Palynological Characteristics of Upper Cretaceous and ... - Springer Link

0 downloads 0 Views 1MB Size Report
Kaliningrad region are considered. Distinguished in the succession are seven biostratigraphic units in the rank of the Palaeohystrichophora infusorioides, ...
ISSN 0869-5938, Stratigraphy and Geological Correlation, 2008, Vol. 16, No. 3, pp. 295–316. © Pleiades Publishing, Ltd., 2008. Original Russian Text © G.N. Aleksandrova, N.I. Zaporozhets, 2008, published in Stratigrafiya. Geologicheskaya Korrelyatsiya, 2008, Vol. 16, No. 3, pp. 75–96.

Palynological Characteristics of Upper Cretaceous and Paleogene Deposits on the West of the Sambian Peninsula (Kaliningrad Region), Part 1 G. N. Aleksandrova and N. I. Zaporozhets Geological Institute, Russian Academy of Sciences, Pyzhevskii per. 7, Moscow, 119017 Russia Received August 22, 2007

Abstract—The results of studying dinocysts in the Upper Cretaceous–Lower Paleogene succession of the Kaliningrad region are considered. Distinguished in the succession are seven biostratigraphic units in the rank of the Palaeohystrichophora infusorioides, Chatangiella vnigrii, Cerodinium diebelii, Alisocysta margarita, Deflandrea oebisfeldensis, Areosphaeridium diktyoplokum, and Rhombodinium perforatum beds and one Charlesdowniea clathrata angulosa Zone. DOI: 10.1134/S0869593808030052 Key words: Campanian, Maastrichtian, Paleocene, Eocene, biostratigraphy, dinocysts, spores and pollen.

The Paleogene of the Sambian Peninsula is of interest for understanding the paleogeography of that time in western margin of the East European platform and connections of the Arctic and North Sea basins with epicontinental seas of the Peri-Tethys. Problems of correlation between the West European type sections of the marine Paleogene and concurrent sections in the Russian and West Siberian plates are known well, and the study region is of key significance for solving these problems. A high facies variability is another serious problem complicating investigation of the Mesozoic–Cenozoic stratigraphy in the Sambian Peninsula, as it leads to controversial determinations of sedimentary formations and their stratigraphic ranges. On the other hand, the respective sediments enclosing unique amber and phosphorite deposits along with glauconite-enriched beds are of considerable economic importance in the region. Besides, an oil pool discovered recently is confined here to the Mesozoic. First data on fossil fauna and stratigraphy of the Sambian Peninsula are known since the middle of the 19th century. Comprehensive geological survey initiated in the 1960s attracted special attention to the region. At that time, a group of researchers (Egorov, 1957; Pokrovskaya and Zauer, 1960; Baltakis, 1966; Zharkov et al., 1971) obtained principal data on the regional geological structure and dated separate intervals of the Paleogene succession. They distinguished five reference litho-biostratigraphic units in the rank of the Liubavas, Sambiiskii, Alka, Prussian, Palvininkai formations and deposits presumably corresponding to the upper Paleocene (Baltakis, 1966; Grigyalis et al., 1971; Kaplan et al., 1977).

The Liubavas Formation is represented by uniform calcareous mica-glauconite-quartz aleurites and finegrained clayey sands intercalated with interlayers and lentils of silicified rocks. The Mohnian (early Selandian) age of the formation has been established based on found benthic foraminifers and ostracodes. The absolute age of glauconite from the Liubavas Formation is 65.6 ± 3 Ma (Kaplan et al., 1977). The formation yielded dinocyst assemblage and spore-pollen spectrum, the latter dominated by pollen of the Normapolles stemma, which have been interpreted as corresponding in age to the early Paleocene based on correlation with microphytofossils from the Sumy Formation of Belarus (Grigyalis et al., 1988). Deposits of the upper Paleocene presumably have been distinguished first, though with reservations, in Borehole 2 (Pionersk) based on investigation results obtained for diatoms (Kaplan et al., 1977; Strel’nikova et al., 1978; Strel’nikova, 1992). The relevant section interval is represented by fine-grained sands at the base, while overlying silty clays and aleurites are crowned by siliciliths after sandy aleurite, the topmost rocks of the unit, which are discordantly overlain by clays of the Sambia Formation. According to Kaplan et al. (1977), absolute age of glauconite from the interval under consideration corresponds to 57 ± 2 Ma, being practically identical to the date of 57.1 ± 3 Ma known for the Gelinden Marl, the basal rock of the Landenian Stage of the upper Paleocene in the Belgian basin (Berggren, 1972). Distinguishing the Sambia Formation, Baltakis (1966) noted that complex of rock in this unit is represented by gray to dark gray glauconite-quartz aleurites and clays, which rest on the basal horizon of sandy clay

295

296

ALEKSANDROVA, ZAPOROZHETS

and clayey inequigranular sand. Rocks of this formation are considerably silicified in general. The early Eocene (Ypresian) age of the Sambia Formation has been accepted based on investigation of diatoms, spores, pollen and dinoflagellates (Kaplan et al., 1977; Grigyalis et al., 1988; Strel’nikova, 1992). Sediments of the formation occur only on the west of the Kaliningrad oblast. In its complete range, the Alka Formation includes the following horizons: (a) “Untere wilde Erde” (clayey quartz-glauconite sands with gravel, pebbles and phosphorite nodules); (b) “Untere Blaue Erde” (greenish gray sandy aleurites with amber clasts); (c) “Untere Triebsand” (fine- to medium-grained glauconite-quartz sands); and (d) “Glaukonitscher Lehm” (dirty-green clay with glauconite) in the topmost interval. Lower horizons of the Alka Formation (“Untere wilde Erde” and “Untere Blaue Erde”) occur not everywhere. Two foraminiferal assemblages have been distinguished earlier in the formation: the lower one correlated with the Hantkenina alabamensis and partly Acarinina rotundimarginata zones, whereas the upper assemblage has been attributed to the Globigerina turcmenica Zone of southern regions of the USSR (Resolution of the XV …, 1983; Grigyalis et al., 1988). Both assemblages are comparable in composition with foraminifers from the Kiev Formation of the Dnieper–Donets depression, Belarus, and Dnieper riverbank areas near Kiev. In stratigraphic range, the Alka Formation has been regarded as corresponding to the Lutetian (second half)–Bartonian interval, i.e., to the foraminiferal zones P12–P14 or nannoplankton zones NP15–NP16. The Prussian Formation includes several horizons as well: (a) “Wilde Erde” or basal horizon of clayey inequigranular quartz-glauconite sands with phosphorite nodules; (b) “Blaue Erde” composed of inequigranular clayey micaceous glauconite-quartz sands and sandy aleurites containing amber; (c) “Triebsand,” a layer of inequigranular glauconite-quartz sand that is known in outcrops under the name “Krant” when is cemented by Fe-hydroxides; (d) “Weisse Mauer,” a variety of highly micaceous aleurite widespread on the southwest of the Sambian Peninsula. Accumulations of macrofauna are confined to the “Krant” facies of the Prussian Formation, which yielded bivalves, shark teeth, gastropods, crustaceans, sea urchins, and the other fossils studied (Noetling, 1888; Mayer, 1861; Koenen, 1894). This fauna and the Prussian Formation consequently are defined to be of the Lattorfian (Oligocene) age. The absolute age of glauconite from the Prussian Formation is 37.7 ± 3.0 Ma (Kaplan et al., 1977), identical to the date of 37.5 ± 3 Ma accepted formerly for of the Eocene–Oligocene boundary (the lower Tongrian of Belgium). The last age information on the Prussian Formation was published by Grigyalis et al. (1988) who suggested the Priabonian stratigraphic level of this subdivision based on the studied spores, pollen, dinoflagellates, and

benthic foraminifers. Paleontologists from Poland (Kosmowska-Ceranowicz et al., 1997) also argued for the Priabonian age of the Prussian Formation. Nevertheless, the alternative age estimates of the amber-bearing deposits of the Prussian Formation still range from the middle Eocene to Oligocene (Wappler, 2003). The Palvininkai Formation (“Grüne Mauer”) transgressively overlaps different horizons of the Prussian Formation, being overlain by the Neogene deposits (Kaplan et al., 1977). Among paleontological remains from the Palvininkai Formation, there are known shark teeth and a spectrum of spores and pollen. The absolute age of glauconites from the formation corresponds in average to 34.6 ± 3 Ma, and respective sediments have been attributed to the Rupelian Stage of the lower Oligocene in northern Germany. The sediments under consideration have been correlated with concurrent deposits of Western Europe and the Kharkiv Formation of Ukraine. It is remarkable that Alfred Eisenack who initiated paleontological research of fossil dinoflagellates (Eisenack, 1938, 1954) studied the amber-bearing deposits of the Sambian Peninsula as well. He was first to describe species Deflandrea phosphoritica, Wetzeliella articulata, and some other taxa important in stratigraphic aspect, and many researchers who used this group of microplankton for dating the host deposits (Zatula, 1973; Grigyalis et al., 1988) followed in their interpretations the pioneering works of this eminent scientist. Having no reference standards and following Koenen, Eisenack personally attributed the Prussian Formation to the Oligocene. Unfortunately, the Paleogene of the Sambian Peninsula have not been comprehensively studied in recent years despite much higher resolution level of current stratigraphic methods. Besides, our interest to this study was stimulated by intriguing facies variability of Paleogene sediments in the region, where their paleontological and stratigraphic characterization is far from being unambiguous. LITHOLOGICAL DESCRIPTION OF SECTIONS We studied core samples from Borehole 1P that has been drilled in western outskirt of the Yantarnyi settlement and recovered the downward succession of Paleogene and Cretaceous sediments (down to the Campanian inclusive). The other studied samples are from the Prussian and Palvininkai formations examined in a coastal outcrop near the Bakalinskii Cape (Fig. 1). By the field description, geologists who studied the borehole section distinguished the following stratigraphic units: undivided Upper Cretaceous deposits in the interval of 75.5–66.4 m; Liubavas Formation in the interval of 66.4–48.8 m; Sambia Formation in the interval of 48.8–37.2 m; Alka Formation in the interval of 37.2–18.5 m; “Wilde Erde” and “Blaue Erde” of the

