Pb

21 downloads 0 Views 793KB Size Report
1836.063. 99.2. Y89(n,3n). Y87. 79,8h. 20,8. 388.53. 82.00. 484.805. 89.7. Y89(n,4n). Y86. 14,74h. 32,7. 1076.64. 82.00. Y89(n,5n). Y85. 2.68h. 42.633. 231.67.
A METHOD OF SPALLATION NEUTRON ENERGY SPECTRUM RECONSTRUCTION WITH YTTRIUM SAMPLE ACTIVATION S. Kilim, M. Bielewicz, B. Słowiński, E. StrugalskaGola, M. Szuta, A. Wojciechowski Institute of Atomic Energy, 05-400 Otwock-Swierk, Poland

Purpose of the work Looking for possibility to determine spallation neutron energy spectrum with

Y89 activation detector Why yttrium? Y89 the only one naturally occurring isotope – no overlapping reactions – easy to trace

- several residual nuclei Resulting isotopes relatively easy to identify

Stanislaw Kilim

Baldin seminar 4-9.10.2010

2

Y-89(n,?) reaction cross sections available in ENDFs

Y89(n,2n)Y88 a dominant reaction

Stanislaw Kilim

Baldin seminar 4-9.10.2010

3

Yttrium-89 activation reactions taken into account Reaction

Y89(n,g)

Y89(n,2n)

Produced Isotope Y90

Y88

T1/2

3.19h

106,65d

Reaction Threshold [MeV] -6.8570*

11,5

-line Energy [keV]

-line Intensity [%]

202.51

97.3

479.17

90.74

898.042

93.7

1836.063

99.2

388.53

82.00

484.805

89.7

Y89(n,3n)

Y87

79,8h

20,8

Y89(n,4n)

Y86

14,74h

32,7

1076.64

82.00

2.68h

42.633

231.67

84.00

4.86h

42.633

231.67

22.8

Y89(n,5n) Stanislaw Kilim

Y85

Baldin seminar 4-9.10.2010

4

Y89(n,xn) reaction residual nuclei example production. Here is, where the method idea comes from.

Production[nuclei/g/d]

P2-R3 - production experimental value

1,0x10

-4

8,0x10

-5

6,0x10

-5

4,0x10

-5

2,0x10

-5

88Y

87Y

86Y 85Y 90Y

0,0 -10

0

10

20

30

40

50

Reaction threshold energy [MeV]



I k  Nt ir

  E  E, E dE k

thr, k

k = Y90, Y88, Y87, Y86, Y85

Ethr , k

Stanislaw Kilim

Baldin seminar 4-9.10.2010

5

Y89(n,xn) reaction residual nuclei example production – remarks P2-R3 - experimantal value fitting -4

1,2x10

-4

Production [nuclei/g/d]

1,0x10

88Y

-5

8,0x10

I(Ethr)

-5

6,0x10

-5

4,0x10

87Y

-5

2,0x10

86Y 85Y

90Y

0,0 -10

0

10

20

30

40

50

Reaction threshold energy [MeV]

1. The experimental values make a curve I(Ethr) 2. For the I(Ethr) curve the Ethr is a variable Stanislaw Kilim

Baldin seminar 4-9.10.2010

6

The method idea Each isotope production is a result of convoluted influence of spallation neutron spectrum and reaction cross section 0

20

40

60

80

100

Y89(n,g)Y90 CS Y89(n,n')Y89 CS Y89(n,2n)Y88 CS Y89(n,3n)Y87 CS Y89(n,4n)Y86 CS Y89(n,5n)Y85 CS P2-R3 spectrum

(E) 4

-4

2,0x10

-4

1,5x10

-4

1,0x10

2

k(E) 0 0

Ethr,k 40

20



I k  Nt ir

60

NSpectrum (User)

Maxw_BoltzCS (User) (barn)

6

-5

5,0x10

80

0,0 100

Energy (MeV)

