AMEGHINIANA, Tomo 48 (2): 154 - 176
PALYNOLOGY OF THE LA VETEADA FORMATION (PERMIAN) IN THE SIERRA DE NARVÁEZ, CATAMARCA PROVINCE, ARGENTINA Pedro Raúl Gutiérrez1, Ana María Zavattieri2, Miguel Ezpeleta3 and Ricardo A. Astini3 1 Museo Argentino de Ciencias Naturales “B. Rivadavia” – Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Ángel Gallardo 470, C1405DJR Buenos Aires;
[email protected] 2 Laboratorio de Paleopalinología, Instituto Argentino de Nivología, Glaciología and Ciencias Ambientales, Centro Científico Tecnológico-Consejo Nacional de Investigaciones Científicas y Técnicas-Mendoza, Casilla de Correo 330, 5500 Mendoza;
[email protected] 3 Laboratorio de Análisis de Cuencas and Cátedra de Estratigrafía and Geología Histórica, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba – Consejo Nacional de Investigaciones Científicas y Técnicas, Pabellón Geología, Ciudad Universitaria, 2º Piso, Oficina 7, Av. Vélez Sarsfield 1611, X5016GCA Córdoba:
[email protected];
[email protected]
*Contribution to the Research Projects PICT N° 32693 and 33630.
Abstract. Eighty-one species of spores and pollen grains together with algae and fungi remains were recovered from the shallow lacustrine successions of the La Veteada Formation at the Chaschuil river section (27°43′50.5″S-68°01′17.0″W), Sierra de Narváez, Catamarca Province, Famatina Range, which are herein described and/or illustrated. This palynoflora is composed dominantly by a diverse association of taeniate pollen groups (68%), bisaccate (non-taeniate) pollen grains (24%), with less significant proportions of spores. The studied palynoflora is referred to the upper part of the LW (Lueckisporites-Weylandites) Biozone, thus a Middle Permian (Guadalupian) age is established, mainly based on the presence of Corisaccites alutas Venkatachala and Kar, Lueckisporites angoulensis Jardiné, L. nyakapandensis Hart, L. stenotaensis Menéndez, L. virkkiae (Potonié and Klaus) Clarke, Lunatisporites variesectus Archangelsky and Gamerro, Staurosaccites cordubensis Archangelsky and Gamerro, Striatoabieites anaverrucosus Archangelsky and Gamerro, Vittatina corrugata Marques-Toigo, V. costabilis Wilson, V. subsaccata Samoilovich, Convolutispora archangelskyi Playford and Dino, Striomonosaccites cicatricosus Archangelsky and Gamerro. Several species are recorded for the first time in Permian strata from Argentina, extending their chronostratigraphic records. Lueckisporites balmei (Tiwari and Vijaya) comb. nov. is proposed. Gondwanic biostratigraphic distribution of selected species recorded in this assemblage is presented in a range-chart. This palynofloral association is composed mainly by allochthonous elements derived from gymnosperms, conifers and pteridosperms, together with rare authochthonous elements related to the local vegetation represented by pteridophyte and sphenophyll components. Warm arid and/or semiarid climatic conditions prevailed in the Paganzo Basin during deposition of the La Veteada Formation. Key words. Palynology. La Veteada Formation. Famatina Range. Middle Permian. Argentina.
Resumen. Palinología de la Formación La Veteada (Pérmico) en la Sierra de Narváez, provincia de Catamarca, Argentina. Se describen y/o ilustran ochenta y una especies de esporas, granos de polen, algas y hongos hallados en las sucesiones lacustres someras de la Formación La Veteada, la cual aflora en la margen izquierda del río Chaschuil (27°43′50.5″S-68°01′17.0″W), en la Sierra de Narváez, provincia de Catamarca, Sistema de Famatina, los cuales se describen y/o ilustran en esta contribución. La palinoflora está compuesta en forma dominante por granos de polen bisacados estriados (68%) y no-estriados (24%), con significativa menor proporción de esporas. La palinoflora estudiada se refiere a la parte superior de la Biozona LW (Lueckisporites-Weylandites), que indica una edad pérmica media (Guadalupiano), en base a la presencia de Corisaccites alutas Venkatachala y Kar, Lueckisporites angoulensis Jardiné, L. nyakapandensis Hart, L. stenotaensis Menéndez, L. virkkiae (Potonié y Klaus) Clarke, Lunatisporites variesectus Archangelsky y Gamerro, Staurosaccites cordubensis Archangelsky y Gamerro, Striatoabieites anaverrucosus Archangelsky y Gamerro, Vittatina corrugata Marques-Toigo, V. costabilis Wilson, V. subsaccata Samoilocich, Convolutispora archangelskyi Playford y Dino, Striomonosaccites cicatricosus Archangelsky y Gamerro. Varias especies se registran por primera vez en estratos pérmicos argentinos, extendiendo su registro cronoestratigráfico. Se propone la nueva combinación de Lueckisporites balmei (Tiwari y Vijaya) nov. comb. La distribución bioestratigráfica a nivel de Gondwana de especies seleccionadas registradas en esta asociación se presenta en una carta de distribución cronológica. Esta asociación palinológica está compuesta principalmente por elementos alóctonos derivados de gimnospermas, coníferas y pteridospermas, junto con escasos elementos autóctonos relacionados a la vegetación local representados por componentes de pteridofitas y esfenópsidas. Condiciones climáticas cálidas y áridas y/o semiáridas prevalecieron en la Cuenca de Paganzo durante la depositación de la Formación La Veteada. Palabras clave. Palinología. Formación La Veteada. Sierra de Famatina. Pérmico Medio. Argentina.
Late Paleozoic rocks from western Argentina are traditionally separated in two different sedimentary domains: (1) The Calingasta-Uspallata and Río Blanco basins to the west, and (2) the Paganzo Basin to the east. However, the marked par154
allelism in the evolution of these regions suggests a shared evolution for the entire region (López Gamundí et al., 1994; Astini et al., 2005, 2009; Ezpeleta, 2009). The predominantly continental eastern Paganzo depozone comprises AMGHB2-0002-7014/11$00.00+.50
GUTIÉRREZ et al.: PALYNOLOGY OF THE PERMIAN LA VETEADA FORMATION
the Guandacol, Tupe and Patquía supersequences (López Gamundí et al., 1990; Fernández Seveso et al., 1993). In the Famatina Ranges –within the Sierras Pampeanas– four main intervals were recognized by Ezpeleta (2009) as follow: (1) a Bashkirian glacial event at the base of the Agua Colorada Formation, (2) a Late Pennsylvanian alluvial succession (Las Pircas Formation) related to a pervasive tectonic event that fragmented the basement and generated intermontane relief (Ezpeleta et al., 2008), (3) Permian red beds of the De La Cuesta Formation, and (4) a relatively thin but regionally tabular shallow lacustrine interval known as the La Veteada Formation (Dávila et al., 2005). The northernmost range of Famatina is known as the Sierra de Narváez. The stratigraphy there is very similar to that from the rest of the eastern Paganzo depozone, being the only difference the lack of the tectonically driven coarse clastic wedge (Las Pircas Formation) (Ezpeleta and Astini, 2008; Ezpeleta et al., 2008; Ezpeleta, 2009; see Fig. 1). The Carboniferous–Permian palynological record from central-western Argentina includes the following biozones: Reticulatisporites magnidictyus-Verrucosisporites quasigobbetti (MQ Biozone), Raistrickia densa-Convolutispora muriornata (DM Biozone), Pakhapites fusus-Vittatina subsaccatta (FS Biozone) and Lueckisporites-Weylandites (LW Biozone) (see Césari and Gutiérrez, 2001; Pérez Loinaze, 2007). In the eastern part of the Paganzo Basin in the Famatina Range, palynological assemblages have been recorded only
from the De La Cuesta Formation (Aceñolaza and Vergel, 1987; LW Biozone) and from the Agua Colorada Formation (Césari et al., 2008; DM Biozone). Thus, the La Veteada microflora herein presented provides new palynological elements to complete the Permian biostratigraphical scheme from central-western Argentina. This microflora characterizes the upper part of the LW Biozone. THE LA VETEADA FORMATION IN THE NARVÁEZ RANGE The stratotype of this stratigraphic unit was defined by Dávila et al. (2005) in the Los Colorados anticline, in the central region of the Famatina Range, ~100 km to the south of the Sierra de Narváez. In the stratotype area, the La Veteada Formation overlies the De La Cuesta Formation and is unconformably covered by Miocene rocks. The lower contact of the De La Cuesta Formation is marked by a sharp erosive surface overlain by a silica-rich pebble conglomerate. Highly bioturbated silicified horizons are common toward the top of the De La Cuesta Formation implying that some erosion occurred before the La Veteada Formation was deposited. As the contact with the overlying Miocene rocks is a low-angle unconformity, it is possible that the younger strata of the La Veteada Formation might be present elsewhere. In contrast, in the Sierra de Narváez the relationship between the La Veteada and the De La Cuesta formations seems conformable and the top of the La Veteada Formation is trun-
Figure 1. Geological map of the studied area / Mapa geológico del área estudiada.
155
AMEGHINIANA, Tomo 48 (2): 154 - 176
Figure 2. Stratigraphic column for the La Veteada Formation and schematic column of Late Paleozoic deposits in Sierra de Narváez. See map in Figure 1 for location. The basal purple –reddish interval is interpreted as the interfingering between shallow lake and playa-lake environments. The upper yellowish section suggests increasing lake stability / Columna estratigráfica de la Formación La Veteada y columna esquemática del Paleozoico Superior de la Sierra de Narváez. Ver el mapa en la Figura 1 para la ubicación. El intervalo basal púrpura-rojizo es interpretado como la transición entre un lago poco profundo y zonas de barreales. La sección amarillenta superior sugiere una mayor estabilidad del lago. 1, Silcretes developed on alluvial parent material at the base of the La Veteada Formation (LVF) that overlies on the De La Cuesta Formation (DLCF) / Silcretes desarrollados sobre materiales aluviales de la base de la Formación La Veteada (LVF), que se superpone a la Formación De La Cuesta (DLCF). 2, Silty-mudstones deposits interbedded with thin nodular and prismatic-rich gypsum beds / depósitos limosos con delgadas intercalaciones de pelitas ricas en yeso nodular y prismáticos. 3, Laminated marl and carbonates / marga laminadas y carbonatos.