STRATIGRAPHY AND GEOLOGICAL CORRELATION

Vol. 16

No. 3

2008

PALYNOLOGICAL CHARACTERISTICS

Prussian Formation in the interval of 18.5–9.3 m; occurring higher are Quaternary deposits (Fig. 2). The wellhead altitude is 2.73 m. The succession of penetrated beds is as follows (from the base upward): Interval 75.05–70.4 m. —0.65 m: marl, gray to dark gray, very hard, silicified, locally fractured, containing frequent shells of bivalves and belemnites, pierced with presumable fucoids; —1.6 m: dark, greenish gray feldspar-quartz aleurite, glauconitic, compact, fine-grained, micaceous, slightly clayey. Interval 70.4–66.4 m. Interlayering of silicified aleurolites (marls). Black aleurolites are compact, very hard, silicified, with wavy and twisting quartzite interlayers 10 to 40 mm thick; —marl, white to gray, either soft chalk-like or hard, silicified; —white, chalk-like, very sift, a bit greasy in hands; —gray, fractured, brecciated, breaking into fragments 20 to 30 mm in size; —gray, silicified, with quartz and quartzite laminae, veins, and nests. Interval 66.4–37.2 m. Member composed of prevalent black, very compact, fine-grained, silty to clayey sand and sandy aleurite, containing abundant whitish lenticles of finegrained sand, which are 2–7 cm long (rice figures), lacking admixture of silty or clayey material. Silicification of rocks is observable within the intervals of 37.2–37.4, 39.9–40.0, 41.5–41.55, 45.7–45.8, 46.0–46.2, 47.4–48.8, 51.25–51.55, 58.4–58.45, and 60.8–63.9 m. Distinct interlayering of black fine-grained sand and dark gray aleurite in the interval of 49.0–49.5 m is identical to that in the interval of 14.8– 17.4 m. Interval 37.2–36.7 m. Layers of black coarse-grained silty sand (2–3 cm thick) alternating with laminae of whitish fine-grained micaceous sand and less common, dark green aleurite (0.2–0.5 cm thick). Interval 36.7–36.2 m. Black coarse-grained silty sand similar to that in the interval of 37.2–36.7 m and vaguely laminated. Interval 36.2–35.9 m. Black fine-grained biotite-muscovite sandstone with siliceous (presumably) cement. Lower boundary is accented by thin (1.5–2 cm) interlayer of whitish fine-to medium-grained sand. Interval 35.9–33.0 m. Sand layers similar to those in the interval 32.5–33.0 m (5–7 cm thick), enclosing interlayers of dark gray clayey aleurite (0.5–7 cm thick). Interval 33.0–32.5 m. Bed of black fine- to mediumgrained sand with whitish striated interlayers of fine-grained sand apparently depleted in silty fraction. Interval 32.5–18.5 m. Yellow-gray glauconite-quartz sand, fine- to medium-grained, slightly micaceous, with greenish to bluish gray patches of bioturbation (watery quicksand). Interval 18.5–17.4 m. Bed of dark gray, poorly sorted silty sand containing pebbly material. In micaceous quartzglauconite sand, there are frequent phosphorite and siderite (?) nodules 1 to 5 cm in diameter, larger and more concentrated near the bed base. In lower part (20–30 cm), greenish gray cemented sand contains abundant lustrous phosphorite nodules up to 0.5 cm in diameter. STRATIGRAPHY AND GEOLOGICAL CORRELATION

297 Lithuania

Borehole 2 (Pionersk) Borehole 1P

BALTIC SEA

Bakalinskii

Kaliningrad

Poland

0

50 km

Fig. 1. Localities of sections considered in the work.

Interval 17.4–14.8 m. Interlayering sand, aleurite and clay laminae: interlayers of black coarse-grained sand (5– 7 cm thick) and brown clay are superimposed on rhythmical interlayering of black medium-grained silty sands (laminae 0.5–1.5 cm thick) and greenish to dark gray sandy aleurites (laminae 0.5–0.7 cm thick). Thin clay lenticles (0.3–0.5 cm) are confined to the bed upper part; at the depth of 15.6 m there is single clay interlayer (7 cm), and rare clay interlayers (0.5 cm) occur in the lower part. Rare amber inclusions 0.1– 1 cm in size are dispersed throughout the bed. Since the depth of 17.0 m, granulometric size of clasts increases up to coarsegrained. Occurring quartz grains are 0.3 cm in diameter. The bed has sharp lower boundary. Interval 14.8–13.0 m. Greenish to dark gray, low-plastic, sandy to clayey, micaceous aleurite with rare interlayers (up to 0.5 cm thick) of greenish gray fine-grained silty sand. Abundant “rice figures” of light gray fine-grained sand (0.1– 0.3 cm in size) are of irregular shape, commonly elongated in horizontal plane and turning sometimes into lenticles. Rare amber inclusions are 0.1–0.3 mm in size. Conformable lower boundary is determined based on gradual structural transition in the interval of 14.6–17.5 m. Interval 13.0–10.4 m. Interlayering medium-grained silty sand, clay, and aleurite. The bed is composed predominantly of mottled (black, bluish to greenish and dark gray, and brown) clay and aleurites (silty?) enclosing bluish gray lentils. An interlayer of greenish to dark gray coarse-grained silty sand is observable at the depth of 10.6–10.8 m, and thin wavy interlayer (0.5 cm) of coarse-grained quartz sand is confined to the depth 10.95 m. At the depth levels of 12.0 and 12.8 m, there are thin wavy interlayers of light-colored wellsorted fine-grained sand (0.5 cm) with admixture of fine dispersed glauconite grains. An amber piece 0.7 cm across is found at the depth of 11.2 m. Amber specimens near the bed base are 3 × 2 × 0.5 cm in size. Indistinct lower boundary is determined at the appearance level of “rice figures” of lightcolored fine-grained sand. Interval 10.4–9.3 m. Bed of bluish to greenish and dark gray fine-grained micaceous sand with blurred brown spots about 3–4 cm in diameter; sand contains rare subrounded pebbles and interlayers (0.5 cm) of greenish gray, dark gray, and brown coloration. Gradual lower boundary is detectable at the level, where banding is more distinct and bands are thickened up to 1–1.5 cm. Vol. 16

No. 3

2008

298

ALEKSANDROVA, ZAPOROZHETS Subdivision based on geophysical data

Subdivision by field description

Depth, m 0

µR/h

Sample no. 2 4 6 8 10 12 14 16 18

Q 5 2 4 6 8 10 12 14 16 18 20 Ω/m 2 4 6 8 10 12 14 16 18 20 Ω/m

5 7 9 13 14

Prussian

Blaue Erde

1 2 4

15

Wilde Erde

Prussian

10

20 19

25

21

30

22

35

23 24 25 26

34

45 35 37 38

50

Sambiiskii

30 31 32 33

40

Sambiiskii

Alka

Alka

20

39 40

Liubavas

46 47 49 51 53

60

56

Liubavas

43

55

65 58 60 61 63

70 K2

K2 0

64

75

1 +

67

15 mV 1

4

7

10

2

5

8

11

3

6

9

12

13

Fig. 2. Lithostratigraphy and formations distinguished in section of Borehole 1P: (1) marl; (2) inequigranular sand; (3) interlayering medium-grained silty sand, clay and aleurite; (4) aleurite; (5) fine- to medium-grained sand; (6) fine-grained sand; (7) silicification; (8) clay lenticles; (9) aleurolite; (10) bioturbation; (11) amber occurrences; (12) phosphorite nodules; (13) gravel, pebbles. STRATIGRAPHY AND GEOLOGICAL CORRELATION

Vol. 16

No. 3

2008

PALYNOLOGICAL CHARACTERISTICS Interval 9.3–4.3 m. Bed of sand, gravel, and pebbles with frequent boulders. Interval 4.3–0.0 m. Gray inequigranular quartz sand with gravel and pebbles.

In addition, G.N. Aleksandrova described and sampled rocks of the Prussian Formation in northwestern coastal outcrops of the Sambian Peninsula 0.5 km to the north from the Bakalinskii Cape, where the following beds are exposed from the base upward: Prussian Formation. Bed 1. “Blaue Erde”. Clay, dark blue-green, laminated, sandy, containing abundant glauconite grains, amber and phosphorite inclusions: apparent thickness 1.5 m; Sample 1 is from observable section base, Sample 2 is collected 1.4 m higher. Bed 2. “Triebsand” (?). Light gray fine-grained sand mottled owing to inclusions of light brown clay. Content of clay fraction increases near the base and top of the bed that is highly bioturbated; thickness 0.5 m; Sample 3 is from the bed base, samples 4 and 5 are collected 0.25 and 0.5 m higher. Bed 3. “Krant.” Inhomogeneous medium-grained quartzglauconite sand, compact, rusty brown, irregularly ferruginate around dark gray clay segregations (“rolls”). At the bed base, there are visible fucoids; thickness 0.7 m; Sample 6 is from the bed base, Sample 7 is collected 0.3 m higher. Palvininkai Formation. Bed 4. “Grüne maurer.” Bright green clayey glauconite-quartz sand; thickness about 2 m; Sample 8 is collected at the level of 1.1 m above the bed base. Bed 4 is overlain with angular unconformity by Neogene deposits with brown coal seams.