  E  E, E dE k

thr, k

Here the Ethr,k is a value

Ethr , k

Stanislaw Kilim

Baldin seminar 4-9.10.2010

7

The method idea

The idea is to transform one isotope production formula I k  - nuclei/g/d N - Y89 nuclei/g t ir   s  E   n/cm 2 /s/M eV/d σ k   barn  10 24 cm 2



I k  Nt ir

  E  E, E dE k

thr, k

Ethr , k

or   E tir   E 

I k    N



  E  k E, Ethr dE

 E  neutron fluence/cm 2 /MeV/d

Ethr , k

into a general one valid for any isotope 

I Ethr   N   E  E , Ethr dE

Here the Ethr is a variable

Ethr

and solve it. Stanislaw Kilim

Baldin seminar 4-9.10.2010

8

The generalized equation



I Ethr   N   E  E , Ethr dE Ethr

(E) looked for, neutron fluence/cm2/MeV/g/d = n/cm2/MeV/g/d  (E) is in fact  r , E  but dependence on r is not a subject Ethr – a variable parameter I(Ethr) and (E,Ethr) to be known and continuous functions. (E)  0 while E  

The equation creates two issues • How to find an analytical form of I(Ethr) • Need to assume something about the (E,Ethr) Stanislaw Kilim

Baldin seminar 4-9.10.2010

9

I(Ethr) case on example sample (Ed = 4.0 GeV, position P2-R3) P2-R3 - experimantal value fitting

 -4

1,2x10

-4

Production [nuclei/g/d]

1,0x10

88Y

-5

8,0x10

I(Ethr)

-5

6,0x10

-5

4,0x10

87Y

-5

2,0x10

86Y 85Y

90Y

0,0 -10

0

10

20

30

40

50

Reaction threshold energy [MeV]

I Ethr    Ethr   e



 Ethr   

with ,  and  as fitting parameters Stanislaw Kilim

Baldin seminar 4-9.10.2010

10

Y89(n,xn) reaction cross section case available data – experimental and evaluated

Y89(n,2n)Y88

Y89(n,3n)Y87

Y89(n,4n)Y86

Stanislaw Kilim

Baldin seminar 4-9.10.2010

11

Y89(n,xn) reaction cross section case - basic assumptions and consequences

  E  Ethr   E  Ethr   exp     3 kT E    E , Ethr    kT  2  0

 E  E thr    E  E thr 

because it fits the best EXFOR database for Y89(n,2n)Y88 reaction cross section experimental data.

The same formula applies to all Y89(n,xn) reactions. The main difference between Y89(n,2n), (n,3n) and (n,4n) reactions is their threshold energy Ethr.

Stanislaw Kilim

Baldin seminar 4-9.10.2010

12

Notes on Y89(n,xn) reaction cross section analytical formula •

It resembles Maxwell-Boltzmann energy distribution function for ideal gas particles in equilibrium f(E) ~ sqrt(E)*exp(-E/kT).



Statistical model of Y89 nucleus applies, i.e. nucleons behave like an ideal gas particles. The only interactions between them are elastic collisions. In an equilibrium stage their energy is dispersed around mean energy kT.



Reaction CS proportional to f(E), (E)~f(E).



N. Bohr reaction model applies to Y89(n,xn) one, where the reaction has two stages – compound nucleus formation (10-22 s) and compound nucleus evaporation (10-18 – 10-16 s).



Y89(n,xn) reaction is caused by neutrons with energy larger than threshold energy – Ethr.



Y89(n,xn) reaction cross section is directly proportional to a time of flight through yttrium nucleus, i.e. inversely proportional to neutron speed, i.e. inversely proportional to the square root of neutron energy



Neutrons and protons are the two separated, not interacting gases

Stanislaw Kilim

Baldin seminar 4-9.10.2010

13

Y89(n,2n)Y88 reaction cross section fitting

kT 

3 2

E

e



The fitting gives • ,kT - coefficients • Ethr – reaction threshold energy

 E  Ethr  EXFOR Y89(n,2n)Y88 CS fitting

1,5

kT

Y89(n,2n)Y88 CS (barns)

