Particle Physics and Introduction to Standard Model. U. Uwer. 1. Date: Mon, 9:15
- 11: ... D.H.Perkins: Introduction to High Energy Physics,. Cambridge University ...
Particle Physics and Introduction to Standard Model
Particle Physics & Introduction to the Standard Model Date:
Mon, 9:15 - 11:00 Fri,
Venue:
9:15 – 11:00
nHS Phil 12
Lecturer: J. Pawlowski / U. Uwer http://www.physi.uni-heidelberg.de/~uwer/lectures/ParticlePhysics/
Particle Physics & Introduction to Standard Model Outline
U. Uwer
I.
Introduction
II.
Prerequisites
III.
Introduction to QED
IV.
e+e− annihilation experiments below the Z resonance
V.
Weak interaction and phenomenological approach to the SM
VI.
Standard Model
VII.
Experimental tests of the Standard Model
VIII.
Strong Interaction
IX.
Flavor oscillations
X.
Search for Physics beyond the Standard Model
1
Particle Physics and Introduction to Standard Model
Literature
• O. Nachtmann: Elementarteilchenphysik, Vieweg • F.Halzen, A.Martin: Quarks and Leptons, John Wiley. • C.Berger: Elementarteilchenphysik, Springer. • D.H.Perkins: Introduction to High Energy Physics, Cambridge University Press. • Particle Data Group: Review of Particle Physics, 2008. http://pdg.lbl.gov/
I. Introduction 1. Standard Model: Building blocks of matter and their interactions 2. Experimental tools 3. Natural units
What you already know from „Physik 5“
U. Uwer
2
Particle Physics and Introduction to Standard Model
1. Standard Model *) of Particle Physics Based on the principle of local gauge invariance
12 gauge fields
I
II
III
Not yet directly observed
*) S. L. Glashow, A. Salam and S. Weinberg, 1967/8
History of Experimental Tests of Standard Model 1967/8 Standard Model, S. L. Glashow, A. Salam and S. Weinberg 1971
Renormalizability of non-abelian gauge theories, G. `t Hooft and M. Veltman
1973
Asymptotic freedom of QCD, D. Gross, D. Politzer and F. Wilzcek
1973
Discovery of Neutral Currents: „Z-Boson exchange“ (Gargamelle, CERN)
1974
Discovery of the 4th quark (SLAC / BNL)
1979
Discovery of the gluon (DESY)
1983
Observation of W and Z bosons (UA1/2, CERN)
1989
Start of LEP I: Z factory Z properties, measurement of radiative corrections, prediction of topmass
U. Uwer
1995
Discovery of the Top-Quark at TEVATRON
1996
Start of LEP II: W Pair production and Higgs search (until Nov 2000)
2001
Start of TEVATRON Run II: Precision measurement of Top-Quark and W-Boson properties, B physics
2009
Start of LHC: Discovery of the Higgs boson ?
3
Particle Physics and Introduction to Standard Model
1.1 Leptons and Quarks Point-like, spin ½ , elementary building blocks of matter < 10-18 m
Flavor-Generation
Q [e]
Leptons
⎛ν e ⎞ ⎜⎜ ⎟⎟ ⎝e⎠
⎛ν µ ⎞ ⎜⎜ ⎟⎟ ⎝µ⎠
⎛ν τ ⎞ ⎜⎜ ⎟⎟ ⎝τ ⎠
⎛0⎞ ⎜⎜ ⎟⎟ ⎝ − 1⎠
Quarks
⎛u ⎞ ⎜⎜ ⎟⎟ ⎝d ⎠
⎛c ⎞ ⎜⎜ ⎟⎟ ⎝s⎠
⎛t ⎞ ⎜⎜ ⎟⎟ ⎝b⎠
⎛+ 2 ⎞ ⎜ 3⎟ ⎜− 1 ⎟ 3⎠ ⎝
Doublets reflect structure of weak interaction Anti-particles with opposite charge to each lepton/quark
U. Uwer
4
Particle Physics and Introduction to Standard Model
Lepton Properties
• All leptons exist as free particles 1975
• Lepton number conservation
π
+
Lµ = 0
→
µ
+
νµ
→ −1
2000
1
mass·c2
lifetime
Lepton number
e−
511 keV
∞
Le=1
µ−
106 MeV
2.2 µs
Lµ=1
τ−
1.78 GeV
0.3 ps
Lτ=1
νe
< 2 eV
∞
Le=1
νµ