INVESTIGATION METHODS We followed the procedure of laboratory treatment of palynological samples as is accepted at the Geological Institute RAS. The procedure includes the following operations: (1) dissolution of carbonates in 10% HCl; (2) elutriation of clay minerals after the material treatment in 5% Na2HPO4OH solution; (3) maceration of palynomorphs from residue after chemical treatment using centrifuging in heavy liquid with density 2.25 (KJ + CdJ solution); (4) acetolysis in a mixture of nine parts acetic anhydride and one part concentrated sulfuric acid; (5) conservation of macerated material in vials with glycerol for subsequent examination and storage. The dinocyst beds are distinguished based on quantitative and qualitative changes in assemblages with due account for first and last occurrence of taxa, grown or diminished species diversity, and acme of separate dinoflagellate species. Not less than 200 palynomorph grains have been counted in every slide. The samples and slides studied are stored at the Laboratory of Paleofloristics, Geological Institute RAS, Moscow. PALEONTOLOGICAL CHARACTERIZATION The Upper Cretaceous–Paleogene succession of the Sambian Peninsula is for the first time studied in detail. We analyzed samples collected from all lithostratigraphic subdivisions of Borehole 1P and outcrops near the Bakalinskii Cape. STRATIGRAPHY AND GEOLOGICAL CORRELATION

299

The results of palynological analysis are used to distinguish biostratigraphic units of the Campanian (Palaeohystrichophora infusorioides and Chatangiella vnigrii beds), Maastrichtian (Cerodinium diebelii Beds), Thanetian (Alisocysta margarita Beds), early (Deflandrea oebisfeldensis Beds) and middle Eocene (Areosphaeridium diktyoplokum), Bartonian–Priabonian boundary (Rhombodinium perforatum Beds) ages, and besides the Charlesdowniea clathrata angulosa Zone of the Priabonian. In addition, O.B. Dmitrenko studied nannoplankton from the Cretaceous deposits recovered by Borehole 1P. Stratigraphic ranges of identified taxa are shown in Tables 1 and 2 for the Cretaceous and Paleogene intervals of Borehole 1P, respectively, and in Table 3 for the Bakalinskii Cape section. Characteristic taxa are figured in Plates I–IV. The Palaeohystrichophora infusorioides Beds are established within the depth interval of 75.0–73.5 m (samples 67–64) corresponding to Upper Cretaceous deposits, which have not been subdivided by field description. Palynological assemblage of the beds is dominated by Palaeohystrichophora infusorioides, Spiniferites spp., Exochosphaeridium bifidum, Spinidinium echinoideum, Magallanesium (Spinidinium) densispinatum, Hystrichosphaeridum spp., and Cyclonephelium distinctum. Acritarchs Fromea spp. are abundant. Contents of the other taxa are low. Taxa present in this assemblage only and not occurring higher in the section are Chatangiella cf. chetiensis, Chatangiella robusta, Surculosphaeridium longifurcatum, Alisogymnium leave, Dinogymnium sibiricum, Raetiaedinium punctulatum, Florentinia ferox, Magallanesium cf. macmurdoense, Magallanesium densispinatum, Isabelidinium microarmum, Microdinium reticulatum, Microdinium carinatum, and Xiphophoridium alatum. Spores and pollen of higher plants have not been encountered. The Chatangiella vnigrii Beds correspond to the depth interval of 70.0–67.0 m (samples 63–58) of Upper Cretaceous deposits undivided by field description. The beds are established according to first occurrence of Chatangiella vnigrii, Chatangiella niiga, Gillina hymenophora, Spongodinium delitiense, Rhiptocorys veligera, Fibradinium anettorpense, Trigonopyxidia ginella, Cladopyxidium velatum, and disappearance of Surculosphaeridium longifurcatum and Florentinia ferox. Characteristic of the beds’ assemblage is abundance of Trithyrodinium cf. striatum, Canningia spp., Chatangiella vnigrii, Chatangiella niiga, Chatangiella sp., and Spinidinium spp. Species Palaeohystrichophora infusorioides occurs as single specimens. First occurrence of Pierceites sp. C sensu Schiøler, Wilson 1993, and Alterbidinium acutulum is recorded in Sample 60. Spores and pollen of higher plants have not been encountered. The Cerodinium diebelii Beds within the depth interval of 60.8–52.0 m (samples 56–40) are distinguished based on the first occurrence of Cerodinium Vol. 16

No. 3

2008

STRATIGRAPHY AND GEOLOGICAL CORRELATION

Vol. 16

No. 3

2008

System Maastrichtian Stage, substage

lower

?

upper

upper

67 75

66 74.5

70

64 73.5

63

69

68

62 69.5

61

60

67

59 67.5

58

60

56 60.8

55

59

54 59.5

53

57

49

52 58.5

56

47

50 57.5

55

46

54

45 54.5

44

53

43 53.5

42

52

41 52.5

Depth, m

Sample no.

40

Catangiella vnigrii

Dinocyst beds

Cerodinium diebelii

Table 1. Distribution of microphytoplankton in section of Borehole 1P (Upper Cretaceous deposits)

Cretaceous Campanian lower

P. infusorioides

ex gr. Surculodinium sp. Spinferites ramosus Spiniferites sp. Paralecaniella indentata Hystrichodinium pulchrum Leberidocysta chlamydata Sp. Indet 1 Chatangiella cf. chetiensis Chatangiella sp. Circulodinium distictum Lingulodinium sp. Magallanesium (Spinidinium) densispinatum Spinidinium echinoideum Fromea fragilis Fromea sp. Spinidium clavus Cribroperidinium sp. Exochosphaeridium sp. Tanyosphaeridium regulare Tanyosphaeridium sp. Areoligera senonensis Palaeohystrichophora influsorioides Achomosphaera crassipelis Achomosphaera sp. Spiniferites ramosus subsp. gracilis Operculodinium centrocarpum Mychystridium sp. Hystrichosphaeridum tubiferum Florentinia (Hystrichosphaeridium) stellata Hystrichosphaeridum sp. Fibradinium sp. Achomosphaera alcicornu Achomosphaera ramulifera Conneximura fimbriata Cyclonephelium sp. Altebidnium minor Kallosphaeridum sp. aff. Canningia sp. Spinferites ramosus cavispinosus Paucilobimorpha apiculata Microdinium sp. Alisogymnium laeve ex gr. Manumiella sp. ex gr. Wilsonisphaera sp. Hystrichostrogylon sp. Florentinia? (Hystrichosphaeridum) flosculus Isabelidinium microarmum Microdinium carinatum Phanerodimium sp. Spinferites wetzelii Trythirodinium sp. Chatangiella robusta Spinferites porosus Diconodimium arcticum Palaeotetradinium silicorum Elytrocysta sp. Acritarchs sp. Indet Odontochitina operculata Magallanesium (Spinidinium) cf. macmurdoense

Diconodinium crystatum Isabelidinium sp.

300

ALEKSANDROVA, ZAPOROZHETS

STRATIGRAPHY AND GEOLOGICAL CORRELATION

Vol. 16

No. 3

2008

Table 1 (Contd.)

Dinogymnium sibiricum Laciniadinium sp. Spiniferites multibrevis Prolixosphaeridium sp. Microdinium reticulatum Laciniadnimium rhombiforme Florentinia sp. Achilleodinium bianii Surculosphaeridium longifurcatum Raetiaedinium punctulatum Spinferites ramosus subsp. granosus Hystrichosphaeridium duplum Fromea chytra Fromea laevigata Spiniferites membranaceous Ophilobolus lapidarus Achomosphaera sagena Kleithriasphaeridium faciatum Florentinia ferox Palaeoperidimium pyrophorum Alterbidinium sp. Dapsilidinium sp. Exochosphaeridium bifidum Trithyrodinium suspectun Trithyrodinium cf. stratum Membranilarnax liradiscoides Tanyosphaeridium variecalamum Prolixosphaeridium cf. nanum Xiphophoridium alatum Spiniferites ramosus subsp. maeandriformis aff. Canningia sp. Turnhosphaera hypoflata Druggidium sp. A Slimani, 1994 Pterodium cingulatum Litosphaeridum sp. Canningia sp. 1 Canningia sp. 2 Spongodinium delitiense Rhyptocorus veligerum Chatangeiella vnigrii Chatangiella niiga Membranilarnacia polycladiata Sp. Indet 2 Fibradimium atettorpense Raetiaedinium cf. laevigatum Microdinium ornatum Cordosphaeridium sp. Gillina hymenophora Spinidinium sp. Xenascus ceratioides Dinogymnium cf. acuminatum Oligosphaeridium cp. Chatangiella granulifera Fibrocysta sp. Diconodinium sp. Trigonopyxidia ginella Fladrecysta tubulosa Paucilobimorpha incurvata Magallanesium (Spinidinium) pilatum Trithyrodinium evitti Tectatodinium sp. Cladopyxidium velatum Cymatiosphaera sp. Hystrichosphaeridum arborispinum Adnatosphaeridum buccinum Tectatodinium pelitum Oligosphaeridium complex Membranosphaera maastrichtica Volkheimeridium (Spinidinium) lanterna Florentinia deanei Spiniferites bulloideus Sphaerodictyon filosum

PALYNOLOGICAL CHARACTERISTICS

301

STRATIGRAPHY AND GEOLOGICAL CORRELATION

Table 1 (Contd.)