 E , Ethr  

E  Ethr 



1,0

0,5

0,0 0

10

Ethr

20

30

Energy (MeV)

Stanislaw Kilim

Baldin seminar 4-9.10.2010

14

Y89(n,xn) reaction cross section looks like

 E , Ethr  

E  Ethr 



kT 

3 2

E

e



 E  Ethr  kT

Y89(n,2n)Y88 CS fitting coefficients ,kT applied to any Y89(n,xn) reaction Ethr – from elsewhere

Y89(n,xn) reaction cross section [cm2]

1.6E-024 Y89(n,xn) reaction cross sections Y89(n,2n)Y88 Y89(n,3n)Y87 Y89(n,4n)Y86 1.2E-024

8E-025

4E-025

0 0

20

40

60

Neutron energy [MeV]

Stanislaw Kilim

Baldin seminar 4-9.10.2010

15

Y89(n,xn) reaction cross section comparison: experimental data, MENDL-2 data base, and this work

Y89(n,xn) cross section [barn]

1.6 Y89(n,xn) reaction cross sections Y89(n,2n)Y88 CS exp data Y89(n,3n)Y87 CS exp data Sigma Y89(n,2n)Y88 ev data - SK Sigma Y89(n,3n)Y87 ev data - SK Sigma Y89(n,4n)Y86 ev data - SK MENDL-2 Y89(n,2n)Y88 CS ev data MENDL-2 Y89(n,3n)Y87 CS ev data MENDL-2 Y89(n,4n)Y86 CS ev data

1.2

0.8

0.4

0 0

20

40

60

80

100

Neutron energy [MeV]

Stanislaw Kilim

Baldin seminar 4-9.10.2010

16

Spallation neutron energy spectrum (E) determination basing on experimental data I(Ethr) and (E,Ethr)



I Ethr   N   E  E , Ethr dE Ethr

Stanislaw Kilim

Baldin seminar 4-9.10.2010

17

Solving an integral equation for yttrium isotope production Using the mentioned earlier functions for (E,Ethr) and I(Ethr) the equation 

I Ethr   N   E  E , Ethr dE Ethr

becomes N

kT 

Ethr 3 2

 (E

thr

 E )e



E kT

 E  E



dE   Ethr   e



Ethr kT

Differentiating twice both sides on Ethr one gets:

 Ethr   Stanislaw Kilim

   kT 

2

N 2 kT 

1 2

 2kT    Ethr       e   Baldin seminar 4-9.10.2010

 Ethr   

Ethr 18

Solving a Volterra’s integral equation for Yttrium isotope production - continuation To fulfill request (E  0) = 0 and (E  )  0 must be



2kT   kT

and (E) becomes

 E  

   kT 

2

N kT  2

Stanislaw Kilim

1 2

3 2

E e

Baldin seminar 4-9.10.2010

1 2kT   E      kT

  

19

2,0x10

-4

1,5x10

-4

1,0x10

-4

5,0x10

-5

2

Neutron energy spectrum [n/cm /MeV/g/d]

(E) example view (Ed = 4 GeV, P2-R3)

NSpectrum (User)

 E  

   kT 2 N 2 kT 

1 2

3 2

E e

1 2kT   E      kT

  

 max E  at E   3 2

0,0 0

10

20

30

40

50

60

70

80

90

100

Energy [MeV]

Stanislaw Kilim

Baldin seminar 4-9.10.2010

20

The method application example

The method has been applied to „Energy plus Transmutation” experiment results elaboration

Stanislaw Kilim

Baldin seminar 4-9.10.2010

21

„Energy plus Transmutation” project • International research project realised in JINR Dubna. – 12 states take part in – Started 1999

• Purpose of the project is to study transmutation on U/Pbassembly driven by accelerator NUKLOTRON. • Transmutation samples – 129I, 237Np, 238Pu, 239Pu • Activation detectors – Al, Ti, V, Mn, Fe, Co, Ni, Cu, Y, Nb, In, Dy, Lu, W, Au, Bi •