156
GUTIÉRREZ et al.: PALYNOLOGY OF THE PERMIAN LA VETEADA FORMATION
cated by erosion. In this region, the La Veteada Formation consists of a lower interval of purple-reddish mudstones and siltstones alternating with fine-grained tabular sandstones (35 m, Fig. 2), and an upper interval with carbonate-cemented yellow sandstones alternating with scarce thin beds of green mudstones and occasional thin dolomites with stromatolite lamination (70 m, Fig. 2). The maximum thickness of the La Veteada Formation in this locality is about 100 m. Here the lower interval of the unit also yields tabular silcretes, with individual thicknesses ranging between 0.2 and 1m (Fig. 2.1). Such silicified horizons have important paleoenvironmental significance and have elsewhere been widely used as marker beds (e.g., Twidale and Bourne, 1998). Although the origin of similar rocks has been the matter of thorough discussion (e.g., Summerfield, 1983; Nash et al., 1994), there is an agreement to interpret them as indicators of stratigraphic condensation (e.g., Twidale and Bourne, 1998). In Famatina –as in the Sierra de Narváez– the silcrete rich interval overlaps a relatively thick eolian interval belonging to the underlying De La Cuesta Formation suggesting a condensed interval for the lower part of the unit associated to a climate change towards a more humid environment (Ezpeleta, 2009). Within the overlying purple-reddish interval of the La Veteada Formation primary nodular, chicken-wire and prismatic gypsum develops pervasively in the lower more muddy section, whereas more rhythmic sedimentation with some bioturbation is better represented toward the top (Fig. 2.2). Sandstones/mudstones ratio is very low (~1:10) and bedding is strikingly tabular and laterally continuous. Individual sandstones record erosional features at the bottom, and internally show massive to normally graded structure with very thin laminations towards the top, including current and wave ripple structures. Desiccation cracks and raindrop marks are occasionally preserved within this facies. The predominance of interbedded fine-grained shales permits inferring frequent settling processes from suspension in a relatively calm subaqueous environment. Scarcity of darker gray-greenish shales and frequent gypsum crystallization and subaerial exposure (cracks and rain-drop marks) indicate relatively shallow lacustrine deposition, often under hypersaline conditions. Graded beds would represent largely unconfined event-beds recording falling-stage regimes and subsequent shallow-wave reworking. This alternation of shallow lake and subaerial exposure indicates that the lacustrine bodies were alternatively transformed into playa–lake systems (cf. Reid and Frostick, 1987; Olsen, 1989). Within the Narváez section, the upper carbonate-rich in-
terval suggests increasing lake stability and the darker greenish-grayish shale interbedding points to slightly deeper-water, less oxygenated (probably dysaerobic) conditions, favourable for better organic matter preservation (see palynological sampled levels in Figure 2 and details in Figure 2.3). Stromatolites may represent carbonate rims and outer facies belts in these geographically expanded but relatively shallow large lakes. MATERIALS AND METHODS Four stratigraphic levels of the La Veteada Formation exposed at the Sierra de Narváez section were sampled for paleopalynologic studies. Only one of them yielded moderately preserved palynomorphs. Their systematic study is presented in this contribution. The physical and chemical extraction of palynomorphs was carried out at the Paleopalynological Laboratory of the IANIGLA/CCT-CONICET-Mendoza. Standard palynologic extraction techniques involved treatment with hydrochloric and hydrofluoric acids (Volkheimer and Melendi, 1976). An Olympus BX50 microscope with an Olympus digital camera was used for microscopic study at the IANIGLA. A Nikon H550S microscope with an adapted DS-U2-Fil-U2 Nikon digital camera were used for light microscope study at the Paleopalynologic Laboratory, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Buenos Aires. Coordinates of specimens are denoted by an England Finder (EF) reference. Slides are housed in the Paleopalynological Slide Collection of the former institution, under number 9089 MPLP (Mendoza-Palinoteca-Laboratorio-Paleopalinología). Eighty-one terrestrial species of spores and pollen grains derived from vascular plants, taxa of algae and fungal remains identified in this study and their corresponding half-tone illustration references are compiled and grouped in the Appendix 1. The text fully describes those new form-species registered for the Permian strata of Argentina including those retained in open nomenclature, and comments are given on some others as required. For the suprageneric classification of palynomorphs (spores and pollen grains) we used the traditional schemes of R. Potonié and Kremp (1954), R. Potonié (1956, 1970) with modifications introduced by Dettmann (1963) and others proposed by Smith and Butterworth (1967) and certain emendation proposed by Maheshwari (1975). Terminology used to describe morphological features of spores and pollen grains follows the glossaries of Dettmann (1963), Kremp (1965), Smith and Butterworth (1967), and 157
AMEGHINIANA, Tomo 48 (2): 154 - 176
Playford and Dettmann (1996). Definitions of terms adopted in the description of morphological attributes of spores and pollen grains are to be found in glossaries or explanatory notes furnished by several authors (see Playford and Dino 2000a, p. 14). Dimensional terminology applied to bisaccate and bilaterally symmetrical pollen grains follows Playford and Dino (2002) and most previous authors. Size measurements are presented in the format N1(N2)N3, where N1 and N3 represent the minimum and the maximum values measured respectively, and N2 the mean for all the specimens evaluated. The number of measured specimens appears between brackets. Figure 7 and Appendix 1 show the “previous records”, where those referred to South America and the remaining Gondwana have been priorized in order to recognize chronological distribution of the species that could be meaningful for correlations between Permian basins of the supercontinent. References to extra-Gondwanan records are included only for those species that have not been previously recorded in Gondwana. SYSTEMATIC PALEONTOLOGY Anteturma Proximegerminantes Potonié 1970 Turma Triletes Reinsch emend. Dettmann 1963 Suprasubturma Acavatitriletes Dettmann 1963 Subturma Azonotriletes Lüber emend. Dettmann 1963 Infraturma Apiculati Bennie and Kidston emend. Potonié 1956 Subinfraturma Verrucati Dybová and Jachowicz 1957 Genus Verrucosisporites Ibrahim emend. Smith 1971 Type species. Verrucosisporites verrucosus Ibrahim 1933.
Verrucosisporites surangei Maheshwari and Banerji 1975 Figures 3.9–10
Dimensions. Equatorial diameter, 55(68)82 µm. Verrucae, 1(2.7)7 µm lenght; 0.5(1.7)5 µm wide, 0.5(1.7)4 µm high; spaced 0.5(0.7)1.5 µm apart (eight specimens).
Remarks. This species is characterized by its comparatively more robust verrucae at the proximal inter-rays area (Maheshwari and Banerji, 1975). Infraturma Murornati Potonié and Kremp 1954 Genus Convolutispora Hoffmeister, Staplin and Malloy 1955 Type species. Convolutispora florida Hoffmeister et al. 1955.
Convolutispora sp. cf. C. tessellata Hoffmeister, Staplin and Malloy 1955 Figure 3.20
Dimensions. Equatorial diameter including sculpture, 55–60 µm. Rugulae, 1–2 µm wide; space between rugulae, 0.5–1 µm (two specimens). Remarks. This species is smaller and less ornamentated than C. candiotensis Ybert (1975), their rugulae appear more regular producing a negative reticulate pattern. They are partly anastomosed forming regular ridges; any other discrete element has been mentioned for this species. Turma Monoletes Ibrahim 1933 Suprasubturma Acavatomonoletes Dettmann 1963 Subturma Azonomonoletes Luber in Luber and Waltz 1938 Infraturma Laevigatomonoleti Dybová and Jachowicz 1957 Genus Laevigatosporites Ibrahim 1933 Type species. Laevigatosporites vulgaris (Ibrahim) Ibrahim 1933.
Laevigatosporites flexus Segroves 1970 Figure 3.19
Description. Monolete spores. Amb oval. Laesura monolete, straight, extending ca. 0.66 of spore length. Proximal face concave, distal face convex. Exine ca. 1 µm thick, psilate. Secondary marginal folds are common. Dimensions. Equatorial diameter: longitudinal axis, 52–60 µm; transverse axis, 41–48 µm (two specimens).
Figure 3. 1, Calamospora sp., MPLP 9089(B) O37/2 (X 500). 2, Leiotriletes sp. cf. L. badamensis (Venkatachala and Kar) Foster 1975, MPLP 9089(C) Q53/3 (X 500). 3, cf. Punctatisporites fungosus Balme 1963, MPLP 9089(D) G51/4 (X 500). 4, Verrucosisporites menendezii Archangelsky and Gamerro 1979, MPLP 9089(B) Q29/2. 5, Verrucosisporites andersonii (Anderson) Backhouse 1988, MPLP 9089(D) O42/2 (X 500). 6, Cyclogranisporites sp., MPLP 9089(C) H51/0 (X 500). 7, Leiotriletes virkkii Tiwari 1965, MPLP 9089(A) R32/0 (X 500). 8, Raistrickia sp. (Figure 3.8) MPLP 9089(C) U34/0 (X 500). 9–10, Verrucosisporites surangei Maheshwari and Banerji 1975; 9, MPLP 9089(A) D43/3 (X 500); 10, MPLP 9089(E) M45/1 (X 500). 11, Retusotriletes sp. MPLP 9089(C) F41/1 (X 500). 12–13, Convolutispora archangelskyi Playford and Dino 2002; 12, MPLP 9089(E) E34/2 (X 500); 13, MPLP 9089(D) U35/1 (X 500). 14, Convolutispora candiotensis Ybert 1975; MPLP 9089(E) O52/0 (X 500). 15, Horriditriletes ramosus (Balme and Hennelly) Bharadwaj and Salujha 1964; MPLP 9089(D) X52/0 (X 500). 16, Convolutispora sp. cf. C. ordonezii Archangelsky and Gamerro 1979, MPLP 9089(A) H23/0 (X 750). 17, Laevigatosporites vulgaris (Ibrahim) Ibrahim 1933; MPLP 9089(D) V54/0 (X 500). 18, Kendosporites sp., MPLP 9089(D) X48/3 (X 500). 19, Laevigatosporites flexus Segroves 1970, MPLP 9089(A) L41/3 (X 500). 20, Convolutispora sp. cf. C. tessellata Hoffmeister, Staplin and Malloy 1955; MPLP 9089(D) J40/0. 21, Kendosporites sp., MPLP 9089(C) C47/0 (X 500). 22, Cannanoropollis densus (Lele) Bose and Maheshwari 1968, MPLP 9089(E) G38/4 (X 500). 23, Cannanoropollis janakii Potonié and Sah 1960, MPLP 9089(C) C46/1 (X 500).
158
GUTIÉRREZ et al.: PALYNOLOGY OF THE PERMIAN LA VETEADA FORMATION
1
4
2
3
5 6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
159
AMEGHINIANA, Tomo 48 (2): 154 - 176
Remarks. These two specimens are clearly distinguished from L. vulgaris (Ibrahim) Ibrahim by their concave proximal face that makes the longitudinal ends fold inwards. Infraturma Sculptatomonoleti Dybová and Jachowicz 1957 Genus Kendosporites Surange and Chandra 1974 Type species. Kendosporites striatus (Salujha) Surange and Chandra 1974.
Remarks. Kendosporites Surange and Chandra (1974) is distinguished from Columinisporites Peppers (1964) and Schweitzerisporites Kaiser (1976) by its single-layered wall and by its longitudinal pattern of muri. Kendosporites sp. Figures 3.18, 21
Dimensions. Equatorial diameter: longitudinal axis, 60(65.7)70 µm; transverse axis, 39(42.3)47 µm (six specimens). Remarks. The studied specimens appear to have strongly corroded exine but even so it is possible distinguishing the presence of 6 to 8 narrow muri (1–1.5 µm in width), poorly defined, but with an oblique (ca. 45°) inclination to the longitudinal axis of the spores. The muri are spaced 7–10 µm apart and run longitudinally from one end to the other, in such way, they appear to intersect them when the opposite surfaces of the spores are superimposed. The poor preservation does not allow a more specific identification. Turma Saccites Erdtman 1947 Subturma Disaccites Cookson 1947 Infraturma Disacciatrileti Leschik emend. Potonié 1958 Genus Alisporites Daugherty emend. Nilsson 1958 Type species. Alisporites opii Daugherty 1941.
Remarks. Balme (1970) recognized both Alisporites and Falcisporites, and separated them largely on the basis of a longitudinal sulcus present in Falcisporites, although, he did not observe this feature in Alisporites. Jansonius (1971) discussed the genus and compared it with Falcisporites. He found that Falcisporites differed from Alisporites in that “the saccus reticulation is much coarser, and the distal leptoma is delineated by distinct distal bladder bases; a thickening of the proximal exoexine along the longitudinal axis is also apparent”. De Jersey (1972) summarized the discussion concerning the separation of these two genera and he concluded that it should be possible to distinguish both genera on the basis of these differences. Herein we follow Segroves (1969), who concluded that the most useful emendation of the genus is 160
that of Nilsson (1958), as it does not require the presence of a well-defined sulcus. Thus, Segroves (1969, see p. 189) established the generic characters for Alisporites as: “Disaccate, haploxylonoid, amb oval. No tetrad scar present. Corpus sub-circular to elongate oval, with length usually exceeding breadth. Sacci crescentic to semicircular in outline and with little distal inclination. Sacci bases may be somewhat thickened. Cappula broad; clearly defined sulcus is absent”. Alisporites rioclarensis Menéndez 1976 Figure 4.18
Dimensions. Total breadth, 50(60)67 μm. Corpus breadth, 27(30.3)34 μm; corpus length, 29(36.2)39 μm. Saccus breadth, 16(21.6)28 μm; saccus length, 29(33.8)38 μm. Cappula breadth, 15(17.2)20 μm (six specimens, in polar view). Remarks. Alisporites rioclarensis is characterized by the subrectangular shape of the central body (ratio corpus breadth vs. corpus length, ca. 0.8), sacci slightly inclined distally and the distal free sacci surface (cappula) sub-rectangular in shape and occupying the total lenght of the central body and equivalent to 0.5 of the corpus breadth. Genus Falcisporites Leschik emend. Klaus 1963 1969. Satsangisaccites Bharadwaj and Srivastava, p. 130–132. Type species. Falcisporites zapfei (Potonié and Klaus) Leschik 1956.
Remarks. We follow Balme (1970, see p. 387) who separated Falcisporites from other morphologically similar pollen grains, such as Alisporites, Pityosporites or Pteruchipollenites, mainly by the presence of a distal sulcus, a generally haploxylonoid shape, relatively heavy rigid sacci [not distally pendent but lying mainly on the central corpus plane], and a rather narrow cappula. Kumaran and Maheshwari (1980) placed the genus Satsangisaccites Bharadwaj and Srivastava (1969) in synonymy with Falcisporites because both genera show a distal sulcus and otherwise indistinguishable morphological features. Kumaran and Maheshwari (1980) also discussed the resemblance between Falcisporites and Alisporites Daugherty emend. Jansonius (1971). They considered that Falcisporites is distinguished by its differentially thickened cappa (cf. Potonié and Klaus, 1954, pl. 10, fig. 9; Klaus, 1963, pl. 18, figs. 85–87; Jansonius, 1971, see p. 356). This genus includes non-striate, non-taeniate bisaccate pollen with arcuate folds at the proximal zones of sacci attachment, and a true distal sulcus which is an elongated, oval, sulcoid groove-like depression occupying the entire saccus-free-area (Tiwari, 1999).