Vol. 16

No. 3

2008

dominant species

Xenikoon australis Cordosphaeridium inodes Coronifera oceanica Cladopyxidium sp. Neoeuryshpaeridum glabrum Spiniferites procerus Alterbidinium acutulum Wilsonisphaera cf. petila Chalamydophorella nyei Flandrecysta furcata Chatangiella decorosa Pierceites sp. C Cleistosphaeridium sp. Cannosphaeropsis utinesis Pervosphaeridium sp. Montanarocysta aemiliana Chatangiella manumii Wallodinium luna Hystrichokolma sp. Glaphyrocysta sp. Cordosphaeridium gracile Cordosphaeridium funiculatum Spinferites septatus Cerodinium diebelii Cerodinium sp. Laciniadinium arcticum Leiosphaeridia sp. Isabelidnium cooksaniae Isabelidinium bakeri Samlandia cf. mayi Cymatiosphaera sp. Fibrocysta cf. vectensis Glaphyrocysta castelcasiense Achomosphaera neptuni Cleistosphaeridium aciculare Litosphaeridium arundum Canningia cf. reticulata Cordosphaeridium miltispinosum Chatangiella microcantha Subtilisphaera cf. pontis-mariae Microdinium sonciniae Cerodinium speciosum Phelodinium magnificum Phelodinium sp. Hafniasphaera fluens Laciniadinium williamsii Tanyosphaeridium xanthipyxides Lingulodinium machaerophorum Areoligera cf. guembelii Alterbidinium varium Pterodinium cingulatum Membranilarnacia sp. Kallosphaeridium yorubaense Fromea amphora Spinidinium cf. crenulatum Oligosphaeridium pulcherrimum Cribroperidinium cf. ventrisum Spinidinium uncinatum Palaeostomocystis reticulata Glyphanodinium facetum Phelodinium kozlowskii Laciniadinium? aquiloniforme Alterbidinium-Subtilisphaera? Isabelidinium bujaki Kallosphaeridium biornatum cf. Microdinium carinatum Hystrichostrogylon membraniphorum Cerodinium albertii Phanerodinium cayeuxi Cladopyxidium reticulatum Senoniasphaera cf. protrusa

302

ALEKSANDROVA, ZAPOROZHETS

No. 3

2008

Eocene Alka

Series Prussian

Formation

20 21 22 23 24 26 30 31 32 33 71 35 39 26 28 30 32 32.6 34.8 37.6 38.5 39.5 40.5 41 47 51

9.8 10.5 11.5 13 13.3 15 15.6

Sample no.

1 2 4 5 6 9 10

12 15.7 13 16.4 14 17.3 19 24

Depth, m

Defl. perfoA. diktyoplokum Rh. oebisfel. ratum

Ch. clathrata angulosa

Dinocyst beds, zones Areoligera sp. Areoligera fimbriata Areoligera coronata Areoligera medusettiformis Areoligera senonensis Areoligera tauloma Glaphyrocysta sp. Glaphyrocysta ordinata Glaphyrocysta exuberans Cordosphaeridium sp. Cordosphaeridium funiculatum Cordosphaeridium inodes Spiniferites spp. Spiniferites ramosus Spiniferites ramosus granosus Spiniferites wetzelii Achomosphaera alcicornu Rottnestia borussica Rottnestia wetzelii wetzelii Rottnestia borussica borussica Rottnestia sp. Deflandrea sp. Deflandrea oebisfeldensis Deflandrea denticulata Deflandrea sp. B of Powell Cerodinium sp. Cerodinium medcalfii Cerodinium markovae Cerodinium dibelii Cerodinium speciosum Cerodinium speciosum glabrum Palaeotetradinium sp. Palaeotetradinium golzowense Systematophora sp. Florentinia sp. Florentinia ferox Biteclatodinium sp. Hafniasphaera septata Hafniasphaera sp. Trigonopyxidia sp. Trigonopyxidia ginella Cannosphaeropsis sp. Spinidinium sp. Fromea laevigata Operculodinium sp. Operculodinium severinii Impagidinium sp. Exochosphaeridium sp. Exochosphaeridium elegans Exochosphaeridium bifidum Membranosphaera sp. Alisocysta sp. 2 Helimann-Clausen Alisocysta sp. Alisocysta margarita Hystrichosphaeridium sp. Hystrichosphaeridium tubiferum

Table 2. Distribution of microphytoplankton in section of Borehole 1P (Paleogene deposits)

System

Paleogene Paleocene Sambiiskii

Vol. 16

A. margarita

STRATIGRAPHY AND GEOLOGICAL CORRELATION Hystrichosphaeridium tubiferum brevispinosum

Isabelidinium? viborgense Aldorfia sp. A Alterbidinium sp. Alterbidinium rugulum Alterbidinium circulum Elytrocysta sp. Coronifera sp.

PALYNOLOGICAL CHARACTERISTICS

303

STRATIGRAPHY AND GEOLOGICAL CORRELATION

Vol. 16

No. 3

2008

Table 2 (Contd.)

Fibrocysta sp. Fibrocysta cf. vectensis Fromea sp. Fromea fragilis Horologinella apiculata Horologinella sp. Paralecaniella indentata Micrhystridium sp. Deflandrea dissoluta Deflandrea leptodermata Spiniferites cornutus Achomosphaera sp. Achomosphaera sagena Palaeoperidinium sp. Palaeoperidinium pyrophorum Kallosphaeridium sp. Kallosphaeridium brevibarbatum Kallosphaeridium cf. orchiesense Hystrichokolpoma sp. Diphyes pseudocolligerum Membranophoridium aspinatum Chytroesphaeridia sp. Heteraulacacysta pustulata Palaeotetradinium minusculum Microdinium sp. Escharisphaeridia senegalense Cribroperidnium sp. Melitasphaeridium sp. Isabelidinium sp. Impagidnium cf. patulum Palaeocystodinium sp. Achomosphaera septata Achomosphaera crassipellis Leberidocysta sp. Triblastula utinensis Melitasphaeridium asterium Oligosphaeridum complex Fibradinium anettorpense Chatangiella sp. Heteraulacasysta sp. Thalassiphora delicata Lingulodinium sp. Hafniasphaera fluens Palaeocystodinium lidiae Fromea laevigata Pterospermella sp. Cymatiosphaera sp. Fibradinium sp. Systematophora placacantha Thalassiphora sp. Microdinium ornatum Hologinella incurvata Deflandrea andromiensis Spinidium echinoideum Chiropteridium sp. Oligosphaeridium sp. Veryachium sp. Batiacasphaera sp. Areosphaerium diktyoplokum cf. Areosphaeridium diktyoplokum Circulodinium distinctum Charlesdowniea sp. Paucilobimorpha triradiata Pediastrum sp. Charlesdowniea cf. fasciata Cribroperidinium tenuitabulatum Microdinium reticulatum Enneadocysta sp. Enneadocysta pectiniforme Enneadocysta arcuata Membranophoridium sp. Cleistosphaeridium sp. Homotryblium sp. Duosphaeridium nudum Hystrichosphaeropsis costae

304

ALEKSANDROVA, ZAPOROZHETS

STRATIGRAPHY AND GEOLOGICAL CORRELATION

Vol. 16

No. 3

2008

Table 2 (Contd.)

Dracodinium sp. Phthanoperidinium geminatum Heteraulacacysta porosa Cerebrocysta sp. Areosphaeridium sp. Soaniella granulata Deflandrea spinulosa Tytthodiscus sp. Horologinella corrugata Homotryblium plectium Membranilarnacia sp. Deflandrea arcuata Wilsonidium sp. Soaniella sp. Charlesdowniea edwadsii Wetzeliella sp. Cordosphaeridium gracile Samlandia sp. Thalassiphora reticulata Impagidinium cf. multiplexum Phthanoperidinium comatum Phthanoperidinium stockmansii Hystrichokolpoma cf. salacia Enneadocysta multicornuta Apteodinium sp. Deflandrea phosphoritica Deflandrea leptalea Deflandrea heterophycta Rhombodinium sp. Rhombodinium perforatum Charlesdowniea clathrata Charlesdowniea coleothrypta rotundata Achilleodinium biformoides Dapsilidinium sp. Hystrichokolpoma cf. rigaudae Hystrichokolpoma cinctum Tectatodinium sp. Pentadinium sp. Dinopterygium sp. Corrudinium sp. Hydropteris sp. Samlandia chlamydophora Charlesdowniea clathrata angulosa Dracodinium politum Thalassiphora pelagica Lejeunecysta sp. Selenopemphix nephroides Corrudinium incompositum Dapsilidinium pastielsii Batiacasphaera sphaerica Pyxidiella scrobiculata Dinopterygium cladoides Dapsilidinium pseudocolligerum Heteraulacacysta campanula Cannosphaeropsis sp. Caligodinium sp. Rhombodinium porosum Adnatosphaeridum miltispinosum Muratodinium sp. Pentadinium laticinctum Pentadinium lophophorum Paucilobimorpha sp. Paucilobimorpha granulata Cleistosphaeridium diversispinosum Apectodinium homomorphum Apectodinium quinquilatunm Thalassiphora fenestrata Charlesdowniea coleothyrypta Deflandrea phosphoritica subsp. australis Phthanoperidinium eocenicum Tectatodinium psilatum Hystrichosphaeropsis sp.

PALYNOLOGICAL CHARACTERISTICS

305

306

ALEKSANDROVA, ZAPOROZHETS

4

0.5

Blaue Erde

3 2

1.7

C. gracile

Cordosphaeridium sp.

H. floripes

Homotryblium sp.

M. reticulatum

Microdinium sp.

Impagidinium sp.

T. fenestrata

T. spinifera

Thalassiphora sp.

Lingulodinium machaerophorum Alterbidinium sp. Thalassiphora pelagica

Diphyes simplex

Membranophoridium aspinatum

O. cf. placitum

Operculodinium centrocarpum

Ch. clathrata angulosa

Charlesdowniea sp.

E. pectiniformis

E. multicomuta

E. deconinckii

E. arcuata

Enneadocysta spp.