3He

counter

• SSNTD Stanislaw Kilim

Baldin seminar 4-9.10.2010

22

Yttrium samples location during irradiation

U natural

RADIUS

Pb

DEUTERON BEAM

R13.5 R10.5 R8.5 R6 R3 R0

U-nat Pb

B E A M A XIS

U-nat

P LA NE 1 0 P1

Stanislaw Kilim

P LA NE 2 11.8 CM P2

P LA NE 3 24.2 CM P3

P LA NE 4 38.4 CM P4

P LA NE 5 48.4 CM P5

Baldin seminar 4-9.10.2010

23

Experiments with „Energy plus Transmutation” set-up

• Proton beam:

• Deuteron beam:

• • • •

• Ed = 1.6 GeV

Ep = 0.7 GeV Ep = 1.0 GeV Ep = 1.5 GeV Ep = 2.0 GeV

= 0.8 GeV/nucleon

• Ed = 2.52 GeV = 1.26 GeV/nucleon

• Ed = 4.0 GeV = 2.0 GeV/nucleon

30 Y89 samples irradiated in each experiment Stanislaw Kilim

Baldin seminar 4-9.10.2010

24

Y-90 and Y-88 production spatial distribution comparison

6,0E-07 5,0E-07

2,0E-07

0,0E+00

0,0E+00 0,0

5

]

1,0E-07

]

1,0E-07 2 3 4 Detector plane number

3,0E-07

m s[c

2,0E-07

4,0E-07

m s[c diu

3,0E-07

5,0E-07

1,2E-06

11,8

24,0

36,2

1,0E-06

4.0 GeV deuteron beam

diu Ra

4,0E-07

2.52 GeV deuteron beam 0,00 3,00 6,00 8,50 10,5 13,5

Ra

m]

s[c diu

0,00 3,00 6,00 8,50 10,5 13,5

6,0E-07

8,0E-07 0,0 3,0 6,0 8,5 10,5 13,5

48,4 cm

6,0E-07 4,0E-07 2,0E-07

B[nuclei/g/deuteron]

7,0E-07

B[nuclei/g/deuteron]

8,0E-07

9,0E-07

B[nuclei/g/deuteron]

1,0E-06

7,0E-07

1.6 GeV deuteron beam

1

Y-90 S1 spatial distribution based on line 202.51

Y-90 S1 spatial distribution based on gamma line 202.51 keV

8,0E-07

Ra

Y90

Y-90 spatial distribution based on gamma line 202.51 keV

0,0E+00 0,0

Distance from the front of the Pb-target

11,8 24,0 36,2 48,4 cm Distance from the front of the Pb-target

Y-88 S2 spatial distribution based on lines 898.042 and 1836.063 keV

Y-88 S2 spatial distribution based on lines 898.042 and 1836.063 keV

Y-88 S2 spatial distribution based on lines 898.042 and 1836.063 keV

1,0E-04 8,0E-05 6,0E-05 4,0E-05

4,0E-05 2,0E-05

1,4E-04

]

]

11,8 24,0 36,2 48,4 cm Distance from the front of the Pb-target

6,0E-05

1,6E-04

0,0E+00 0,0

11,8

24,0

36,2

48,4 cm

Distance from the front of the Pb-target

Ed = 1.6 GeV Stanislaw Kilim

4.0 GeV deuteron beam

m s[c diu Ra

0,0E+00 0,0

8,0E-05

2.52 GeV deuteron beam 0,0 3,0 6,0 8,5 10,5 13,5

m s[c diu

2,0E-05

1,0E-04

Ra

]

0,0 3,0 6,0 8,5 10,5 13,5

1,2E-04

Ed = 2.52 GeV Baldin seminar 4-9.10.2010

1,2E-04 1,0E-04 0,0 3,0 6,0 8,5 10,5 13,5

8,0E-05 6,0E-05 4,0E-05

B[nuclei/g/deuteron]

1,2E-04

B[nuclei/g/deuteron]

1,4E-04

B[nuclei/g/deuteron]