GUTIÉRREZ et al.: PALYNOLOGY OF THE PERMIAN LA VETEADA FORMATION
Falcisporites sp. cf. F. enodis Goubin 1965 Figure 4.15
Description. Pollen grain, bisaccate, slightly diploxyplonoid in outline. Central body oval, transversely elongated. Exine of cappa slightly thicker, almost laevigate or may be scabrate (infrapunctate). Sacci almost hemispheric, slightly smaller than the central body, they can be slightly inclined distally; the exine of the sacci is quite fine. The proximal insertions of the sacci are almost equatorial. Cappula broadly elliptical vertically and occupying almost all the distal area of the central body. The presence of a clear sulcus is not evident. Dimensions. Total breadth, 80 μm. Corpus breadth, 45 μm; corpus length, 53 μm. Saccus breadth, 30–31 μm; saccus length, 42–48 μm. Cappula breadth, 14 μm (one specimen, in polar view). Remarks. Goubin (1965) erected this species to include pollen grains assignable to the genus Falcisporites showing a smooth-like aspect to which the species name refers (from the Latin enodis= smooth). The single specimen available agrees with the description of the species. However, the smooth-like condition of this specimen could also be the result of maceration, or a preservational artifact; hence the tentative assignment to F. enodis. Genus Pteruchipollenites Couper 1958 Type species. Pteruchipollenites tomasii Couper 1958.
Pteruchipollenites sp. cf. P. indarraensis (Segroves) Foster 1979 Figure 5.8
Dimensions. Total breadth, 54 μm. Corpus breadth, 34 μm; corpus length, 34 μm. Saccus breadth, 20 μm; saccus length, 30 μm (one specimen, in polar view). Remarks. This specimen is compared –rather than assigned– to P. indarraensis because its sacci are not laterally united by a “bridge of undetached exoexine” as stated in the original diagnosis. Otherwise, all remaining features are in agreement with those given by Segroves (1969), including dimensions. More specimens are needed for definite identification. For comparisons with other similar forms, see Foster (1979).
Remarks. This genus is characterized by distally inclined sacci attached proximally near the equator, and separated distally by a broad distal zone. As in Falcisporites, the exine is generally thicker over the proximal pole. No sulcus is developed, although the exine is thinner in the distal pole, which probably served as a germinal area. On the other hand, this genus should be restricted to those forms with a broad distal zone, without a sulcus. Balme (1970) followed Klaus’ (1963) remarks on the generic characters of Klausipollenites and summarized the diagnostic features as: (1) transversely (i.e., longitudinal in the sense of Klaus) elongate oval corpus; (2) absence of sharp differentiation between the exoexine of the sacci and that of the corpus; (3) gradual thinning of the exoexine towards the distal pole, giving rise to a poorly defined polar tenuitas (not sulcus delineated); (4) small, rather rigid sacci; (5) sacci tend to be joined by equatorial strips of thickening exine. Klausipollenites sp. cf. K. decipiens Jansonius 1962 Figure 5.2
Dimensions. Total breadth, 35–65 μm. Corpus breadth, 34–46 μm; corpus length, 38–51 μm. Saccus breadth, 14– 23 μm (four specimens, in polar view). Remarks. These specimens resemble the Lower Triassic Canadian species K. decipiens described and illustrated by Jansonius (1962). Like K. decipiens, these pollen grains are characterized by a broadly oval to fusiform overall outline; central body also oval, with transverse elongation; sacci crescent in shape, distinctly smaller than the central body, distally inclined with distal bases usually ending within overall outline; central body and sacci moderately thin walled; proximal roots of sacci subequatorially attached to the central body; distal bases of sacci not sharply delineated but also subequatorially located opposite to the lateral ends of the corpus; cappula ill-defined by a weakness of the distal area. Genus Minutosaccus Mädler 1964 Type species. Minutosaccus acutus Mädler 1964.
Minutosaccus sp. cf. M. acutus Mädler 1964 Figure 5.12
Infraturma Disacciatriletes Leschik emend. Potonié 1958 Genus Klausipollenites Jansonius 1962 1963. Falcisporites Leschik emend. Schaarschmidt (pars.) Type species. Klausipollenites (al. Pityosporites) schaubergeri Potonié and Klaus 1954.
Dimensions. Total breadth, 42 μm. Corpus breadth, 25–30 μm; corpus length, 29–33 μm. Saccus breadth, 13–17 μm; saccus length, 20–30 μm (two specimens, in polar view). Remarks. The two poorly preserved specimens available resemble the type species of the genus as described and illus161
AMEGHINIANA, Tomo 48 (2): 154 - 176
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
17
18
16
162
GUTIÉRREZ et al.: PALYNOLOGY OF THE PERMIAN LA VETEADA FORMATION
trated by Mädler (1964). The specimens exhibit the main features of the species: bisaccate pollen grain, diploxylonoid, broadly fusiform, thick walled, central body 33x37 µm; small, distally pendent, finelly intrareticulate 20x25 µm sacci. Sulcus, broadly fusiform delineated by a thick “rim” developed in the distal surface of the central body. More and well-preserved specimens are needed to confirm this tentative assignment. Minutosaccus sp. Figure 5.6
Description. Pollen grain, bisaccate. Amb broadly oval, diploxylonoid. Central body subcircular to transversely elongate-oval, thick exine of ca. 1.5–2 µm. Cappa thick and finely intrareticulate. Sacci small and short, crescentic in shape, distinctly distally inclined; the exine of the saccus has smooth margin and may be medium-coarse intrareticulate, although it is not clearly observed by the folding and the proximal view of the grain. The proximal insertion of the sacci is equatorial and distal insertion is subpolar, leaving a transversely and maybe rectangular cappula, which is developed almost along the full transversal axis of the sacci. Dimensions. Total breadth, 55–57 μm. Corpus breadth, 33–39 μm; corpus length, 39–50 μm. Saccus breadth, 13– 30 μm; saccus length, 29–31 μm (two specimens, in polar view). Remarks. Of all described species of the genus, the present specimens somewhat resemble M. maedleri Kumaran and Maheshwari (1980) from the Upper Triassic of India, although the Indian species has an elongated oval central body, larger and more coarsely intrareticulate sacci. Genus Platysaccus Naumova emend. Potonié and Klaus 1954 Type species. Platysaccus papilionis Potonié and Klaus 1954.
corpus length, 39 μm. Saccus breadth, 33 μm; saccus length, 50 μm (one specimen, in polar view). Remarks. The only poorly preserved specimen resembles P. fuscus described and illustrated by Goubin (1965, specifically the holotype depicted in pl. 3, fig. 7). This bisaccate pollen grain is diploxylonoid, with a central body characterized by a slight rounded-oval to rounded-tetragonal shape, probably because of compressional folding. It lacks any visible structure, althought specimen shows a slightly pitted appearance. Sacci distinctly larger than the central body, distally pendent and partly covering the central body. Proximal insertion of sacci is equatorial and their intrareticulum seems to be medium coarse and relatively thick. Dimensions are also comparable with those given for this species. Genus Protodiploxypinus Samoilovich emend. Scheuring 1970 Type species. Protodiploxypinus bialinus (Maljavkina) Potonié 1958.
Protodiploxypinus sp. Figure 5.14
Dimensions. Total breadth, 70 μm. Corpus breadth, 52 μm; corpus length, 37 μm. Saccus breadth, 15–19 μm; saccus length, 20–23 μm (one specimen, in polar view). Remarks. The single specimen agrees with the emended diagnosis for the genus established by Scheuring (1970). The specimen is observed in lateral-equatorial view, so the shape of the central body appears rounded-rectangular to subquadrangular with two small and folded sacci at the longitudinal ends of the corpus. They are slightly inclined distally and show a very faint and fine intrareticulum. Otherwise, the external exine of the saccus is smooth. Cappa well-developed, smooth, ca. 1 µm thick. Cappula with a very fine and smooth exine, almost rectangular, with a broken leptoma. More specimens are needed for specific assignment.
Platysaccus sp. cf. P. fuscus Goubin 1965 Figure 5.9
Genus Vesicaspora Schemel emend. Wilson and Venkatachala 1963
Dimensions. Total breadth, 70 μm. Corpus breadth, 33 μm;
Type species. Vesicaspora wilsonii Schemel emend. Cameron 1974.
Figure 4. 1–2, Grebespora concentrica Jansonius 1962; 1, MPLP 9089(E) O53/0 (X 750); 2, MPLP 9089(E) E37/3 (X 750). 3, Cannanoropollis mehtae (Lele) Bose and Maheshwari 1968, MPLP 9089(C) C35/2 (X 500). 4, Meristocorpus sp. A, MPLP 9089(C) J39/4 (X 500). 5, Barakarites sp., MPLP 9089 (D) N45/3 (X500). 6, Caheniasaccites ovatus Bose and Kar emend. Gutiérrez 1993, MPLP 9089(B) E24/3 (X 500). 7, Mabuitasaccites crucistriatus (Ybert) Playford and Dino 2000b, MPLP 9089(E) E38/0 (X 500). 8, Striomonosaccites? sp., MPLP 9089(C) G47/0 (X 750). 9, Meristocorpus sp. B, MPLP 9089(D) M50/0 (X 750). 10, Striomonosaccites cicatricosus Archangelsky and Gamerro 1979, MPLP 9089(D) S52/0 (X 500). 11, Caheniasaccites sp., MPLP 9089(A) V32/0 (X 500). 12, Alisporites sp. cf. A. lowoodensis de Jersey 1963, MPLP 9089(B) O20/0 (X 750). 13, Alisporites parvus de Jersey 1962, MPLP 9089(A) L31/0 (X 750). 14, Colpisaccites granulosus Archangelsky and Gamerro 1979; MPLP 9089(E) G37/0 (X 500). 15, Falcisporites sp. cf. F. enodis Goubin 1965, MPLP 9089(C) Q39/1 (X 500). 16, Vestigisporites sp.; MPLP 9089(D) G37/0 (X 500). 17, Falcisporites sp.; MPLP 9089(A) D36/0 (X 750). 18, Alisporites rioclarensis Menéndez 1976; MPLP 9089(D) X36/4 (X 750).
163
AMEGHINIANA, Tomo 48 (2): 154 - 176
Vesicaspora sp. cf. V. sulcata Hart 1960 Figure 4.15
Dimensions. Total breadth, 55–62 μm. Corpus breadth, 30– 35 μm; corpus length, 35–38 μm. Saccus breadth, 21–30 μm; saccus length, 33–37 μm (two specimens, in polar view). Remarks. The present specimens agrees with the generic description given by Wilson and Venkatachala (1963) and observations remarked by Tiwari (1965) in the sense that Vesicaspora comprises disaccate pollen grain with narrow lateral continuations of equatorially attached sacci; sacci distally inclined in oblique and lateral compressions. Sulcus fusiform or irregular in outline, extending vertically almost across the central body. The aregentinian specimens are somewhat smaller than V. sulcata, whose size ranges are 55–107x46–65 µm; otherwise they are quite similar. All other previously described species of the genus are larger than this species. Genus Vitreisporites (Leschik) emend. Jansonius 1962 Type species. Vitreisporites signatus Leschik 1956.
Vitreisporites sp. cf. V. microsaccus de Jersey 1964 Figure 5.11
Description. Pollen grain, bisaccate. Corpus broadly oval in transverse axis. Exine of the central body smooth, ca. 1 µm thick. Sacci attached proximally at equator or with slight proximal overlap; distally having also sub-equatorial insertion to the corpus; a broad thin cappula develops in which the exine is very thin and smooth, without mark. Sacci short and distinctly smaller than the corpus, crescentic or almost sub-triangular in shape, with distinct distal inclination. Exine of sacci smooth or with very faint intrareticulum, less than 1 µm thick. Dimensions. Total breadth, 40–47 μm. Corpus breadth, 26–28 μm; corpus length, 32–44 μm. Saccus breadth, 26–
31 μm; saccus length, 10–21 μm (three specimens, in polar view). Remarks. As mentioned by de Jersey (1964), the smooth or only faintly ornamentated sacci, the small size of the bladders which do not project far beyond the central body, and their distal inclination, distinguish V. microsaccus from other described species of Vitreisporites. The specimens described herein resemble the illustrations of V. microsaccus presented by de Jersey (1964, pl. 2, figs. 3–5), de Jersey (1968, pl. 4, fig. 9) and that figured by de Jersey and Hamilton (1965, pl. 7, fig, 9); they agree with the most distinctive features mentioned previously. However, the main differences with de Jersey’s species are: the broad cappula observed in these specimens, the subequatorial distal position of the sacci instead of their subpolar position and the larger size. Vitreisporites signatus Leschik 1955 Figure 5.13
Dimensions. Total breadth, 45 μm. Corpus breadth, 22 μm; corpus length, 31 μm. Saccus breadth, 15–18 μm; saccus length, 32–34 μm (one specimen, in polar view). Remarks. This species is distinguished by its narrow, longitudinally oval corpus and small size. Infraturma Striatiti Pant 1954 Genus Lueckisporites Potonié and Klaus emend. Klaus 1963 Type species. Lueckisporites virkkiae Potonié and Klaus 1954.