G. undulata Areosphaeridium diktyoplokum

G. exuberans

G. semitecta

G. pastielsii

Glaphyrocysta spp.

D. heterophlycta

D. arcuata

D. phosphoritica

Charlesdowniea clathrata angulosa

5

Deflandrea spp.

5

Wilsonidium sp.

7

Rhombodinium sp.

Dinocyst zone

3.5

Rhombodinium perforatum

Thickness, m

8

6 Triebsand

Eocene

Prussian

Paleogene

Krant

Palvininkai

Sample no.

Formation, subformation

Series

System

Table 3. Distribution of microphytoplankton in the coastal section near Bakalinskii Cape

1

diebelii. Dinocyst assemblage of the beds considerably differs from the previous one, being of lower taxonomic diversity and abundance of species. Its dominant forms are Cerodinium diebelii and different species of genera Alterbidinium, Diconodinium, Laciniadinium, Achomosphaera, and Spiniferites. A considerable amount of Spiniferites spp., Circulodinium distinctum, and Paralecaniella indentata is determined in the beds lower part. Species Laciniadinium? aquiloniforme and Cerodinium albertii appear in upper part. Spores and pollen are absent. The Alisocysta margarita Beds spanning the depth interval of 51.0–37.6 m (samples 39–30) are established according to first occurrence of Alisocysta margarita, Alisocysta sp. 2 sensu Heilmann-Clausen, and Rottnestia borussica. Diverse Deflandrea, Cerodinium, Areoligera, and Spiniferites species are abundant in the beds, representing up to 70% of the assemblage. Content of acritarchs and prasinophytes is insignificant. Associated spore-pollen spectra show approximately equal proportions of gymnosperms and angiosperms. Prevailing among gymnosperm pollen taxa is Pinus spp., whereas family Taxodiaceae is represented by lesser amount of specimens. Genus Tricolporopollenites is dominant in the angiosperm spectrum, while Trudopollis pollen occurs as single grains. The Deflandrea oebisfeldensis Beds are established in the depth interval of 34.8–32.6 m (samples 26–24), where acme of Deflandrea species is recorded. The genus Deflandrea dominant in the dinocyst assemblage (D. oebisfeldensis, D. dissoluta, D. andromiensis, and others) is accompanied by single specimens of other taxa, remarkable among which are Horologinella spp. and Paralecaniella indentata. Characteristic of

spore-pollen spectrum is acme of Taxodiaceae pollen, and pollen of the genus Glyptostrobus represents up to 50% in the gymnosperm group. Pollen grains of families Juglandaceae (Platycarya) and Hamammelidaceae (Hamammelis, Corylopsis) are dominant in the angiosperm spectrum, being associated with fairly abundant pollen of Myricaceae (Myrica, in particular) and Fagaceae (Castanea, Castanopsis). Spectrum of such a composition is indicative of a humid subtropical climate. The Areosphaeridium diktyoplokum Beds spanning interval of 32.0–24.0 m (samples 23–19) are readily recognizable because of a sharp change in composition of dinocysts and first occurrence of Areosphaeridium diktyoplokum. Dinocysts are distributed irregularly, and their assemblages are most diverse in samples 22 and 20. Being poorly preserved in general, many dinocysts specimens are disrupt, occurring as separate shreds in association with redeposited dinocysts of Cretaceous and Paleocene ages (Circulodinium distinctum, Chatangiella sp., Alisocysta sp.). The assemblage includes Enneadocysta arcuata, Enneadocysta sp., Deflandrea arcuata, Charlesdowniea cf. edwadsii, Charlesdowniea cf. fasciata, Charlesdowniea sp., Phthanoperidinium comatum, Eatonicysta ursulae, and some other forms, which are not numerous. Spore-pollen spectrum is impoverished, dominated largely by pollen of the family Fagaceae (Quercus, Castanopsis, Castanea). Pollen of Juglandaceae, Myricaceae, Hamammelidaceae, and Betulaceae is less abundant. The Rhombodinium perforatum Beds in the depth interval of 17.3–15.7 m (samples 14–12) are established based on the first occurrence of Rhombodinium

STRATIGRAPHY AND GEOLOGICAL CORRELATION

Vol. 16

No. 3

2008

perforatum. Characteristic of the beds is mass abundance of Microdinium reticulatum and equal occurrence rates of Deflandrea spp., Charlesdowniea clathrata, Charlesdowniea coleothrypta rotundata, Cordosphaeridium spp., Enneadocysta arcuata, Enneadocysta sp., Rhombodinium perforatum, and Rhombodinium sp. Other taxa are not numerous. Single specimens of acritarchs and prasinophytes are present as well. Spores of aquatic fern Hydropteris occur in a considerable amount. Prevailing angiosperm pollen is dominated by representatives of Fagaceae (Quercus conferta, Q. gracilis, Q. graciliformis), Myrtaceae, and by species of form genera Tricolporopollenites, Triporopollenites, and Pokrovskaja. Single pollen grains of Pterocarya, Juglans, Platanus, Nyssa, and Palmae are encountered. Gymnosperms are represented by pollen of Pinus spp. The Charlesdowniea clathrata angulosa Zone is established in the depth interval of 15.6–9.8 m (samples 10–1) and in all samples from the Bakalinskii Cape section, including lower part of the Palvininkai Formation (“Grüne maurer”). It is marked by first occurrence of Charlesdowniea clathrata angulosa and associated Thalassiphora fenestrata. Taxa prevailing in dinocyst assemblage are Deflandrea spp., Cordosphaeridium spp., Areosphaeridium diktyoplokum, Enneadocysta spp., Thalassiphora spp., Operculodinium spp., and Spiniferites spp. In the zone lower part (15.6–13.3 m), acritarchs and prasinophytes (Tytthodiscus sp., Horologinella spp., Cymatiosphaera sp.) occurring in significant amount are associated with spores of aquatic fern close to Hydropteris. Angiosperms and gymnosperms represent 70 and 30% of spore-pollen spectra. Dominant taxa are Quercus gracilis, Quercus graciliformis, Castanopsis sp., and genera of families JuglanSTRATIGRAPHY AND GEOLOGICAL CORRELATION

Fromea sp.

Ptanospermella sp.

cf. Soaniella sp.

Achilleodinium sp.

Samalandia chlamydophora

Ph. alectroloptum Ph. stockmansii

Ph. eocenicum

307

Ph. comatum

S. cf. mirabilis–wetzelii Achomosphaera sp. Phthanoperidinium sp.

S. ramosus

S. cornutus

Spinferites sp.

Batiacasphaera sp. Membranosphaera sp. Tectatodinium sp.

Dapsilidinium sp. O. pseudocolligerum

Adnatosphaeridium sp.

Hystrichokolpoma cinctum

H. rigaudae

Hystrichokolpoma sp.

Lentinia sp. Melitasphaeridium asterium

H. pustulata

H. porosa H. campanula

Heteraulacacysta sp.

P. laticinctum

Corrudinium sp. C. incompositum Cerebrocysta sp. Pentadinium sp. P. lophophorum

C. exilimurum C. funiculatum Apteodinium sp. Palaeocystodinium golzowense Kallosphaeridium sp. Systematophora sp. Cleistosphaeridium sp.

PALYNOLOGICAL CHARACTERISTICS

daceae and Hamammelidaceae. Pollen of thermophilic Palmae and Sapindaceae occurs in lower part of the zone interval. Pinus is dominant taxon in the group of coniferous pollen, though it represents not more than 30%. LIST OF TAXA Achilleodinium bianii Hultberg, 1985 Achilleodinium biformoides (Eisenack, 1954) Eaton, 1976 Achomosphaera alcicornu (Eisenack, 1954) Davey et Williams, 1966 Achomosphaera crassipellis (Deflandre et Cookson, 1955) Stover et Evitt, 1978 Achomosphaera neptuni (Eisenack, 1958) Davey et Williams, 1966 Achomosphaera ramulifera (Deflandre, 1937) Evitt, 1963 Achomosphaera sagena Davey et Williams, 1966 Adnatosphaeridium buccinum Hultberg, 1985 Adnatosphaeridium multispinosum Williams et Downie, 1966 Aldorfia sp. A Alisocysta margarita Harland, 1979 Alisocysta sp. 2 Heilmann-Clausen, 1985 Alisogymnium leave (Vozzhennikova, 1967) Lentin et Vozzhennikova, 1990 Alterbidinium acutulum (Wilson, 1967) Lentin et Williams, 1985 Alterbidinium circulum (Heilmann-Clausen, 1985) Lentin et Williams, 1989 Alterbidinium minus (Alberti, 1959) Lentin et Williams, 1985 Alterbidinium rugulum Iakovleva et Kulkova, 2001 Alterbidinium varium Kirsch, 1991 Vol. 16

No. 3

2008

308

ALEKSANDROVA, ZAPOROZHETS

5 4

0.5

Blaue Erde

3 2 1

1.7

Distatodinium sp.

Hystrichostrogylon membraniforum

Welzeliella ovalis

Ascostomocystis laevigatus

Lejeunecysta ap.

Achilleodinium biformoides

Impagidinium cf. multiplexum

cf. Palaeotetradinium sp.

Apteodinium australiense

Dapsilidinium simplex

Melitasphaeridium pseudorecurvatum

Thalassiphora delicata

Welzeliella meckelfeldensis

Hafniasphaera sp.

Spiniferites pseudofurcatus

Spiniferites ramosus subsp. granosus

Pentadinium goniferum

Charlesdowniea coleothrypta rotundata

Microdinium ornatum

Hystrichokolpoma granulata

Muratodinium sp.

Homotryblium tenuispinosum

Elytrocysta sp.