1,6E-04

m s[c diu Ra

Y88

1,8E-04 1.6 GeV deuteron beam

2,0E-05 0,0E+00 0,0

11,8 24,0 36,2 48,4 cm Distance from the front of the Pb-target

Ed = 4.0 GeV 25

Y-87 and Y-86 production spatial distribution comparison

2,0E-05

13,5

0,0E+00 0,0

11,8 24,0 36,2 Distance from the front of the Pb-target

0,0E+00 11,8

24,0

36,2

2,0E-05

1,5E-05 1,0E-05 5,0E-06

2,0E-05

]

Ed = 1.6 GeV

0,0 3,0 6,0 8,5 10,5 13,5

2,5E-05

cm

11,8 24,0 36,2 48,4 cm Distance from the front of the Pb-target

2,0E-05

s[ diu

]

0,0E+00

3,0E-05 4.0 GeV deuteron beam

Ra

cm

5,0E-06

] cm s[ diu

1,0E-05

Ra

s[ diu

Ra

1,5E-05

48,4 cm

Y-86 S1 spatial distribution based on gamma line 1076.64 keV

2,5E-05 2.52 GeV deuteron beam

0,0E+00 0,0

B[nuclei/g/deuteron]

0,0E+00 11,8 24,0 36,2 Distance from the front of the Pb-target

3,0E-05 B[nuclei/g/deuteron]

2,5E-05

Stanislaw Kilim

1,0E-05 0,0

Y-86 spatial distribution based on gamma line 1076.64 keV

3,0E-05

0,0

2,0E-05 13,5

48,4 cm

3,5E-05

0,0 3,0 6,0 8,5 10,5 13,5

3,0E-05 8,5 10,5

4,0E-05

1.6 GeV deuteron beam

4,0E-05 6,0

Distance from the front of the Pb-target

Y-86 spatial distribution based on gamma line 1076.64 keV

Y86

1,0E-05 0,0

48,4 cm

5,0E-05

3,0

B[nuclei/g/deuteron]

10,5

2,0E-05

6,0E-05

0,0

m] s[c diu Ra

8,5

3,0E-05

]

m] s[c diu Ra

4,0E-05

6,0

4,0E-05

m s[c diu

3,0

5,0E-05 2.52 GeV deuteron beam 0,0 3,0 6,0 8,5 10,5 13,5

4.0 GeV deuteron beam

B[nuclei/g/deuteron]

6,0E-05

0,0

7,0E-05

6,0E-05 B[nuclei/g/deuteron]

8,0E-05

8,0E-05

7,0E-05

1,0E-04

11,8 24,0 36,2 48,4 cm Distance from the front of the Pb-target

Ed = 2.52 GeV Baldin seminar 4-9.10.2010

0,0 3,0 6,0 8,5 10,5 13,5

1,5E-05 1,0E-05 5,0E-06

B[nuclei/g/deuteron]

1,2E-04 1.6 GeV deuteron beam

Y-87 S2 spatial distribution based on gamma lines 388.53 and 484.805 keV

Y-87 S2 spatial distribution based on gamma lines 388.53 and 484.805 keV

Ra

Y87

Y-87 S2 spatial distribution based on gamma lines 388.53 and 484.805 keV

0,0E+00 1

2 3 4 Detector plane number

5

Ed = 4.0 GeV 26

Y-85 production spatial distribution comparison

8,0E-06

1,2E-05 1,0E-05

2 3 4 Detector plane number

5

Ed = 1.6 GeV

Stanislaw Kilim

1,0E-06 0,0E+00 0,0

11,8

24,0

36,2

48,4 cm

Distance from the front of the Pb-target

Ed = 2.52 GeV

Baldin seminar 4-9.10.2010

8,0E-06

m]

0,0E+00

2,0E-06

]

2,0E-06

3,0E-06

9,0E-06 7,0E-06

4.0 GeV deuteron beam

s[c diu

4,0E-06

4,0E-06

m s[c diu

6,0E-06

5,0E-06

1,0E-05

Ra

8,0E-06

6,0E-06

2.52 GeV deuteron beam 0,00 3,00 6,00 8,50 10,5 13,5

Ra

m]

s[c diu

0,00 3,00 6,00 8,50 10,5 13,5

7,0E-06

6,0E-06 0,00 3,00 6,00 8,50 10,50 13,50

5,0E-06 4,0E-06 3,0E-06 2,0E-06

B[nuclei/g/deuteron]