Remarks. According to Tiwari (1999, see p. 341) it is possible to differentiate between Lueckisporites Potonié and Klaus emend. Klaus 1963 and Dicappipollenites Tiwari and Vijaya 1995, primarily because the former has a mono or dilete mark, while the latter lacks any mark, and also by the exine
Figure 5. 1, Klausipollenites schaubergeri (Potonié and Klaus) Jansonius 1962; MPLP 9089(E) E39/3 (X 500). 2, Klausipollenites sp. cf. K. decipiens Jansonius 1962; MPLP 9089(B) M31/1 (X 500). 3, Falcisporites stabilis Balme 1970; MPLP 9089(E) W39/4 (X 500). 4, Klausipollenites staplinii Jansonius 1962; MPLP 9089(E) O42/2 (X 500). 5, Falcisporites nuthallensis (Clarke) Balme 1970; MPLP 9089(E) J35/0 (X 500). 6, Minutosaccus sp.; MPLP 9089(D) E51/0 (X 500). 7, Scheuringipollenites ovatus (Balme and Hennelly) Foster 1975; MPLP 9089(D) J37/0 (X 500). 8, Pteruchipollenites sp. cf. P. indarraensis (Segroves) Foster 1979; MPLP 9089(B) S25/3 (X 500). 9, Platysaccus sp. cf. P. fuscus Goubin 1965; MPLP 9089(E) J32/1 (X 500). 10, Limitisporites rectus Leschik 1956; MPLP 9089(D) C36/1 (X 500). 11, Vitreisporites sp. cf. V. microsaccus de Jersey 1964; MPLP 9089(A) T27/1 (X 500). 12, Minutosaccus sp. cf. M. acutus Mädler 1964; MPLP 9089(B) K20/1 (X 500). 13, Vitreisporites signatus Leschik 1955; MPLP 9089(C) C37/0 (X 500). 14, Protodiploxypinus sp.; MPLP 9089(C) X38/4 (X 500). 15, Vesicaspora sp. cf. V. sulcata Hart 1960; MPLP 9089(E) G37/0 (X 500). 16, Platysaccus sp. cf. P. papilionis Potonié and Klaus 1954; MPLP 9089(D) W43/3 (X 500). 17, Corisaccites alutas Venkatachala and Kar 1966, MPLP 9089(C) H37/0 (X 500). 18, Lueckisporites angoulaensis Jardiné 1974; MPLP 9089(D) H34/0 (X 750). 19, Lueckisporites virkkiae Potonié and Klaus emend. Clarke 1965, MPLP 9089(D) R41/1 (X 500). 20, Lueckisporites nyakapandensis Hart 1960, MPLP 9089(E) Q53/1 (X 500). 21–22, Lueckisporites balmei (Tiwari and Vijaya) comb. nov.; 21, MPLP 9089(D) G41/1 (X 750); 22, MPLP 9089(D) E45/0 (X 750). 23, Lueckisporites singhii Balme 1970, MPLP 9089(E) M36/0 (X 500). 24, Lueckisporites nyakapandensis Hart 1960, MPLP 9089(D) Q51/0 (X 500). 25, Lueckisporites stenotaeniatus Menéndez 1976, MPLP 9089(D) T41/4 (X 500). 26, Protohaploxypinus amplus (Balme and Hennelly) Hart 1964, MPLP 9089(B) P30/4 (X 500). 27, Protohaploxypinus limpidus (Balme and Hennelly) Balme and Playford 1967, MPLP 9089(D) F47/0 (X 500). 28, Lunatisporites variesectus Archangelsky and Gamerro 1979, MPLP 9089(D) X43/1 (X 500). 29–30, Lunatisporites sp.; 29, MPLP 9089(E) U49/0 (X 750); 30, MPLP 9089(C) O34/0 (X 750).
164
GUTIÉRREZ et al.: PALYNOLOGY OF THE PERMIAN LA VETEADA FORMATION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
17
16
20
21
27
22
25
24
28
19
18
23
26
29
30
165
AMEGHINIANA, Tomo 48 (2): 154 - 176
structure of the taeniae. However, in order to separate these two genera, we would need specimens with an excellent preservation. Playford and Dino (2000b) did not mention the new genus Dicappipollenites Tiwari and Vijaya 1995, neither the comments given by Tiwari (1999). Instead, they discussed the morphological similarities between Lueckisporites and Corisaccites Venkatachala and Kar (1966), stating that the second genus differs by having a “thick cap-like exo-exinus layer” that constitutes the cappa. They also pointed out that the interpretation of a monolete mark by Klaus (1963) is questionable. Lueckisporites balmei (Tiwari and Vijaya) comb. nov. Figures 5.21–22 1970. Lueckisporites virkkiae Potonié and Klaus; Balme, p. 374, 376, pl.13, figs 4–5. 1995. Dicappipollenites balmei Tiwari and Vijaya, p. 89–90, pl.11, figs 4–5, 7–8.
Description. Pollen grain, haploxylonoid to slightly diploxylonoid, transversely oval. Central corpus small, transversely oval, bearing two taeniae, almost equal in extent to corpus breadth, and separated by a narrow striae. A monolete to dilete mark is visible. Sacci more than half-circle in shape, proximal attachment equatorially to subequatorially, and distal-bilaterally attached; inclined distally forming a straight cappula of variable width. Dimensions. Total breadth, 51(60.3)77 µm. Corpus: breadth, 34(43.8)55 µm, length, 31(36.7)42 µm; ratio corpus breadth: corpus length, 1.05(1.20)1.40. Saccus: length, 34(39.5)45 µm; breadth, 17(23.9)31 µm. Cappula breadth, 7(11.6)17 µm; taeniae, 12(15.5)22 µm wide; width of proximal striae, 2(3.2)4 µm (sixteen specimens, in polar view). Remarks. Lueckisporites balmei (Tiwari and Vijaya) comb. nov. differs from other species of Lueckisporites by its haploxylonoid to slightly diploxylonoid equatorial outline, with transversely oval central corpus, carrying two prominent tae-
niae (which occupy almost the entire surface of the proximal face) and a narrow proximal striae. The material referred to L. virkkiae by Balme (1970) shows all above mentioned characteristics and dimensions, so they should be assigned to L. balmei. Discussion on the validity of the genus Dicappipollenites Tiwari and Vijaya 1995 has been mentioned above. Lueckisporites singhii Balme 1970 Figure 5.23
Dimensions. Total breadth, 50–62 µm. Corpus breadth, 38–41 µm, corpus length, 43–44 µm; ratio corpus breadth:corpus length 0.86–0.95. Saccus length, 41–48 µm; saccus breadth, 18–29 µm. Cappula breadth, 7–12 µm; taeniae 12–20 µm wide; width of proximal striae, 3–7 µm (three specimens, in polar view). Remarks. Lueckisporites singhii Balme is characterized by its transversely oval amb, slightly diploxylonoid. Central corpus longitudinally oval, circular or rounded polygonal, with two broad taeniae that occupy the total extent of the corpus breadth and are separated by a narrow proximal cleft (about 0.20 the length of corpus). Sacci hemispherical in shape, distally inclined. Cappula narrow, about 0.25 the breadth of the corpus, rectangular in shape, with parallel sides. This species differs from L. balmei (Tiwari and Vijaya) comb. nov. above described, because of its longitudinally oval corpus, its transversely oval slightly diploxylonoid outline and narrow cappula. Genus Lunatisporites Leschik emend. Scheuring 1970 Type species. Lunatisporites acutus Leschik 1955.
Lunatisporites sp. Figures 5.29–30
Description. Pollen grains bisaccate, taeniate, haploxylo-
Figure 6. 1–2, Staurosaccites sp. 1, MPLP 9089(D), E39/1 (X 750); 2, MPLP 9089(C) E40/2 (X 750). 3, Staurosaccites cordubensis Archangelsky y Gamerro 1979, MPLP 9089(C) G39/1 (X 500). 4, Lunatisporites variesectus Archangelsky and Gamerro 1979, MPLP 9089(D) X43/3 (X 750). 5, Striatoabieites anaverrucosus Archangelsky and Gamerro 1979, MPLP 9089(C) G38/0 (X 500). 6–7, Striatoabieites sp.; 6, MPLP 9089(D) G49/3 (X 500); 7, MPLP 9089(A) D32/4 (X 500). 8, Tornopollenites toreutos Morgan 1972, MPLP 9089(D) H41/3 (X 500). 9, Striatoabieites spp. MPLP 9089(D) K54/0 (X 500). 10, Striatoabieites multistriatus (Balme and Hennelly) Hart 1964, MPLP 9089(E) P42/0 (X 500). 11, Striatopodocarpites cancellatus (Balme and Hennelly) Hart 1963, MPLP 9089(D) X40/0 (X 500). 12, Tornopollenites toreutos Morgan 1972, MPLP 9089(D) H53/0 (X 500). 13, Striatopodocarpites sp. cf. S. solitus (Bharadwaj and Salhuja) Foster 1979; MPLP 9089(D) C32/2 (X 500). 14, Striatopodocarpidites sp. A, in Playford and Dino 2000b, MPLP 9089(D) K36/2 (X 500). 15, Striatopodocarpites gondwanensis Lakhanpal, Sah and Dube 1960, MPLP 9089(E) J41/2 (X 500). 16, Vittatina costabilis Wilson emend. Tschudy and Kosanke 1966, MPLP 9089(C) D33/0 (X 500). 17, Vittatina subsaccata Samoilovich 1953, MPLP 9089(D) D33/0 (X 500). 18, Vittatina corrugata Marques-Toigo 1974, MPLP 9089(D) D47/1 (X 500). 19, Vittatina vittifera (Luber and Waltz) Samoilovich 1953, MPLP 9089(D) J32/4 (X 500). 20, Vittatina minima Jansonius 1962, MPLP 9089(C) C37/3 (X 750). 21, Algal coenobium/cenobio algal, 9089(B) M25/3 (X 500). 22, Marsupipollenites striatus (Balme and Hennelly) Foster 1975, MPLP 9089(E) D51/0 (X 500). 23, Marsupipollenites triradiatus Balme and Hennelly 1956, MPLP 9089(C) C32/2 (X 500). 24–25, Brazilea sp. 24, MPLP 9089(A) J25/3 (X 500); 25, MPLP 9089(C) U47/0 (X 500). 26, Cycadopites sp., MPLP 9089(D) C52/0 (X 500). 27–28, Brazilea sp. cf. B. helbyi Foster 1979; 27, MPLP 9089(A) G29/0 (X 500); 28, MPLP 9089(B) J40/0 (X 500). 29, Fungi spores/esporas de hongos, MPLP 9089(C) D43/0 (X 500). 30, Praecolpatites sp., MPLP 9089(D) L52/0 (X 500).
166
GUTIÉRREZ et al.: PALYNOLOGY OF THE PERMIAN LA VETEADA FORMATION
1
2
5
7
6
10
9
14
18
22
19
23
27
8
11
13
17
4
3
24
28
12
15
16
20
21
25
29
26
30
167
AMEGHINIANA, Tomo 48 (2): 154 - 176
noid, with an overall transverse amb. Corpus subcircular to slightly oval transversally (ratio corpus breadth:corpus length 0.9–1.3, generally 1.1); cappa with 4–6 transverse and entire taeniae of about 3(5.1)10 µm wide. Taeniae regular in shape, continuous, but joining towards the extremes of the body; they are separated into two groups by a major and wide cleft (8–11 µm in maximum width), altogether having general concave sides. Cappula breadth about 1/2(1/3)1/4 of corpus wide, rectangular in outline Sacci semicircular-crescentic in polar view, slightly inflated with distal inclination; attachment of sacci, slightly sinuosus. Dimensions. Total breadth, 38(53.5)63 µm. Corpus breadth, 31(46.7)55 µm; corpus length, 30(43.3)53 µm. Saccus length, 37(45.7)51 µm; saccus breadth, 13(19.1)28 µm (thirteen specimens, in polar view). Remarks. Lunatisporites sp. is distinguished from the remaining previously described species of the genus by: its overall haploxylonoid-rectangular outline, the shape and development of the sacci, the shape and the placement of the transverse taeniae on the proximal surface of the body, and by its major medium proximal cleft. Genus Staurosaccites Dolby in Dolby and Balme 1976 Type species. Staurosaccites quadrifidus Dolby in Dolby and Balme 1976.