Paralecaniella indentata

Dinopterygium cladoides

Wetzeliella echinulata

Wetzeliella sp.

Rottnestia borussica

Pterodinium sp.

Paucilobimorpha triradiata

Mycrhystridium sp.

Tytthodiscus sp.

5

Dinocyst zone

7

Ascostomocystis granulatus

3.5

Charlesdowniea clathrata angulosa

Sample no. 8

6 Triebsand

Prussian

Eocene

Paleogene

Krant

Palvininkai

Thickness, m

Formation, subformation

Series

System

Table 3 (Contd.)

Apectodinium homomorphum (Deflandre et Cookson, 1955) Lentin et Williams, 1977 Apectodinium quinquelatum (Williams et Downie, 1966) Costa et Downie, 1979 Apteodinium deflandrei (Clarke te Verdier, 1967) LucasClark, 1987 Areoligera cf. guembelii Kirsch, 1991 Areoligera coronata (O. Wetzel, 1933) Lejeune-Carpentier, 1938 Areoligera medusettiformis Wetzel, 1933 Areoligera senonensis Lejeune-Carpentier, 1938 Areoligera tauloma Eaton, 1976 Areosphaeridium diktyoplokum (Klumpp, 1953) Eaton, 1971 Batiacasphaera sphaerica Stover, 1977 Canningia cf. reticulata Cookson et Eisenack, 1960 Canningia spp. Cannosphaeropsis utinensis Wetzel, 1933 Cerodinium albertii (Corradini, 1973) Lentin et Williams, 1987 Cerodinium diebelii (Alberti, 1959) Lentin et Williams, 1987 Cerodinium leptodermum (Vozzhennikova, 1967) Lentin et Williams, 1987

Cerodinium markovae (Vozzhennikova, 1963) Lentin et Williams, 1987 Cerodinium medcalfii (Stover, 1974) Lentin et Williams, 1987 Cerodinium speciosum (Alberti, 1959) Lentin et Williams, 1987 Cerodinium speciosum glabrum (Gocht, 1969) Lentin et Williams, 1987 Charlesdowniea cf. fasciata (Rozen, 1965) Lentin et Vozzhennikova, 1989 Charlesdowniea clathrata (Eisenack, 1938) Lentin et Vozzhennikova, 1989 Charlesdowniea clathrata angulosa (Chäteauneuf et Gruas-Cavagnetto, 1978) Lentin et Vozzhennikova, 1989 Charlesdowniea coleothrypta rotundata (Chäteauneuf et Gruas-Cavagnetto, 1978) Lentin et Vozzhennikova, 1989 Charlesdowniea coleothrypta (Williams et Downie, 1966) Lentin et Vozzhennikova, 1989 Charlesdowniea edwadsii (Wilson, 1967) Lentin et Vozzhennikova, 1989 Chatangiella cf. chetiensis (Vozzhennikova, 1967) Lentin et Williams, 1976 Chatangiella decorosa (McIntyre, 1975) Lentin et Williams, 1976 Chatangiella granulifera (Manum, 1963) Lentin et Williams, 1976

P l a t e I. Dinocysts, spores and pollen from Paleogene deposits recovered by Borehole 1P. (1) Deflandrea oebisfeldensis Alberti, ×300, sample 30; (2) Deflandrea denticulata Alberti, ×650, sample 38; (3) Deflandrea dissoluta Vozzhennikova, ×300, sample; (4) Wetzeliella astra Denison in Costa et al., ×500, sample 20; (5) Charlesdowniea edwardsii (Wilson) Lentin and Vozzhennikova, ×500, sample 20; (6) Rhombodinium perforatum (Jan du Chéne and Châteauneuf) Lentin and Williams, ×300, sample 10; (7) Wilsonidium sp., ×500, sample 20; (8) Areosphaeridium diktyoplokum (Klumpp) Eaton, ×500, sample 23; (9) Dracodinium politum Bujak, ×300, sample 10; (10) Podocarpus sp., ×650, sample 30; (11) Juglans sp., ×1000, sample 9; (12) Charlesdowniea clathrata angulosa (Châteauneuf and Gruas-Cavagnetto) Lentin and Vozzhennikova, ×300, sample 5; (13, 14) Engelhardia sp., ×500, sample 26; (15) Hamammelis sp., ×1000, sample 24; (16) Myrica sp., ×1000, sample 9. STRATIGRAPHY AND GEOLOGICAL CORRELATION

Vol. 16

No. 3

2008

PALYNOLOGICAL CHARACTERISTICS

309 Plate I

6 1

2

3

5

7 4 9 13

11

8

15

10 STRATIGRAPHY AND GEOLOGICAL CORRELATION

14

16

12 Vol. 16

No. 3

2008

310

ALEKSANDROVA, ZAPOROZHETS

Plate II

3

2

1

4

5 6

7

11

10

8 9

15 12 13

14

STRATIGRAPHY AND GEOLOGICAL CORRELATION

Vol. 16

No. 3

2008

PALYNOLOGICAL CHARACTERISTICS Chatangiella manumii (Vozzhennikova, 1967) Lentin et Williams, 1976 Chatangiella microcantha (Cookson et Eisenack, 1960) Lentin et Williams, 1976 Chatangiella niiga Vozzhennikova, 1967 Chatangiella robusta Benson, 1976 Chatangiella sp. Chatangiella vnigrii (Vozzhennikova, 1967) Lentin et Williams, 1976 Chlamydophorella nyei Cookson et Eisenack, 1958 Circulodinium distinctum (Deflandre et Cookson, 1955) Jansonius, 1986 Cladopyxidium reticulatum (Deflandre, 1937) Marheinecke, 1992 Cladopyxidium saeptum (Morgenroth, 1968) Stover and Evitt, 1978 Cladopyxidium velatum Below, 1987 Cleistosphaeridium diversispinosum (Davey et al., 1966) Bujak et al., 1980 Cordosphaeridium funiculatum Morgenroth, 1966 Cordosphaeridium gracile (Eisenack, 1954) Davey et Williams, 1966 Cordosphaeridium inodes (Klumpp, 1953) Eisenack, 1963 Corrudinium incompositum (Drugg, 1970) Stover et Evitt, 1978 Cribroperidinium tenuitabulatum (Gerlach, 1961) Helenes, 1984 Dapsilidinium pastielsii (Davey et Williams, 1966) Bujak et al., 1980 Dapsilidinium pseudocolligerum (Stover, 1977) Bujak et al., 1980 Deflandrea andromiensis Vozzhennikova, 1967 Deflandrea arcuata Vozzhennikova, 1967 Deflandrea denticulata Alberti, 1959 Deflandrea dissoluta Vozzhennikova, 1967 Deflandrea heterophlycta Deflandre et Cookson, 1955 Deflandrea oebisfeldensis Alberti, 1959 Deflandrea phosphoritica Eisenack, 1938 Deflandrea phosphoritica subsp. australis Cookson et Eisenack, 1961 Deflandrea phosphoritica subsp. spinulosa (Alberti, 1959) Strauss in Prössl, 1997 Diconodinium cristatum Cookson et Eisenack, 1974 Dinogymnium cf. acuminatum Evitt et al., 1967 Dinogymnium sibiricum (Vozzhennikova, 1967) Lentin et Williams, 1973 Dinopterygium cladoides Deflandre, 1935 Diphyes colligerum (Deflandre et Cookson, 1955) Cookson, 1965

311

Downiesphaeridium? aciculare (Davey, 1969) Islam, 1993 Dracodinium politum Bujak et al., 1980 Druggidium sp. A Slimani, 1994 Duosphaeridium nudum (Cookson, 1965) Loeblich Jr. et Loeblich III, 1968 Enneadocysta arcuata (Eaton, 1971) Stover et Williams, 1995 Enneadocysta multicornuta (Eaton, 1971) Stover et Williams, 1995 Enneadocysta pectiniformis (Gerlach, 1961) Stover et Williams, 1995 Escharisphaeridia senegalensis Jan du Chéne, 1988 Exochosphaeridium bifidum (Clarke et Verdier, 1967) Clarke et al., 1968 Fibradinium anettoprense Morgenroth, 1968 Fibrocysta cf. vectensis (Eaton, 1976) Stover et Evitt, 1978 Flandrecysta furcata Slimani, 1994 Flandrecysta tubulosa Slimani, 1994 Florentinia deanei (Davey et Williams, 1966) Davey et Verdier, 1973 Florentinia ferox (Deflandre, 1937) Duxbury, 1980 Florentinia stellata (Maier, 1959) Below, 1982 Florentinia? flosculus (Deflandre, 1937) Lentin et Williams, 1981 Fromea amphora Cookson et Eisenack, 1958 Fromea chytra (Drugg, 1967) Stover et Evitt, 1978 Fromea fragilis (Cookson et Eisenack, 1962) Stover et Evitt, 1978 Fromea laevigata (Drugg, 1967) Stover et Evitt, 1978 Gillina hymenophora Cookson et Eisenack, 1960 Glaphyrocysta exuberans (Deflandre et Cookson, 1965) Stover et Evitt, 1978 Glaphyrocysta ordinata (Williams et Downie, 1966) Stover et Evitt, 1978 Glyphanodinium facetum Drugg, 1964 Hafniasphaera fluens Hansen, 1977 Hafniasphaera septata (Cookson et Eisenack, 1967) Hansen, 1977 Heteraulacacysta campanula Drugg et Loeblich Jr., 1967 Heteraulacacysta porosa Bujak in Bujak et al., 1980 Heteraulacacysta pustulata Jan du Chéne et Adediran, 1985 Homotryblium plectium Drugg et Loeblich, 1967 Horologinella corrugata De Coninck, 1986 Hystrichodinium pulchrum Deflandre, 1935 Hystrichokolpoma cf. rigaudiae Deflandre et Cookson, 1955 Hystrichokolpoma cf. salacia Eaton, 1976