9,0E-06

1,6E-05

B[nuclei/g/deuteron]

1,8E-05

B[nuclei/g/deuteron]

1.6 GeV deuteron beam

1

Y-85 spatial distribution based on gamma line 231.67 keV

Y-85 S1 spatial distribution based on gamma line 231.67 keV

1,4E-05

Ra

Y85

Y-85 S1 spatial distribution based on gamma line 231.67 keV

1,0E-06 0,0E+00 1

2 3 4 Detector plane number

5

Ed = 4.0 GeV

27

Function I(Ethr) in various points of R = 3 cm axis for Ed = 1.6 GeV -5

6,0x10 Maxw_Boltz1 (U ser)

Model

-5

-4

y = kappa*(x+ep s)*exp(-(x+eps)/e ta)

Equation

4,0x10

Reduced Chi-Sqr

1,0x10

0,4835 0,99762

Adj. R-Square

Isotope production [nuclei/g/d]

Value

Standard Error

P1-R3

kappa

1,5091E-5

1,50323E-6

P1-R3

eps

6,87252

0,00163

P1-R3

eta

7,19196

0,11985

Model

Maxw_Boltz1 (U ser)

Equation

y = kappa*(x+ep s)*exp(-(x+eps)/e ta)

Reduced Chi-Sqr

0,66416

Adj. R-Square

0,99923

8,0x10

-5

3,0x10

P2-R3

kappa

P2-R3

eps

y = kappa*(x+ep s)*exp(-(x+eps)/e ta)

2,52526E-6

6,87723

0,00172

8,25657

0,12129

0,88154

Value

-5

4,0x10

Standard Error

P3-R3

kappa

1,67797E-5

1,77906E-6

P3-R3

eps

6,88345

0,00298

P3-R3

eta

8,47577

0,16772

-5

6,0x10 88Y

88Y

88Y

-5

2,0x10

-5

4,0x10

-5

2,0x10

87Y

87Y -5

1,0x10

87Y

-5

2,0x10

86Y

86Y 86Y

0,0

85Y

90Y

0 -5

3,0x10

20

0,0

40

Model

Maxw_Boltz1 (U ser)

Equation

y = kappa*(x+ep s)*exp(-(x+eps)/e ta)

2,0x10

20

0,0

40

Model

Maxw_Boltz1 (U ser)

Equation

y = kappa*(x+ep s)*exp(-(x+eps)/e ta)

-6

Reduced Chi-Sqr

0,99582 kappa

8,17116E-6

1,23741E-6

P4-R3

eps

6,88646

0,00478

P4-R3

eta

8,7489

0,25199

6,0x10

40

Reaction threshold energy (MeV)

1,2204

Value

-6

20

0,99558

Adj. R-Square Standard Error

P4-R3

85Y

90Y

0

Reaction threshold energy (MeV)

8,0x10

Value

-5

90Y

1,495

Adj. R-Square

85Y

0

Reaction threshold energy (MeV)

Reduced Chi-Sqr

Isotope production [nuclei/g/d]

0,99829

Adj. R-Square

Standard Error

3,10778E-5

eta

P2-R3

Maxw_Boltz1 (U ser)

Equation Reduced Chi-Sqr Value

-5

Model

Standard Error

P5-R3

kappa

2,19847E-6

3,43645E-7

P5-R3

eps

6,88801

0,00628

P5-R3

eta

9,62742

0,31827

88Y 88Y -6

87Y

4,0x10 -5

1,0x10

P1-R3 P2-R3 P3-R3 P4-R3 P5-R3 fitting

87Y -6

2,0x10

86Y

86Y

85Y

85Y

0,0

90Y

0

0,0 20

40

Reaction threshold energy (MeV)

90Y

0

20

40

Reaction threshold energy (MeV)