Staurosaccites sp. Figures 6.1–2
Dimensions. Total breadth, 35(47.3)59 µm. Corpus breadth, 33(42.2)55 µm; corpus length, 29(37.5)53 µm; ratio corpus breadth:corpus length, 0.88(1.14)1.41. Sacci length, 29(39.9)54 µm. Cappula, 9(13.8)23 µm wide; proximal cleft, 4(8.5)13 µm in maximum width (eleven specimens, in polar view). Remarks. These specimens are poorly preserved, although they show the main diagnostic features that allow their assignation to Staurosaccites Dolby. These features include: circular to slightly oval amb, haploxylonoid to slightly diploxylonoid; circular to subcircular corpus outline; thick cappa divided into two transverse taeniae by a wide proximal polar cleft; cappula of 6 µm wide, defined by straight distal saccus attachment; sacci of crescentic to semicircular outline in polar view, rigid, strongly distally pendent and very closely placed towards each other; longitudinal insertion of the sacci on the proximal face; saccus structure is not differentiated from that of the cappula. 168
Genus Striatoabieites Zoricheva and Sedova ex Sedova emend. Hart 1964 Type species. Striatoabieites brickii Sedova 1956.
Striatoabieites sp. Figures 6.6–7
Description. Pollen grain bisaccate, taeniate, strongly diploxylonoid. Corpus outline transversely sub-rectangular. Cappa divided into 10–13 transverse taeniae, generally coninuous along the transverse elongation of the body; the taeniae appear irregularly segmented by thin channels disposed perpendicularly to the normal cleft. Cappula rectangular, 0.5 to 0.25 of breadth corpus, defined by convex to concave distal saccus attachment. Sacci crescentic to semicircular in outline. Dimensions. Total breadth, 60(74.7)92 µm. Corpus breadth, 31(37)42 µm; corpus length, 24(25.7)27 µm; ratio corpus breadth: corpus length, 1.3–1.6. Sacci length, 25(36.3)50 µm. Taeniae, 1(1.7)2.6 µm wide (ten specimens, in polar view). Remarks. Striatoabieites sp. is characterized by its strongly diploxylonoid outline, central body subquadrangular in shape and elongated in the direction of the transverse elongation of the grain; the cappula is wide and the taeniae are irregularly vertically segmented like thin constrictions. This last feature has also been observed in the species of the genus Lahirites Bharadwaj (1962) (see also, Bharadwaj and Salujha, 1964) and in the genera Verticipollenites Bharadwaj (1962) and Hindipollenites Bharadwaj (1962). Although, the wide cappula, the shape of the central body and, the inclination of the sacci allow separate it from the last mentioned genera. It is distinguished from S. anaverrucosus Archangelsky and Gamerro (1979) by the subquadrangular shape of the central body, the fewer taeniae, the hemispherical shape of the sacci, and its strong diploxylonoid character. Genus Striatopodocarpites Zoricheva and Sedova ex Sedova emend. Hart 1964 Type species. Striatopodocarpites tojmensis Sedova 1956.
Striatopodocarpites sp. A (in Playford and Dino 2000b) Figure 6.14
Dimensions. Total breadth, 80 µm. Corpus breadth, 37 µm; corpus length, 43 µm. Sacci length, 46 µm. Taeniae, 3(3.8)5 µm in width (two specimens, in polar view).
GUTIÉRREZ et al.: PALYNOLOGY OF THE PERMIAN LA VETEADA FORMATION
Remarks. The specimens from the La Veteada Formation are similar to Striatopodocarpites sp. A described by Playford and Dino (2000b), whose main and distinguishing features are: diploxylonoid outline; central corpus oval in shape with longitudinal elongation; cappa divided into 7–9 well defined continuous transverse taeniae, each 3–5 µm wide, separated by very thin and parallel clefts; broad cappula, longitudinally rectangular with straight sides, associated to exinal foldings (5 µm wide) representing full-length distal saccus attachments. Sacci more than semi-circular in shape, appearing finely endoreticulate. Previous records. Brazil, Paraná Basin (Late Pennsylvanian– Lopingian; Playford and Dino, 2000b).
Genus Tornopollenites Morgan 1972 Type species. Tornopollenites toreutos Morgan 1972.
Tornopollenites toreutos Morgan 1972 Figures 6.8, 12
Dimensions. Total breadth, 70(75)80 µm. Corpus breadth, 40(50.9)60 µm; corpus length, 27(32.8)35 µm; ratio corpus breadth:corpus length 1.38(1.54)1.70. Saccus breadth 12(16.3)20 µm; saccus length 22(24.7)25 µm. Taeniae: 1.5(2.26)4.5 µm wide, and 0.7(1.14)1.4 µm apart (four specimens). Remarks. Despite the poor preservational state of the stud-
Figure 7. Gondwanic biostratigraphic distribution of selected species recorded in the La Veteada Formation in the Sierra de Narváez / Distribución bioestratigráfica en el Gondwana de algunas especies seleccionadas identificadas en la Formación La Veteada en la Sierra de Narváez. References. Cis (Cisuralian / Cisuraliano), Gua (Guadalupian / Guadalupiano), Lop (Lopingian / Lopingiano), lT (Lower Triassic / Triásico Inferior), muT (Middle–Upper Triassic / Triásico Medio-Superior). Palynostratigraphy of the central-western argentinian basins / Palinoestratigrafía de las cuencas del centro-oeste argentino (see Césari and Gutiérrez, 2001): DM (Raistickia densa-Convolutispora muriornata Zone), FS (Pakhapites fusus-Vittatina subsaccata Zone), LW (Lueckisporites-Weylandites Zone); Chacoparaná basin / Cuenca Chacoparaná (see Archangelsky and Gamerro, 1979; Russo et al., 1980; Césari et al., 1995; Archangelsky and Vergel, 1996): PL (Potoniesisporites-Lublandispora Zone), Cr (Cristatisporites Zone), S (Striatites Zone); and Paraná Basin / Cuenca Paraná (Brazil: Marques-Toigo, 1991; Souza and Marques-Toigo, 2001, 2003, 2005; Souza, 2006): Ac (Ahrensisporites cristatus Zone), Cm (Crucisaccites monoletus Zone), Vc (Vittatina costabilis Zone; Pg, Protohaploxypinus goraiensis Subzone; Hk, Hamiapollenites karroensis Subzone), Lv (Lueckisporites vikkiae Zone). References to the records see Appendix 1 / Para la referencia de los registros ver Apéndice 2.
169
AMEGHINIANA, Tomo 48 (2): 154 - 176
ied specimens it is still possible to assign them to Tornopollenites toreutos Morgan (1972) because they agree closely with the two species of the genus introduced by Morgan (T. toreutos and T. spiralis), and they considered synonyms by Playford and Dino (2000b). This is the first record of the species for Argentina.
Description. Pollen grain, polyplicate. Amb longitudinally oval, with lateral sides convex to broadly arcuate; extremes somewhat rounded to slightly sharp. Exine ca. 1.5 mm thick, with 5–6 prominent longitudinal and continuous folds which follow the contour of the external amb, ending also sharply at both extremes of the grain. Folds of 4–8 µm wide and they are separated by deep longitudinal clefts.
Turma Plicates Naumova emend. Potonié 1960
Dimensions. Equatorial diameter: length, 106 mm; breadth, 45–55 mm (two specimens).
Subturma Costates Potonié 1970 Genus Vittatina Luber ex Samoilovich emend. Wilson 1962 Type species. Vittatina subsaccata Samoilovich 1953.
Vittatina minima Jansonius 1962 Figure 6.20
Description. Pollen grain striate, subsaccate. Amb mainly oval in overall outline, transversely elongated with proximal side convex and distal side concave (arched). Proximal face with 6–7 taeniae in the transversal elongation of the body and developing a continuous equatorial rim around the grain; a strip of slightly thickened exine bordering each lateral margin of the distal sulcus. The proximal taenieae, apparently infrapunctate, they are not joined to the equatorial rim. At the ends of the longitudinal axis, the equatorial rim expands onto the distal face protruding structures of rudimentary sacci that may be almost solid or slightly inflated, with a rim contouring their outline. Exine of the “rudimentary sacci”, laevigate. Dimensions. Total breadth, 34 mm. Overall length, 29 mm. Taeniae, 0.8(0.9)1 mm wide (one specimen). Vittatina vittifera (Luber and Waltz) Samoilovich 1953 Figure 6.19
Dimensions. Total breadth, 41(49.5)55 mm. Overall length, 35(40.4)50 mm. Taeniae 1.4(2.6)5 mm wide (ten specimens). Remarks. The studied material assigned to Vittatina vittifera have suboval to subrectangular amb; proximal surface bearing 10–13 transversely orientated taeniae separated by thin clefts that are continuous along the corpus, joining with one another in both extremes of the body. Subturma praecolpates Potonié and Kremp 1954 Genus Praecolpatites Bharadwaj and Srivastava 1969 Type species. Praecolpatites nidpurensis Bharadwaj and Srivastava 1969.
Praecolpatites sp. Figure 6.30
170
Subturma Monocolpates Iverson and Tröels-Smith 1950 Género Cycadopites Wodehouse 1933 Type species. Cycadopites follicularis Wilson and Webster 1946.
Cycadopites sp. Figure 6.26
Description. Pollen grain, monocolpate. Amb oval to fusiform, with convex sides and sharp to truncate extremes. Colpus open, narrow, 0.20 of grain width, rectangular in shape and extending the full length of the grain; sides parallel. Exine thin (0.8–1 µm thick), smooth. Dimensions. Length, 52 mm; breadth 30 mm (one specimen). Group Acritarcha Evitt 1963 Subgroup Schizomorphitae Segroves 1967 Genus Brazilea Tiwari and Navale 1968 Type species. Brazilea punctata Tiwari and Navale 1968.