P l a t e II. Dinocysts, spores and pollen from Paleogene deposits recovered by Borehole 1P. (1, 2) Alisocysta margarita (Harland) Harland, ×650, sample 31; (3) Alisocysta sp. 2 Heilmann-Clausen, ×1000, sample 31; (4) Alterbidinium sp., ×650, sample 30; (5) Isabelidinium? viborgense Heilmann-Clausen, ×650, sample 35; (6) Cordosphaeridium funiculatum Morgenroth, ×500, sample 30; (7) Aldorfia sp. A, ×650, sample 32; (8) Chytroesphaeridia sp., ×650, sample 21; (9) Rottnestia borussica (Eisenack) Cookson and Eisenack, ×650, sample 35; (10) Cribroperidinium sp., ×500, sample 35; (11, 12) Kallosphaeridium sp., ×650, sample 20; (13) Paralecaniella indentata (Deflandre and Cookson) Cookson and Eisenack, ×650, sample 26; (14) Areoligera cf. coronata (O. Wetzel) Lejeune-Carpentier, ×650, sample 24; (15) Enneadocysta pectiniformis (Gerlach) Stover et Williams, ×500, sample 10. STRATIGRAPHY AND GEOLOGICAL CORRELATION

Vol. 16

No. 3

2008

312

ALEKSANDROVA, ZAPOROZHETS

Plate III

3 1 2

7

6

5

4

10

11

8

12 9 16

13

14

15

17

STRATIGRAPHY AND GEOLOGICAL CORRELATION

Vol. 16

No. 3

2008

PALYNOLOGICAL CHARACTERISTICS Hystrichokolpoma cinctum Klumpp, 1953 Hystrichosphaeridium duplum Lentin et Williams, 1989 Hystrichosphaeridium tubiferum (Ehrenberg, 1838) Deflandre, 1937 Hystrichosphaeridium tubiferum brevispinum (Davey et Williams, 1966) Lentin et Williams, 1973 Hystrichosphaeropsis costae Bujak, 1994 Hystrichostrogylon membraniphorum Agelopoulos, 1964 Impagidinium cf. multiplex (Wall et Dale, 1968) Lentin et Williams, 1981 Impagidinium cf. patulum (Wall, 1967) Stover et Evitt, 1978 Isabelidinium bakeri (Deflandre et Cookson, 1955) Lentin et Williams, 1977 Isabelidinium bujakii Marheinecke, 1992 Isabelidinium cooksaniae (Alberti, 1959) Lentin et Williams, 1977 Isabelidinium microarmum (McIntyre, 1975) Lentin et Williams, 1977 Isabelidinium? viborgense Heilmann-Clausen, 1985 Kallosphaeridium biornatum Stover, 1977 Kallosphaeridium brevibarbatum de Coninck, 1969 Kallosphaeridium cf. orchiesense de Coninck, 1975 Kallosphaeridium yorubaense Jan du Chéne et Adediran, 1985 Kleithriasphaeridium fasciatum (Davey et Williams, 1966) Davey, 1974 Laciniadinium arcticum (Manum et Cookson, 1964) Lentin et Williams, 1980 Laciniadinium cf. biconiculum McIntyre, 1975 Laciniadinium rhombiforme (Vozzhennikova, 1967) Lentin et Vozzhennikova, 1990 Laciniadinium williamsii Ioannides, 1986 Laciniadinium? aquiloniforme Schiøler et al., 1997 Leberidocysta chlamydata (Cookson et Eisenack, 1962) Stover et Evitt, 1978 Lingulodinium machaerophorum (Deflandre et Cookson, 1955) Wall, 1967 Litosphaeridium arundum (Eisenack et Cookson, 1960) Davey, 1979 Magallanesium cf. macmurdoense Wilson, 1967 Magallanesium densispinatum (Stanley, 1965) Quattrocchio et Sarjeant, 2003 Magallanesium pilatum (Stanley, 1965) Quattrocchio et Sarjeant, 2003 Melitasphaeridium asterium (Eaton, 1976) Bujak et al., 1980

313

Membranilarnacia polycladiata Cookson et Eisenack in Eisenack, 1963 Membranilarnax liradiscoides Wetzel, 1933 Membranophoridium aspinatum Gerlach, 1961 Membranosphaera maastrichtica Samoilovitch in Samoilovitch et Mchedlishvili, 1961 Microdinium carinatum (Below, 1987) Lentin et Williams, 1989 Microdinium ornatum Cookson et Eisenack, 1960 Microdinium reticulatum Vozzhennikova, 1967 Microdinium sonciniae (Marheinecke, 1992) Slimani, 1994 Montanarocysta aemiliana Corradini, 1973 Neoeurysphaeridium glabrum Slimani, 1994 Odontochitina operculata (Wetzel, 1933) Deflandre et Cookson, 1955 Oligosphaeridium complex (White, 1842) Davey et Williams, 1966 Oligosphaeridium pulcherrimum (Deflandre et Cookson, 1955) Davey et Williams, 1966 Operculodinium centrocarpum (Deflandre et Cookson, 1955) Wall, 1967 Operculodinium severinii (Cookson et Cranwell, 1967) Islam, 1983 Ophilobolus lapidarus O. Wetzel, 1933 Palaeocystodinium golzowense Alberti, 1961 Palaeocystodinium lidiae (Gorka, 1963) Davey, 1969 Palaeohystrichophora infusorioides Deflandre, 1935 Palaeoperidinium pyrophorum (Ehrenberg, 1838) Sarjeant, 1967 Palaeotetradinium minusculum (Alberti, 1961) Stover et Evitt, 1978 Palaeotetradinium silicorum Deflandre, 1936 Paralecaniella indentata (Deflandre et Cookson, 1955) Cookson et Eisenack, 1970 Paucilobimorpha apiculata (Cookson et Eisenack, 1962) Prössl, 1994 Paucilobimorpha granulata de Coninck, 1986 Paucilobimorpha incurvata (Cookson et Eisenack, 1962) Prössl, 1994 Paucilobimorpha triradiata de Coninck, 1986 Pentadinium laticinctum Gerlach, 1961 Pentadinium lophophorum (Benedek, 1972) Benedek et al., 1982 Phanerodinium cayeuxii Deflandre, 1936 Phelodinium kozlowskii (Gorka, 1963) Lindren, 1984 Phelodinium magnificum (Stanley, 1965) Stover et Evitt, 1978

P l a t e III. Dinocysts, spores and pollen from Upper Cretaceous deposits recovered by Borehole 1P. (1) Cassiculosphaeridia sp., ×500, sample 60; (2) Hystrichodinium pulchrum Deflandre, ×500, sample 60; (3) Trichodinium castanea Deflandre, ×500, sample 60; (4) Palaeohystrichophora infusorioides Deflandre, ×500, sample 60; (5) Alterbidinium varium Kirsch, ×500, sample 60; (6) Leberidocysta sp., ×500, sample 60; (7) Laciniadinium cf. biconiculum McIntyre, ×500, sample 60; (8, 9) Flandrecysta furcata Slimani, ×500, sample 60; (10, 11) Canningia sp. 1, ×500, sample 60; (12) Achomosphaera alcicornu (Eisenack) Davey and Williams, ×500, sample 60; (13) Palaeotetradinium silicorum Deflandre, ×500, sample 60; (14) Spinidinium densispinatum Stanley, ×500, sample 60; (15) Prolixosphaeridium sp., ×500, sample 60; (16) Palaeoperidinium pyrophorum (Ehrenberg) Sarjeant, ×500, sample 60; (17) Laciniadinium sp., ×500, sample 60. STRATIGRAPHY AND GEOLOGICAL CORRELATION

Vol. 16

No. 3

2008

314

ALEKSANDROVA, ZAPOROZHETS

퇷Îˈ‡ IV

3

5

1

6

4

7

8

9

2

13

11 10 12

14

15

16

STRATIGRAPHY AND GEOLOGICAL CORRELATION

17

Vol. 16

No. 3

2008

PALYNOLOGICAL CHARACTERISTICS Phthanoperidinium comatum (Morgenroth, 1966) Eisenack et Kjellstrom, 1972 Phthanoperidinium geminatum Bujak in Bujak et al., 1980 Phthanoperidinium stockmansii (de Coninck, 1975) Lentin et Williams, 1977 Phthanoperidinium? eocenicum (Cookson et Eisenack, 1965) Lentin et Williams, 1973 Pierceites sp. C sensu Schiöler et Wilson, 1993 Prolixosphaeridium cf. nanus (Wetzel, 1933) Sarjeant, 1985 Pterodinium cingulatum (Wetzel, 1933) Below, 1981 Pyxidiella scrobiculata (Deflandre et Cookson, 1955) Cookson et Eisenack, 1958 Pyxidinopsis psilata (Wall et Dale in Wall et al., 1973) Head, 1994 Raetiaedinium cf. laevigatum Slimani, 1994 Raetiaedinium punctulatum Slimani, 1994 Raetiaedinium truncigerum (Deflandre, 1937) Kirsch, 1991 Rhiptocorys veligera (Deflandre, 1937) Lejeune-Carpentier et Sarjeant, 1983 Rhombodinium perforatum (Jan du Chene et Chäteauneuf, 1975) Lentin et Williams, 1977 Rhombodinium porosum Bujak, 1979 Rottnestia borussica (Eisenack, 1954) Cookson et Eisenack, 1961 Rottnestia borussica Eisenack, 1954 Rottnestia wetzelii (Deflandre, 1937) Slimani, 1994 Samlandia cf. mayi McMinn, 1988 Samlandia chlamydophora Eisenack, 1954 Selenopemphix nephroides Benedek, 1972 Senoniasphaera cf. protrusa Clarke et Verdier, 1967 Soaniella granulata Vozzhennikova, 1967 Spinidinium clavus Harland, 1973 Spinidinium echinoideum (Cookson et Eisenack, 1960) Lentin et Williams, 1976 Spinidinium spp. Spinidinium uncinatum May, 1980 Spiniferites bulloideus (Deflandre et Cookson, 1955) Sarjeant, 1970 Spiniferites cornutus (Gerlach, 1961) Sarjeant, 1970 Spiniferites membranaceus (Rossignol, 1964) Sarjeant, 1970 Spiniferites multibrevis (Davey and Williams, 1966) Below, 1982 Spiniferites porosus (Manum et Cookson, 1964) Harland, 1973

