9

20/25 J1 20/30 J2

0.8 0.7 0.6

20/40 J3

0.5 0.4 0.3 0.2 0.1 0.0

300

400

600

FAR

DISTANCE (mm)

23

06/08/2014

Monocular (“far” eye) Monocular (“near” aspheric eye) BINOCULAR, ONE EYE WITH NEGATIVE SA (sample:4)

Binocular vision

FAR EYE [-0.75, 0D] [+0.09, +0.25m], NEAR EYE [-2.25, -1.25D] [-0.08, -0.23m] 1.2 1.1

20/20

VISUAL ACUITY

1.0 0.9

20/25 J1 20/30 J2

0.8 0.7 0.6

20/40 J3

0.5 0.4 0.3 0.2 0.1 0.0

300

400

600

FAR

DISTANCE (mm)

BINOCULAR, ONE EYE WITH NEGATIVE SA (sample:4)

Binocular vision

FAR EYE [-0.75, 0D] [+0.09, +0.25m], NEAR EYE [-2.25, -1.25D] [-0.08, -0.23m] 1.2 1.1

20/20

VISUAL ACUITY

1.0 0.9

20/25 J1 20/30 J2

0.8 0.7 0.6

20/40 J3

0.5 0.4 0.3 0.2 0.1 0.0

300

400

600

FAR

DISTANCE (mm)

24

06/08/2014

EXAMPLE II: corneal inlay to increase depth of focus

It is a bilateral approach as monovision, but potentially providing better stereo vision Monovision 0D

Small aperture inlay

-1.25 D 1.6

4mm

25

06/08/2014

VA (decimal)

Binocular Visual Acuity (VA) as a function of object vergence

1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0

Natural Small apert. Monovision

0.5 1.0 1.5 2.0 2.5 Object position (Diopters)

VA (decimal)

Binocular Visual Acuity (VA) as a function of object vergence

1.6 Natural 1.4 Small apert. Monovision 1.2 1.0 0.8 J2 0.6 0.4 0.2 0.0 0.5 1.0 1.5 2.0 2.5 Object position (Diopters)

26

06/08/2014

Binocular depth of focus

Monovision

2.1 D

Small aperture inlay

2.1 D

Natural conditions

0.92 D

"Behind" responses (%)

Stereo-acuity (3 needle test) 120 100 80 60 40

Behind

In front

20 0 -200

-100

0

100

200

Retinal disparity (arc sec)

OS OD

27

06/08/2014

"Behind" responses (%)

Stereo-acuity (3 needle test) 120 100 80 60 40

Behind

In front

20 0 -200

-100

0

100

200

Retinal disparity (arc sec)

OS OD

"Behind" responses (%)

Stereo-acuity (3 needle test)

75%

50%

120 100 80 60 40 20 0 -200

-100

0

100

200

Retinal disparity (arc sec)

Stereo-acuity

28

06/08/2014

“Behind” responses (%)

Natural

0,8 0,6 0,4 0,2 0 -10

-30

10

30

50

-50

Retinal disparity (arc sec) “Behind” responses (%)

-50

1

1

1 0,8 0,6

S. apert. inlay

0,4 0,2 0 -10

-30

10

30

Retinal disparity (arc sec)

50

Monovision

0,8 0,6 0,4 0,2

-50

-30

0 -10

10

30

50

Retinal disparity (arc sec)

Stereo-acuity (3 needle test)

Stereo-acuity (arc sec)

“Behind” responses (%)

Stereo-acuity (3 needle test)

50 40 30 20 10 0 Natural

Monov.

S. Apert.

29

06/08/2014

In summary -Adaptive Optics technologies for vision testing are ready to be used in clinical applications to customize and improve visual outcomes. - Systems will be binocular. Combined with flexible treatment options (both cataract and refractive) could provide uncompromised quality of vision.

After 15 years of research and development, AO Vision Analyzers open the new era of visual testing

30

06/08/2014

Adaptive optics in the eye from vision analyzers to “in vivo” imaging (again)… AO multiphoton “in vivo” imaging of the cornea (combining AO and pulse compression)

spherical wavefront (from the objective)

Sample

Imaged plane (shallow)

31

06/08/2014

spherical wavefront (from the objective)

Due to aberrations !!! Imaged plane (deeper)

AO multiphoton microscopy sample XY stage 3/8 72 1 ,5/& 2 6 + RORH\H[S[

Femtosec ond IR laser

Focus control

X-Y scanning LCOS

Dichroic mirror TPEF/S HG filter

PMT (photoncounting)

32

06/08/2014

„influence of depth“ —P

—P

50 µm

AO on

AO off

GHSWK

SH rabbit cornea (#03, G #04)

Living Rat

Ex-vivo Rat

180x180 m

33

06/08/2014

Adaptive optics in the eye … and toward “wavefront” writing in the cornea??

Future of “magic” multiple retreatments in the eye’s optics…

34

06/08/2014

35