Brazilea sp. cf. B. helbyi Foster 1979 Figures 6.27–28
Description. Spheroidal to subcircular bodies, usually distorted by folding close to the outer margin, indicating perceptible to distinct line of furrow along which body may rupture. Partially ruptured specimens have been observed, others are like half circular bodies and many specimens remain intact. Wall very thin, difficult to measure but apparently less than 0.5 µm thick, finely granulate, often folded. Folds varying in distribution and number, sometimes forming a broad and irregular reticulum-like pattern in those completer specimens. A single broad crescentic fold at the vesicle margin may distort the equatorial outline. Dimensions. Overall diameter, 50(75.5)92 µm (nine specimens). Remarks. These quite common microfossils in this assemblage are compared –rather than assigned– to B. helbyi because
GUTIÉRREZ et al.: PALYNOLOGY OF THE PERMIAN LA VETEADA FORMATION
Table 1. Composition (1) and distribution (2) (in %) of the palynofloral elements recorded in the La Veteada Formation in the Sierra de Narváez / Composición (1) y distribución (2) (en %) de los elementos palinoflorísticos hallados en la Formación La Veteada en la Sierra de Narváez. References/referencias: ns, number of specimens / cantidad de ejemplares; STS, Smooth Trilete Spores / esporas triletes lisas; ATS, Apiculate Trilete Spores / esporas triletes apiculadas; MS, Monolete Spores / esporas monoletes; MPG, Monosaccate Pollen Grains / granos de polen monosacados; BPG = Bisaccate Pollen Grains / granos de polen bisacados; SPG, Striate Pollen Grains / granos de polen estriados; PPG, Polyplicate Pollen Grains / granos de polen poliplicados; APG, Alete Pollen Grains / granos de polen aletes. (1)
MPLP 9089
ns
%
Lueckisporites
44
11.14
Lunatisporites
14
Striatoabieites
21
Protohaploxypinus Staurosaccites Striatopodocarpites Corisaccites
(2)
%
3.54
SPG
68.12
5.32
BPG
24.04
12
3.04
ATS
1.77
8
2.03
STS
1.52
1.52
MPG
1.27
0.51
PPG
1.01
MS
1.01
Acritarch+Fungii
1.01
APG
0.25
6 2
Vittatina
6
1.52
Tornopollenites
1
0.25
SPG indeterminates
155
39.24
Marsupipollenites
2
0.51
Cycadopites
1
0.25
Praecolpatites
1
0.25
Alisporites
22
5.57
Falcisporites
11
2.78
Limitisporites
1
0.25
Platysaccus
1
0.25
Colpisaccites
2
0.51
Scheuringipollenites
1
0.25
Klausipollenites
3
0.76
Minutosaccus
2
0.51
Protodiploxypinus
1
0.25
Vesicaspora
1
0.25
Vitreispories
2
0.51
BPG indeterminates
48
12.15
Cannanoropollis
2
0.51
Striomonosaccites
1
0.25
Mabuitasaccites
1
0.25
Meristoco rpus
1
0.25
Grebespora
1
0.25
Calamospora
1
0.25
Punctatisporites
1
0.25
Leiotriletes
1
0.25
STS indeterminates
3
0.76
Verrucosisporites
3
0.76
Convolutispora
3
0.76
ATS indeterminates
1
0.25
Laevigatisporites
3
0.76
Kendosporites
1
0.25
Brazilea
3
0.76
Fungii
1
0.25
395
100
100
of their poor preservation. The single-layered wall is 2–4 µm thick and is possibly laevigate or infrapunctate as mentioned by Foster (1979); these features are not observed in the studied specimens probably because of strong corrosion. BIOSTRATIGRAPHY AND AGE Figure 7 shows significant miospore species of the La Veteada Formation at the Río Chaschuil section recorded in the present study, and their known stratigraphic distribution over the Gondwana realm. Particular attention has been given to those species previously recorded in the Permian strata of South America such as those recorded in the Upper Paleozoic central-western basins of Argentina (Césari and Gutiérrez, 2001), in the central to north-eastern Chacopoaraná Basin of Argentina and south-eastern of Brazil (Archangelsky and Gamerro, 1979; Césari et al., 1995; Archangelsky and Vergel, 1996; Playford and Dino, 2002) and in the Paraná Basin of Brazil (Marques-Toigo, 1991; Souza and Marques Toigo, 2001, 2003, 2005; Souza, 2006; Souza et al., 2006). References to previously published records of the miospore species compiled in Figure 7 can be consulted in Appendix 2. The main compositional characteristics and the biostratigraphical implications of this unique productive and moderately well preserved palynological assemblage can be summarized as follows: 1. The palynoflora contains the following species, not previously recorded in Permian strata of Argentina: Falcisporites nuthallensis, F. stabilis, Alisporites riocla171
AMEGHINIANA, Tomo 48 (2): 154 - 176
rensis, A. parvus, Tornopollenites toretus, Vittatina vittifera, Vittatina minima, Grebespora concentrica, Klausipollenites schaubergeri, K. staplinii, Laevigatosporites flexus, Lueckisporites balmei (Tiwari and Vijaya) comb. nov., L. singhii, Striatopodocarpites gondwanensis, Verrucosisporites surangei, Vitreisporites signatus, V. sp. cf. V. Microsaccus, Kendosporites sp., Minutosaccus sp., Protodiploxypinus sp. and Brazilea sp. cf. B. helbyi. 2. The co-occurrence of Lueckisporites virkkiae, L. nyakapandensis, L. stenotaeniatus, Striatoabieites anaverrucosus, Convolutispora archangelskyi, Staurosaccites cordubensis and Striatopodocarpites cancellatus suggests that the La Veteada palynoflora herein recorded may be correlated with the LW Biozone as defined by Césari and Gutiérrez (2001). These authors (p. 134) characterized the LW Assemblage Biozone by the dominance of striate pollen grains, mainly represented by the genera Lueckisporites, Weylandites, Vittatina and Marsupipollenites. However, the genus Weylandites has not been recorded in the La Veteada palynological association. 3. Bisaccate pollen assigned to the genera Falcisporites, Vitreisporites, Protodiploxypinus, Minutosaccus and Klausipollenites that are generally present in Triassic strata are constituents of the La Veteada palynoflora. Figure 7 shows that this assemblage includes predominantly Permian taxa and, in lower proportion, taxa whose chronological distributions are commonly recorded in Triassic rocks. Thus, the La Veteada palynomorph association could represent the upper terms of the LW Biozone assigned to the late Cisuralian–early Guadapulian (Césari, 2007; Gutiérrez et al., 2008). Consequently, an age not older than Guadalupian could be proposed for the fossiliferous level of the La Veteada Formation at the Chaschuil River section. 4. This study extends the stratigraphical records of the following species: Mabuitasaccites crucistriatus, Vittatina costabilis, Scheuringipollenites ovatus and Marsupipollenites triradiatus, which are previously known to have their last occurrences within the lowest Permian FS Zone (Césari and Gutiérrez, 2001). Verrucosisporites andersoni has been previously recorded from the Late Carboniferous DM Zone of Césari and Gutiérrez (2001), but it is known from Permian strata elsewhere in Gondwana (Backhouse, 1991; Lindström, 1995). 5. Zavattieri et al. (2008) suggested a latest Permian age for the La Veteada Formation assemblage at its type 172
section, in the central Famatina Range. Thus, based on palynological data, this unit as a whole would represent a Guadalupian–Lopingian age-range. 6. Taeniate bisaccate (68%) and non striate (24%) pollen grains are the main palynofloral components of the La Veteada association (Tab. 1). In general, the palynoflora is derived mainly from gymnosperms vegetation, such as glossopterids (represented in Gondwana by taeniate bisaccate pollen grains), but conifers and some pteridosperms (non striate bisaccate pollen) are also represented. This gymnosperm mesophylous forest would have developed in the distant upland –and probably dryer– surrounding areas, providing the allochtonous elements to the depositional site. Spores derived from ferns and sphenophylls (mostly ornamented trilete and monolete spores) constitute only about 5 % of the palynoflora. Ferns (of hygro-mesophylous requirements) and hygrophylous sphenophylls are interpreted as having inhabited local moist terrestrial environments in the surrounding depositional area (autochthonous elements) (Archangelsky, 1982). Overall, this implies that warmer arid and/or semiarid climatic conditions prevailed in the Paganzo Basin during the Middle–Late Permian (Limarino et al., 1993, 2006; Cúneo, 1996). Summarizing, the known biostratigraphic distributions of key taxa identified in the La Veteada Formation in the Sierra de Narváez section suggests a Guadalupian age and assignment to the LW Biozone defined for the western Argentinian basins. The palynofloral association recorded from Sierra de Narváez is composed by allochthonous elements derived predominantly from gymnosperms, including glossopterids, conifers and pteridosperms with mesophile requirements, together with rare authochthonous elements related to the local vegetation mainly derived from hygrohydrophylous pteridofites and sphenophylls. ACKNOWLEDGMENTS Special thanks are expressed to Prof. Dr. G. Playford (Department of Earth Sciences, The University of Queensland, Brisbane, Australia) as well as to the anonymous reviewer for constructive comments on the manuscript. We are thankful to M. E. Soler (IANIGLA-CCT-CONICET-Mendoza) for the English grammar review of the manuscript. This research has been funded by the Agencia Nacional de Promoción Científica y Técnica (research grants ANPCYT-PICT 32693 and 33630).
REFERENCES Aceñolaza, F.G. and Vergel, M. 1987. Hallazgo del Pérmico Superior fo-
GUTIÉRREZ et al.: PALYNOLOGY OF THE PERMIAN LA VETEADA FORMATION silífero en el Sistema de Famatina. 10° Congreso Geológico Argentino (San Miguel de Tucumán), Actas 3: 125–129. Archangelsky, S. 1982. Estudios fitopaleoecológicos en el Paganzo superior del Oeste de Chubut, Argentina. 2º Congreso Latinoamericano de Paleontología (Porto Alegre 1981), Actas: 141–156. Archangelsky, S. and Gamerro, J.C. 1979. Palinología del Paleozoico Superior en el subsuelo de la Cuenca Chacoparanense, República Argentina. I. Estudio sistemático de los palinomorfos de tres perforaciones de la provincia de Córdoba. Revista Española de Micropaleontología 11: 417–478. Archangelsky, S. and Vergel, M.M. 1996. Capítulo 2. Cuenca Chacoparanense. Paleontología, bioestratigrafía y paleoecología. In: S. Archangelsky (Ed.), El Sistema Pérmico en la Republica Argentina y en la República Oriental del Uruguay, Academia Nacional de Ciencias, Córdoba, p. 40–44. Astini, R.A., Dávila, F.M., López Gamundí, O., Gómez, F.J., Collo, G., Ezpeleta, M., Martina F. and Ortiz, A. 2005. Cuencas de la Región Precordillerana. In: G. Chebli, J. Cortiñas, L. Spalletti, L. Lagarreta and E. Vallejo (Eds.), Frontera Exploratoria de la Argenina. 6º Congreso de Exploración y Desarrollo de Hidrocarburos, Ampliando las Fronteras: 115–141.
Césari, S.N. and Gutiérrez, P.R. 2001. Palynostratigraphy of the Upper Paleozoic sequences in central-western Argentinain. Palynology 24: 113–146. Césari, S.N., Archangelsky, S. and Seoane, L.V. 1995. Palinología del Paleozoico Superior de la perforación Las Mochas, provincia de Santa Fé, Argentina. Ameghiniana 32: 73–106. Césari, S.N., Pérez Loinaze, V.S., Limarino, C.O., Spalletti, L.A. and Colombo Piñol, F. 2008. Nuevos hallazgos palinológicos en la Formación Agua Colorada (Carbonífero Superior) en la Sierra de Narváez (Catamarca): su implicancia para la correlación regional. Ameghiniana, Suplemento Resúmenes 45: 6R. Clarke, R.F.A. 1965. British Permian saccate and monosulcate miospores. Palaeontology 8: 322–354. Couper, R.A. 1958. British Mesozoic microspores and pollen grains. A systematic and stratigraphic study. Palaeontographica Abteilung B 103: 75–179. Cúneo, R.N. 1996. Permian phytogeography in Gondwana. Palaeogeography, Palaeoclimatology, Palaeoecology 125: 75–104. Daugherty, L.H. 1941. The Upper Triassic of Arizona. Carnegie Institute of Washington, Publications 526: 1–108.
Astini, R.A., Martina, F., Ezpeleta M., Dávila, F.M. and Cawood P. 2009. Chronology from rifting to foreland basin in the Paganzo Basin (Argentina), and a reapprisal on the ?Eo-and Neohercynian? tectonics along Western Gondwana. 12º Congreso Geológico Chileno (Santiago de Chile 2009), Actas S9-010: 40-43.
Dávila, F.M., Astini, R.A. and Ezpeleta. M. 2005. Sucesiones lacustres postgondwánicas-preandinas en la región de Famatina (La Rioja y Catamarca). Revista de la Asociación Geológica Argentina 60: 88–95.
Backhouse, J. 1988. Permian trilete spores from the Collie Basin, Western Australia. Memoir of the Association of Australasian Palaeontologists 5: 53–72.
De Jersey, N.J. 1963. Jurassic spores and pollen grains from the Marburg Sandstone. Geological Survey of Queensland, Publication 313: 1–15.
Backhouse, J. 1991. Permian palynostratigraphy of the Collie Basin, Western Australia. Review of Palaeobotany and Palynology 67: 237–314. Balme, B.E. 1963. Plant microfossils from the Lower Triassic of Western Australia. Palaeontology 6: 12–40. Balme, B.E. 1970. Palynology of Permian and Triassic strata in the Salt Range and Surghar Range, West Pakistan. In: B. Kummel and C. Teichert (Eds.), Stratigraphic Boundary problems: Permian and Triassic of West Pakistan. University of Kansas, Department of Geology Special Publication 4: 305–453. Balme, B.E. and Hennelly, P.F. 1956. Monolete, monocolpate, and alete sporomorphs from australian Permian sediments. Australian Journal of Botany 4: 54–67. Balme, B.E. and Playford, G. 1967. Late Permian plant microfossils from the Prince Charles Mountains, Antarctica. Revue de Micropaléntologie 10: 179–192. Bharadwaj, D.C. 1962. The miospore genera in the coals of Raniganj Stage (Upper Permian), India. The Palaeobotanist 9: 68–106. Bharadwaj, D.C. and Salujha, S.K. 1964. Sporological study of seam VIII in Raniganj Coalfield, Bihar (India). Part 1. Description of sporae dispersae. The Palaeobotanist 12: 181–215. Bharadwaj, D.C. and Srivastava, S.C. 1969. Some new miospores from Barakar stage, Lower Gondwana, India. The Palaeobotanist 17: 220–229. Biswas, B. 1962. Stratigraphy of the Mahadeo, Langpar, Cherra and Tura Formations, Assam, India. Bulletin of the Geological, Mining and Metallurgical Society 25: 1–48. Bose, M.N. and Maheshwari, H.K. 1968. Paleozoic sporae dispersae from Congo. VIII. Area in the vicinity of Lake Tanganyke, South Alberville. Annales de Musee Royal de l’Afrique Centrale, Serie 8, Sciences géologiques 60: 1–116. Cameron Jr., D.K. 1974. New Triassic Palynomorphs from the Arabian Peninsula. Grana Palynologica 14: 4–10. Césari, S.N. 2007. Palynological biozones and radiometric data at the Carboniferous-Permian boundary in Western Gondwana. Gondwana Research 11: 529–536.
De Jersey, N.J. 1962. Triassic spores and pollen grains from the Ipswich Coalfield. Geological Survey of Queensland, Publication 307: 1–20.