315

Spiniferites procerus Marheinecke, 1992 Spiniferites ramosus (Ehrenberg, 1838) Mantell, 1854 Spiniferites ramosus subsp. cavispinosus Hansen, 1977 Spiniferites ramosus subsp. gracilis (Davey et Williams, 1966) Lentin et Williams, 1973 Spiniferites ramosus subsp. granosus (Davey et Williams, 1966) Lentin et Williams, 1973 Spiniferites ramosus subsp. maeandriformis (Corradini, 1973) Lentin et Williams, 1973 Spongodinium delitiense (Ehrenberg, 1838) Deflandre, 1936 Subtilisphaera cf. pontis-mariae (Deflandre, 1936) Lentin et Williams, 1976 Surculosphaeridium longifurcatum (Firtion, 1952) Davey et al., 1966 Systematophora placacantha (Deflandre et Cookson, 1955) May, 1980 Tanyosphaeridium regulare Davey et Williams, 1966 Tanyosphaeridium variecalamum Davey et Williams, 1966 Tanyosphaeridium xanthipyxides (Wetzel, 1933) Stover et Evitt, 1978 Tectatodinium pellitum Wall, 1967 Thalassiphora delicata Williams et Downie, 1966 Thalassiphora fenestrata Liengjarem et al., 1980 Thalassiphora pelagica (Eisenack, 1954) Eisenack et Gocht, 1960 Thalassiphora reticulata Morgenroth, 1966 Triblastula utinensis Wetzel, 1933 Trichodinium castanea Deflandre, 1935 Trigonopyxidia ginella (Cookson et Eisenack, 1960) Downie et Sarjeant, 1965 Trithyrodinium cf. striatum Benson, 1976 Trithyrodinium evittii Drugg, 1967 Trithyrodinium suspectum (Manum et Cookson, 1964) Davey, 1969 Trithyrodinium vermiculatum (Cookson et Eisenack, 1961) Lentin et Williams, 1976 Turnhosphaera hypoflata (Yun Hyesu, 1981) Slimani, 1994 Volkheimeridium lanterna (Cookson et Eisenack, 1960) Quattrocchio et Sarjeant, 2003 Wallodinium luna (Cookson et Eisenack, 1960) Lentin et Williams, 1973 Wilsonisphaera cf. petila (Corradini, 1973) Slimani, 1994 Xenascus ceratioides (Deflandre, 1937) Lentin et Williams, 1973

P l a t e IV. Dinocysts, spores and pollen from Upper Cretaceous deposits recovered by Borehole 1P. (1) Xenascus ceratioides (Deflandre) Lentin and Williams, ×500, sample 60; (2) Cerodinium diebelii (Alberti) Lentin and Williams, ×500, sample 53; (3) Raetiaedinium truncigerium (Deflandre) Kirsch, ×500, sample 60; (4) Alterbidinium acutulum (Vozzhennikova) Lentin and Vozzhennikova, ×500, sample 67; (5) Turnhosphaera hypoflata (Yun Hyesu) Slimani, ×500, sample 60; (6) Exochosphaeridium bifidum (Clarke and Verdier) Clarke et al., ×500, sample 60; (7, 8) Trithyrodinium vermiculatum (Cookson et Eisenack) Lentin et Williams, ×500, sample 60; (9) Fromea fragilis (Cookson and Eisenack) Stover and Evitt, ×500, sample 53; (10) Microdinium sonciniae (Marheinecke) Slimani, ×500, sample 60; (11) Membranilarnacia sp., ×500, sample 60; (12) Isabelidinium sp., ×500, sample 67; (13) Paralecaniella indentata (Deflandre and Cookson) Cookson and Eisenack, ×500, sample 67; (14) Alterbidinium sp., ×500, sample 60; (15) Apteodinium deflandrei (Clarke te Verdier) Lucas-Clark, ×500, sample 67; (16) Gillina hymenophora Cookson and Eisenack, ×500, sample 56; (17) Pierceites sp., ×500, sample 60. STRATIGRAPHY AND GEOLOGICAL CORRELATION

Vol. 16

No. 3

2008

316

ALEKSANDROVA, ZAPOROZHETS

Xenikoon australis Cookson et Eisenack, 1960 Xiphophoridium alatum (Cookson et Eisenack, 1962) Sarjeant, 1966

Reviewers N.K. Lebedeva and V.A. Zakharov REFERENCES 1. V. V. Baltakis, “Sedimentary Formations and Lithologic Complexes of the Paleogene and Neogene in the Southern Baltic Region,” in Lithology and Geology of Mineral Deposits in the Southern Baltic Region (Mintis, Vilnius, 1966), pp. 277–321 [in Russian]. 2. W. A. Berggren, “A Cenozoic Time Scale—Some Implications for Regional Geology and Paleobiogeography,” Lethaia 5 (2), 195–215 (1972). 3. G. I. Egorov, “Late Eocene Foraminifers First Found in the Baltic Region,” Byull. Nauchno-Tekhn. Information MGiON SSSR 4 (9), 6–7 (1957) [in Russian]. 4. A. Eisenack, “Die Phosphoritknollen der Bernsteinformation als Uberlieferer tertiaren Planctons,” Schr. Phys.ökon. Ges. Königsberg 70, 181–188 (1938). 5. A. Eisenack, “Mikrofossilien aus Phosphoriten des samlandischen Unteroligozans und uber die Einheitlichkeit der Hystrichosphaerideen,” Paleontographica Abt. A. 105 (3–6), 49–95 (1954). 6. A. A. Grigyalis, V. V. Baltakis, and V. Katinas, “Stratigraphy of Paleogene Deposits in the Baltic Region,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 3, 107–116 (1971) [in Russian]. 7. A. A. Grigyalis, A. F. Burlak, V. Yu. Zosimovich, et al., “New Data on Stratigraphy and Paleogeography of Paleogene Deposits in the West European Part of the USSR,” Sov. Geol., No. 12, 41–54 (1988) [in Russian]. 8. A. A. Kaplan, A. A. Grigyalis, N. I. Strel’nikova, and L. S. Glikman, “Stratigraphy and Correlation of Paleogene Deposits in the Southwestern Baltic Region,” Sov. Geol., No. 4, 30–43 (1977) [in Russian]. 9. A. Koenen, “Revision der Mollusken-Fauna des Samlandischen Tertiars,” Abh. Geol. Specialkarte Preussen X (6) 1366–1392 (1894).

10. B. Kosmowska-Ceranowicz, A. Kohlman-Adamska, and I. Grabowska, “Erste Ergebnisse zur Lithologie und Palynologie der bernsteinfuhrenden Sedimente im Tagebau Primorskoje,” in Proceedings Bernstein-Symposium Bochum, Sept. 16–17, 1996, Sonderheft Metalla, pp. 5– 17 (1997). 11. K. Mayer, “Faunula des marinen Sandsteines von Klleinkubren bei Königsberg. Vierteljahresschrift naturforsch,” Ges. Zürich. 6, 1–109 (1861). 12. F. Noetling, “Die Fauna des samländischen Tertiärs,” Abh. Geol. Specialkarte Preussen 6 (4), 1–109 (1888). 13. I. M. Pokrovskaya and V. V. Zauer, “Palynological Substantiation for the Age of Amber-Bearing Deposits in the Baltic Region,” Dokl. Akad. Nauk SSSR 130 (1), 162– 165 (1960) [in Russian]. 14. “Resolution of the XV Plenary Session of the Paleogene Commission,” in Resolutions of the ISC and Its Permanent Commissions, Issue 21 (MSK, Leningrad, 1983), pp. 42–44 [in Russian]. 15. N. I. Strel’nikova, Paleogene Diatomaceous Algae (Sankt-Peterb. Univ., St. Petersburg, 1992) [in Russian]. 16. N. I. Strel’nikova, A. A. Kaplan, and M. A. Travina, “Paleogene Diatoms, Silicoflagellates and Ebridians from the Kaliningrad region,” in Marine Micropaleontology (Diatoms, Radiolarians, Silicoflagellates, Foraminifers and Calcareous Nannoplankton) (Nauka, Moscow, 1978), pp. 57–66 [in Russian]. 17. T. Wappler, “Now Old is Baltic Amber?—New Evidence for a Middle Eocene Age from Limnic Sediments,” in Proceedings of Symposium on the Paleogene: Preparing for Modern Life and Climate, August 25–30, 2003. Leuven, Belgium, p. 82. 18. K. F. Zatula, “Hystrichosphaerid Assemblages from Amber-Bearing Deposits of the Baltic Region,” Dokl. Akad. Nauk SSSR 212 (4), 981–983 (1973) [in Russian]. 19. M. P. Zharkov, L. S. Glikman, A. A. Kaplan, et al., “On the Age of the Paleogene in the Kaliningrad region,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 1, 132–135 (1976) [in Russian].

STRATIGRAPHY AND GEOLOGICAL CORRELATION

Vol. 16

No. 3

2008