De Jersey, N.J. 1964. Triassic spores and pollen grains from the Bundamba Group. Geological Survey of Queensland, Publication 321: 1–21. De Jersey, N.J. 1968. Triassic spores and pollen grains from the Clematis Sandstone. Geological Survey of Queensland, Publication, 338, Palaeontological Paper 14: 1–26. De Jersey, N.J. 1972. Triassic miospores from the Esk Beds. Publications of the Geological Survey of Queensland, 357, Palaeontological Paper 32: 1–40. De Jersey, N.J. and Hamilton, M. 1965. Triassic microfloras of the Moorooka and Tingalpa Formations. Queensland Government Mining Journal 66: 315–323. Dettmann, M.E. 1963. Upper Mesozoic microfloras from south-eastern Australia. Proceedings of the Royal Society of Victoria 77: 1–148. Dolby, J.H. and Balme, B.E. 1976. Triassic palynology of the Carnarvon Basin, Western Australia. Review of Palaeobotany and Palynology 22: 105–168. Ezpeleta, M. 2009. [El Paleozoico Superior de la región central del Famatina: un enfoque Tectosedimentario. Tesis Doctoral, Universidad Nacional de Córdoba, 336 p. Inédita]. Ezpeleta M. and Astini, R.A. 2008. Depositación diacrónica en las sucesiones pérmicas de Famatina: subsidencia regional y evolución de depocentros independientes. V Simposio Argentino del Paleozoico Superior; Buenos Aires. Ameghiniana, Suplemento Resúmenes 45: 8R. Ezpeleta, M., Astini, R.A. and Davila, F.M. 2008. Depósitos sinorogénicos en el antepaís neopaleozoico del cinturón de Famatina, centro-oeste de Argentina: Implicancias paleoambientales, paleogeográficas y tectonosedimentarias. Revista Geológica de Chile 35: 1–25. Fernández Seveso, F., Pérez, M.A., Brisson, I.E. and Álvarez, L.A. 1993. Sequence stratigraphy and tectonic analysis of the Paganzo Basin, western Argentina. 12° Congrès International de la Stratigraphie et Géologie du Carbonifére et Permien (Buenos Aires 1991), Comptes Rendus 2: 223–260. Foster, C.B. 1975. Permian plant microfossils from the Blair Athol Coal Measures, central Queenland, Australia. Palaeontographica Abeitlung B, 154: 121–171. Foster, C.B. 1979. Permian plant microfossils of the Blair Athol Coal Meas-
173
AMEGHINIANA, Tomo 48 (2): 154 - 176 ures, Baralaba Coal Measures, and basal Rewan Formation of Queensland. Geological Survey of Queensland, Publication 372: 1–244. Goubin, N. 1965. Description et répartition des principaux Pollenites Permiens, Triasiques et Jurassiques des sondages du Bassin de Morondava (Madagascar). Revue de l’Institut Français du Pétrole 20: 1415–1461. Gutiérrez, P.R. 1993. Palinología de la Formación Agua Colorada (Carbonífero Superior), Sierra de Famatina, Provincia de La Rioja, Argentina. I. Granos de polen. Ameghiniana 30: 163–212. Gutiérrez, P.R., Zavattieri, A.M. and Balarino, M.L. 2008. Palinología del Pérmico en Argentina: estado actual del conocimiento. 12° Simpósio Brasileiro de Paleobotânica e Palinologia (Florianopolis), Resumos, p. 93. Hart, G.F. 1960. On spores and pollen from Permian deposits of the Donets Basin. Witwatersrand University Press, Johannesburg, 9 p. Hart, G.F. 1963. Microflora from the Ketewaka–Mchuchuma Coalfield, Tanganyika. Bulletin Geological Survey Tanganyika 36: 1–27. Hart, G.F. 1964. A review of the classification and distribution of the Permian miospore: Disaccate Striatiti. 5° Congrès International du Stratigraphie et de Geologie du Carbonifere (Sheffield), Comptes Rendus 3: 1171–1199. Hoffmeister, W. S, Staplin, F.L. and Malloy, R.E. 1955. Mississippian plant spores from the Hardinsburg Formation of Illinois and Kentucky. Journal of Paleontology 29: 372–399. Ibrahim, A.C. 1933. Sporenformen des Aegirhorizonts des Ruhr-Reviers. Konrad Triltsch, Würzburg, 47 p. Jansonius, J. 1962. Palynology of Permian and Triassic sediments, Peace River area, western Canada. Palaeontographica Abteilung B 110: 35–98. Jansonius, J. 1971. Emended diagnosis of Alisporites Daugherty 1941. Pollen et Spores 13: 349–357. Jardiné, S. 1974. Microflores des formations du Gabon attribuées au Karroo. Review of Palaeobotany and Palynology 17: 75–112. Kaiser, H. 1976. Die permische Mikroflora der Cathaysia-Schichten von nordwest-Schansi, China. Palaeontographica Abteilung B 159: 83–157. Klaus, W. 1963. Sporen aus dem südalpinen Perm. Jahrbuch der Geologischen Bundensanstalt 106: 229–363. Kremp, G.O.W. 1965. Morphologic encyclopedia of palynology: an international collection of definitions and illustrations of spores and pollen. Program in Geochronology, University of Arizona, Contribution 100. University of Arizona Press, Tucson, 185 p. Kumaran, K.P.N. and Maheshwari, H.K. 1980: Upper Triassic Sporae Dispersae from the Tiki Formation. 2. Miospores from the Janar Nala Section, South Rewa Gondwana Basin, India. Palaeontographica Abteilung B 173: 26–84. Lakhanpal, R.N., Sah, S.C.D. and Dube, S.N. 1960. Further observations on plant microfossils from a carbonaceous shale (Krols) near Naini Tal, with a discussion on the age of the beds. The Palaeobotanist 7: 111–120. Leschik, G. 1955. Die Keuperflora von Neuewelt bei Basel. II. Die Iso-und Mikrosporen. Schweizerische Paläontologische Abhandlungen 72: 1–70. Leschik, G. 1956. Sporen aus dem Salzton des Zechsteins von Neuhof (bei Fulda). Palaeontographica Abteilung B 100: 122–142. Limarino, C.O., Spalletti, L.A. and Siano, C. 1993. A Permian arid paleoclimatic phase in West and northwest Argentina. 12º Congrès International de la Stratigraphie et Géologie du Carbonifère et Permien (Buenos Aires 1991), Comptes Rendus 2: 513–530. Limarino, C.O., Tripaldi, A., Marenssi, S. and Fauqué, L. 2006. Tectonic, sea-level, and climatic controls on Late Paleozoic sedimentation in the western basins of Argentina. Journal of South American Earth Sciences 22: 205–226. Lindström, S. 1995. Early Late Permian palynostratigraphy and palaeobiogeography of Vestfjella, Dronning Maud Land, Antarctica. Review of Palaeobotany and Palynology 86: 157–173. López Gamundí, O.R., Álvarez, L., Andreis, R.R., Bossi, G.E., Espejo, I., Fernández Seveso, F.F., Legarreta, L., Kokogian, D. Limarino, C.O. and Sessarego, H. 1990. Cuencas intermontanas. In: G. Chebli and L. Spalleti (Eds.), Cuencas sedimentarias argentinas., Serie de Correlación Geológica (INSUGEO) 6[1989]: 123–168.
174
López Gamundí, O.R., Espejo, I.S., Conhagan, P.J. and Powell, P.J. 1994. Southern South America. In: J.J. Veevers and C. Powell (Eds.), Permian-Triassic Pangean Basins and foldbelts along the Panthalassan margin of Gondwanaland. Geological Society of America Memoir 184: 281–329. Mädler, K. 1964. Die geologische Verbreitung von Sporen und Pollen in der deutschen Trias. Beihefte zum Geologisches Jahrbuch 65: 1–147. Maheshwari, H.K. 1975. Palynology of the Athgarh. Formation near Cuttack, Orissa. The Palaeobotanist 22: 23–38. Maheshwari, H.K. and Banerji, J. 1975. Lower Triassic palynomorphs from the Maitur Formation, West Bengal, India. Palaeontographica Abteilung B 152: 149–190. Marques-Toigo, M. 1974. Some new species of spores and pollen of Lower Permian age from the San Gregorio Formation in Uruguay. Anais da Academia Brasileira da Ciências 46: 602–616. Marques-Toigo, M. 1991. Palynobiostratigraphy of the southern Brazilian Neopalaeozoic Gondwana sequence. In: H. Ulbrich and A.C. RochaCampos (Eds.), Gondwana Seven Proceedings. Instituto de Geociências, Universidade de São Paulo, São Paulo p. 503–515. Menéndez, C.A. 1976. Contenido palinológico de estratos pérmicos con “Mesosaurus” de Rio Claro, São Paulo, Brasil. Revista del Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” e Instituto Nacional de Investigación de las Ciencias Naturales, Paleontología 2: 1–30. Morgan, B.E. 1972. Tornopollenites n. gen. from Permian of Texas. Pollen et Spores 13: 481–484. Nash, D.J., Thomas, D.S.G. and Shaw, P.A. 1994. Siliceous duricrusts as palaeoclimatic indicators: evidence from Kalahari desert of Botswana. Palaeogeography, Palaeoclimatology, Palaeoecology 112: 279–295. Nilsson, T. 1958. Über das Vorkommen eines mesozoischen Sapropelgesteins in Schonen. Lunds Universitets Årsskrift, Ny följd 2, 54(10): 1–112. Olsen, H. 1989. Sandstone-body structures and ephemeral stream processes in the Dinosaur Canyon Member, Moenave Formation (Lower Jurassic), Utah, USA. Journal of Sedimentary Petrology 61: 207–221. Peppers, R.A. 1964. Spores in strata of Late Pennsylvanian cyclothems in the Illinois Basin. Bulletin of the Illinois State Geological Survey 90: 1–89. Pérez Loinaze, V.S. 2007. A Mississippian miospore Biozone for Southern Gondwana. Palynology 31: 101–117. Playford, G. and Dettmann, M.E. 1996. Spores. In: J. Jansonius and D.C. McGregor (Eds.), Palynology: principles and applications, volume 1. American Association of Stratigraphic Palynologists Foundation, Dallas, p. 227–260. Playford, G. and Dino, R. 2000a. Palynostratigraphy of upper Palaeozoic strata (Tapajós Group), Amazonas Basin, Brazil: part one. Palaeontographica Abteilung B 255: 1–46. Playford, G. and Dino, R. 2000b. Palynostratigraphy of upper Palaeozoic strata (Tapajós Group), Amazonas Basin, Brazil: part two. Palaeontographica Abteilung B 255: 87–145. Playford, G. and Dino, R. 2002. Permian palynofloral assemblages of the Chaco-Paraná Basin, Argentina: systematics and stratigraphic significance. Revista Española de Micropaleontología 34: 235–288. Potonié, R. 1956. Synopsis der Gattungen der Sporae dispersae. I. Teil: Sporites. Beihefte zum Geologischen Jahrbuch 23: 1–103. Potonié, R. 1958. Synopsis der Gattungen der Sporae dispersae. II. Teil: Sporites (Nachträge), Saccites, Aletes, Praecolpates, Polyplicates, Monocolpates. Beihefte zum Geologischen Jahrbuch 31: 1–114. Potonié, R. 1970. Synopsis der Gattungen der Sporae Dispersae. Teil V. Nachträge zu allen Gruppen (Turmae). Geologisches Jahrbuch Beihefte 87: 1–222. Potonié, R. and Klaus, W. 1954. Einige Sporengattungen des alpinen Salzgebirges. Geologischen Jahrbuch 68: 517–546. Potonié, R. and Kremp, G. 1954. Die Gattungen der paläozoischen Sporae Dispersae und ihre Stratigraphie. Geologischen Jahrbuch 69: 111–194. Potonié, R. and Sah, S.C.D. 1960. Sporae dispersae of the Lignites from Cannanore Beach on the Malbar Coast of India. The Palaeobotanist 7: 121–135.
GUTIÉRREZ et al.: PALYNOLOGY OF THE PERMIAN LA VETEADA FORMATION Reid, I. and Frostick, L.E. 1987. Flow dynamics and suspended sediment properties in arid zone flash floods. Hydrological Processes 1: 239–253. Russo, A., Archangelsky, S. and Gamerro, J.C. 1980. Los depósitos suprapaleozoicos en el subsuelo de la Llanura Chaco-Pampeana, Argentina. 2º Congreso Argentino de Paleontología y Bioestratigrafía y 1er Congreso Latinoamericano de Paleontología (Buenos Aires, 1978), Actas 4: 157–173. Samoilovich, S.R. 1953. Pollen and spores from the Permian deposits of the Cherdyn’ and Aktyubinsk areas, Cis-Urals. Trudy Vsesoiuznyi Nauchnoissledovatel’skii Geologo-razvedochnyi Institut, new series, Leningrad, 75: 5–57. [In Russian]. Translated by M.K. Elias 1961: Oklahoma Geological Survey, Circular 56: 7–103. Saxena, R.K. 1993. New names for some palynofossil later homonyms from India. Geophytology 23: 195–196. Schaarschmidt, F. 1963. Sporen und Hystrichosphaerideen aus dem Zechstein von Büdingen in der Wetteran. Palaeontographica Abteilung B 113: 38–91. Scheuring, B.W. 1970. Palynologische und palynostratigraphische Untersuchungen des Keupers im Bölchentunnel (Solothurner Jura). Schweizerische Paläontologische Abhandlungen 88: 1–199. Sedova, M.A. 1956. The definition of four genera of disaccate Striatitti. Palynological Transactions 1: 1–10. Segroves, K.L. 1969. Saccate plant microfossils from the Permian of Western Australia. Grana Palynologica 9: 174–227. Segroves, K.L. 1970. Permian spores and pollen grains from the Perth Basin, Western Australia. Grana Palynologica 10: 43–73. Smith, A.V.H. 1971. Le genre Verrucosisporites Ibrahim 1933 emend. In: B. Alpern and R. Neves (Eds.), Microfossiles organiques du Paleozoique, Les spores. CIMP: 35–87. Smith, A.H.V. and Butterworth, M.A. 1967. Miospores in the coal seams of the Carboniferous of Great Britain. Special Papers in Palaeontology 1: 1–324. Souza, P.A. 2006. Late Carboniferous palynostratigraphy of the Itararé Subgroup, northeastern Paraná Basin, Brazil. Review of Palaeobotany and Palynology 138: 1–29. Souza, P.A., Amaral, P.G.C. and Bernardes de Oliveira, M.E.C. 2006. A Late Carboniferous palynoflora from the Itararé Subgroup (Paraná Basin) in Campinas, São Paulo State, Brazil. Revue du Micropaleontologie 49: 105–115. Souza, P.A. and Marques-Toigo, M. 2001. Zona Vittatina: marco palinobioestratigrafico do Permiano Inferior da Bacia do Paraná. Ciência Ténica Petróleo 20: 153–159. Souza, P.A. and Marques-Toigo, M. 2003. An overview on the palynostratigraphy on the Upper Paleozoic strata of the Brazilian Paraná Basin. Revista de Museo Argentino de Ciencias Naturales, nueva serie 5: 205–214. Souza, P.A. and Marques-Toigo, M. 2005. Progress on the palynostratigraphy of the Permian strata in Rio Grande do Sul State, Paraná Basin, Brazil. Anais da Academia Brasileira de Ciencias 77: 353–365. Summerfield, M.A. 1983. Silcrete as a palaeoclimatic indicator: evidence from southern Africa. Paleogeography, Paleoclimatology, Paleoecology 41: 65–79. Surange, K.R. and Chandra, S. 1974. Some male fructifications of Glossopteridales. The Palaeobotanist 21: 255–266. Tiwari, R.S. 1965. Miospore assemblage in some coals of Barakar Stage (Lower Gondwana) of India. The Palaeobotanist 13: 168–214. Tiwari, R.S. 1999. Towards a Gondwana palynochronology. Journal of the Palaeontological Society of India 44: 1–14. Tiwari, R.S. and Navale, G.K.B. 1968. Pollen and spore assemblage in some coals of Brazil. Pollen et Spores 9: 583–605. Tiwari, R.S. and Vijaya 1995. Differential morphographic identity of Gondwanic palynomorphs. The Palaeobotanist 44: 62–115. Tschudy, R.H. and Kosanke, R.M. 1966. Early Permian vesiculate pollen from Texas, USA. The Palaeobotanist 1: 59–72.
Twidale, C.R. and Bourne, J.A. 1998. The use of duricrusts and topographic relations in geomorphological correlation: conclusions based in Australian experience. Catena 33: 105–122. Venkatachala, B.S. and Kar, R.K. 1966. Corisaccites gen. nov., a new saccate pollen genus from the Permian of Salt Range, West Pakistan. The Palaeobotanist 15: 107–109. Volkheimer, W. and Melendi, D. 1976. Palinomorfos como fósiles guías. Tercera parte: técnicas de laboratorio palinológico. Revista Minera, Geología y Mineralogía, Sociedad Argentina de Mineralogía y Geología 34: 19–30. Wilson, L.R. 1962. Permian plant microfossils from the Flowerpot Formation, Greev County, Oklahoma. Oklahoma Geological Survey, Circular 49: 1–50. Wilson, L.R. and Venkatachala, B.S. 1963. An emendation of Vestispora Wilson and Hoffmeister, 1956. Oklahoma Geology Notes 23: 94–100. Wilson, L.R. and Webster, R.M. 1946. Plant microfossils from a Fort Union coal of Montana. American Journal of Botany 33: 271–278. Wodehouse, R.P. 1933. Tertiary pollen. 2. The oil shales of the Eocene Green River Formation. Bulletin of the Torrey Botany Club 60: 479–524. Ybert, J.P. 1975. Étude des miospores du Bassin Houiller de Candiota-Hulha Negra, Rio Grande do Sul, Brasil. Pesquisas 5: 181–226. Zavattieri, A.M., Gutiérrez, P.R., Ezpeleta, M. and Astini, R.A. 2008. Nuevos elementos de la microflora de la Formación La Veteada (Pérmico) en los afloramientos de la sierra de Narváez (Catamarca), Argentina. Ameghiniana, Suplemento Resúmenes 45: 10R–11R. Appendix 1. Alphabetical list of identified species and illustration references. Trilete Spores Calamospora sp. (Fig. 3.1) Convolutispora archangelskyi Playford and Dino 2002 (Figs. 3.12–13) Convolutispora candiotensis Ybert 1975 (Fig. 3.14) Convolutispora sp. cf. C. ordonezii Archangelsky and Gamerro 1979 (Fig. 3.16) Convolutispora sp. cf. C. tessellata Hoffmeister, Staplin and Malloy 1955 (Fig. 3.20) Cyclogranisporites sp. (Fig. 3.6) Horriditriletes ramosus (Balme and Hennelly) Bharadwaj and Salujha 1964 (Fig. 3.15) Leiotriletes sp. cf. L. badamensis (Venkatachala and Kar) Foster 1975 (Fig. 3.2) Leiotriletes virkkii Tiwari 1965 (Fig. 3.7) (non Leiotriletes virkkii Biswas 1962, p. 43, pl. 9, fig. 53). We do not follow the proposal of Saxena (1993) in the substitution of L. virkkii by the new name L. tiwarii as later homonym, because we consider that the name established by Tiwari (1965) has priority and is validly published for the gondwanic Permian strata. cf. Punctatisporites fungosus Balme 1963 (Fig. 3.3) Raistrickia sp. (Fig. 3.8) Retusotriletes sp. (Fig. 3.11) Verrucosisporites andersonii (Anderson) Backhouse 1988 (Fig. 3.5) Verrucosisporites menendezii Archangelsky and Gamerro 1979 (Fig. 3.4) Verrucosisporites surangei Maheshwari and Banerji 1975 (Figs. 3.9–10) Monolete Spores Kendosporites sp. (Figs. 3.18, 21) Laevigatosporites flexus Segroves 1970 (Fig. 3.19) Laevigatosporites vulgaris (Ibrahim) Ibrahim 1933 (Fig. 3.17) Monosaccate pollen grains Barakarites sp. (Fig. 4.5) Cannanoropollis densus (Lele) Bose and Maheswari 1968 (Fig. 3.22) Cannanoropollis janakii Potonié and Sah 1960 (Fig. 3.23)
175
AMEGHINIANA, Tomo 48 (2): 154 - 176 Cannanoropollis mehtae (Lele) Bose and Maheshwari 1968 (Fig. 4.3) Caheniasaccites ovatus Bose and Kar emend. Gutiérrez 1993 (Fig. 4.6) Caheniasaccites sp. (Fig. 4.11) Mabuitasaccites crucistriatus (Ybert) Playford and Dino 2000b (Fig. 4.7) Meristocorpus sp. A (Fig. 4.4) Meristocorpus sp. B (Fig. 4.9) Striomonosaccites cicatricosus Archangelsky and Gamerro 1979 (Fig. 4.10) Striomonosaccites? sp. (Fig. 4.8) Inaperturate pollen grains Grebespora concentrica Jansonius 1962 (Figs. 4.1–2) Bisaccate pollen grains Alisporites sp. cf. A. lowoodensis de Jersey 1963 (Fig. 4.12) Alisporites parvus de Jersey 1962 (Fig. 4.13) Alisporites rioclarensis Menéndez 1976 (Fig. 4.18) Alisporites spp. Colpisaccites granulosus Archangelsky and Gamerro 1979 (Fig. 4.14) Falcisporites sp. cf. F. enodis Goubin 1965 (Fig. 4.15) Falcisporites nuthallensis (Clarke) Balme 1970 (Fig. 5.5) Falcisporites stabilis Balme 1970 (Fig. 5.3) Falcisporites sp. (Fig. 4.17) Klausipollenites sp. cf. K. decipiens Jansonius 1962 (Fig. 5.2) Klausipollenites schaubergeri (Potonié and Klaus) Jansonius 1962 (Fig. 5.1) Klausipollenites staplinii Jansonius 1962 (Fig. 5.4) Limitisporites rectus Leschik 1956 (Fig. 5.10) Minutosaccus sp. cf. M. acutus Mädler 1964 (Fig. 5.12) Minutosaccus sp. (Fig. 5.6) Platysaccus sp. cf. P. fuscus Goubin 1965 (Fig. 5.9) Platysaccus sp. cf. P. papilionis Potonié and Klaus 1954 (Fig. 5.16) Platysaccus spp. Protodiploxypinus sp. (Fig. 5.14) Pteruchipollenites sp. cf. P. indarraensis (Segroves) Foster 1979 (Fig. 5.8) Scheuringipollenites ovatus (Balme and Hennelly) Foster 1975 (Fig. 5.7) Vesicaspora sp. cf. V. sulcata Hart 1960 (Fig. 5.15) Vestigisporites sp. (Fig. 4.16) Vitreisporites sp. cf. V. microsaccus de Jersey 1964 (Fig. 5.11) Vitreisporites signatus Leschik 1955 (Fig. 5.13) Striate pollen grains Corisaccites alutas Venkatachala and Kar 1966 (Fig. 5.17) Hamiapollenites spp. Lueckisporites angoulaensis Jardiné 1974 (Fig. 5.18) Lueckisporites balmei (Tiwari and Vijaya) comb. nov. (Figs. 5.21–22) Lueckisporites nyakapandensis Hart 1960 (Figs. 5.20, 24) Lueckisporites singhii Balme 1970 (Fig. 5.23) Lueckisporites stenotaeniatus Menéndez 1976 (Fig. 5.25)
176
Lueckisporites virkkiae Potonié and Klaus emend. Clarke 1965 (Fig. 5.19) Lunatisporites variesectus Archangelsky and Gamerro 1979 (Figs. 5.28, 6.4) Lunatisporites sp. (Figs. 5.29–30) Protohaploxypinus amplus (Balme and Hennelly) Hart 1964 (Fig. 5.26) Protohaploxypinus limpidus (Balme and Hennelly) Balme and Playford 1967 (Fig. 5.27) Staurosaccites cordubensis Archangelsky and Gamerro 1979 (Fig. 6.3) Staurosaccites sp. (Fig. 6.1–2) Striatoabieites anaverrucosus Archangelsky and Gamerro 1979 (Fig. 6.5) Striatoabieites multistriatus (Balme and Hennelly) Hart 1964 (Fig. 6.10) Striatoabieites sp. (Figs. 6.6–7) Striatoabieites spp. (Fig. 6.9) Striatopodocarpites cancellatus (Balme and Hennelly) Hart 1963 (Fig. 6.11) Striatopodocarpites gondwanensis Lakhanpal, Sah and Dube 1960 (Fig. 6.15) Striatopodocarpites sp. cf. S. solitus (Bharadwaj and Salujha) Foster 1979 (Fig. 6.13) Striatopodocarpites sp. A in Playford and Dino 2000b (Fig. 6.14) Tornopollenites toreutos Morgan 1972 (Fig. 6.8, 12) Vittatina corrugata Marques-Toigo 1974 (Fig. 6.18) Vittatina costabilis Wilson emend. Tschudy and Kosanke 1966 (Fig. 6.16) Vittatina minima Jansonius 1962 (Fig. 6.20) Vittatina subsaccata Samoilovich 1953 (Fig. 6.17) Vittatina vittifera (Luber and Waltz) Samoilovich 1953 (Fig. 6.19) Plicate pollen grains Cycadopites sp. (Fig. 6.26) Marsupipollenites striatus (Balme and Hennelly) Foster 1975 (Fig. 6.22) Marsupipollenites triradiatus Balme and Hennelly 1956 (Fig. 6.23) Praecolpatites sp. (Fig. 6.30) Algae Algal coenobium (Fig. 6.21) Botryococcus sp. (not illustrated) Brazilea sp. cf. B. helbyi Foster 1979 (Figs. 6.27–28) Brazilea sp. (Figs. 6.24–25) Fungi Fungi spores (Fig. 6.29) Chordecystia sp. (not illustrated)
doi: 10.5710/AMGH.v48i2(312) Recibido: 18 de febrero de 2010 Aceptado: 16 de octubre de 2010