Ed = 1.6 GeV, axis R3 - yttrium isotope production dependence on reaction threshold energy at various axial positions

Stanislaw Kilim

Baldin seminar 4-9.10.2010

28

Function I(Ethr) in various points of R = 3 cm axis for Ed = 2.52 GeV -5

-5

Isotope production [nuclei/g/d]

3,0x10

-5

7,0x10 Model

Maxw_Boltz1 (U s er)

Equation

y = kappa*(x+ep s )*exp(-(x+eps )/ eta)

Reduced Chi-Sqr

1,94838

Adj. R-Square

0,98978

-5

6,0x10 Value

-5

2,0x10

P1-R3

kappa

P1-R3 P1-R3

6,0x10

Standard Error

1,06576E-5

1,81457E-6

eps

6,87542

0,00446

eta

7,25584

0,27117

Model

Maxw_Boltz1 (U ser)

Model

Maxw_Boltz1 (U ser)

Equation

y = kappa*(x+ep s)*exp(-(x+eps)/e ta)

Equation

y = kappa*(x+ep s)*exp(-(x+eps)/e ta)

Reduced Chi-Sqr

0,54633

Reduced Chi-Sqr

Adj. R-Square

0,99838

-5

5,0x10

1,27385 0,9969

Adj. R-Square Value

Value

Standard Error

Standard Error

P2-R3

kappa

2,44615E-5

1,43203E-6

P3-R3

kappa

1,74205E-5

1,53456E-6

P2-R3

eps

6,87791

0,00171

P3-R3

eps

6,87955

0,00281

P2-R3

eta

7,6122

0,09755

P3-R3

eta

8,31379

0,17071

-5

4,0x10

-5

4,0x10

88Y

88Y

88Y

-5

3,0x10 -5

-5

1,0x10

2,0x10 -5

2,0x10

87Y

87Y

87Y -5

1,0x10 0,0

85Y

90Y

0

20

Model

Maxw_Boltz1 (U ser)

Equation

y = kappa*(x+ep s)*exp(-(x+eps)/e ta)

-5

3,0x10

Reduced Chi-Sqr

Isotope production [nuclei/g/d]

90Y

20

1,0x10

kappa

3,0327E-7

P4-R3 P4-R3

eps

6,87709

0,00104

eta

8,21335

0,06058

Equation

y = kappa*(x+ep s)*exp(-(x+eps)/e ta)

0

8,0x10

20

40

Reaction threshold energy (MeV)

0,98603 Value

-6

85Y

90Y

2,65835

Adj. R-Square

Standard Error

1,00007E-5

Model

Maxw_Boltz1 (U ser)

Reduced Chi-Sqr

0,99967

P4-R3

0,0

40

Reaction threshold energy (MeV)

-5

1,2x10

-5

Value

-5

85Y

0

0,09205

Adj. R-Square

2,5x10

0,0

40

Reaction threshold energy (MeV)

-5

3,5x10

86Y

86Y

86Y

Standard Error

P5-R3

kappa

3,67302E-6

8,03557E-7

P5-R3

eps

6,88242

0,0149

P5-R3

eta

8,86895

0,538

-5

2,0x10

88Y

88Y

-6

6,0x10 -5

1,5x10

P1-R3 P2-R3 P3-R3 P4-R3 P5-R3 fitting

87Y -6

4,0x10 -5

1,0x10

87Y -6

2,0x10

-6

5,0x10

86Y

86Y

0,0

85Y

90Y 0

20

Reaction threshold energy (MeV)

40

85Y

0,0

90Y

0

20

40

Reaction threshold energy (MeV)

Ed = 2.52 GeV, axis R3 - yttrium isotope production dependence on reaction threshold energy at various axial positions

Stanislaw Kilim

Baldin seminar 4-9.10.2010

29

Function I(Ethr) in various points of R = 3 cm axis for Ed = 4.0 GeV Maxw_Boltz1 (U ser)

Model

Maxw_Boltz1 (U ser)

Model

y = kappa*(x+eps)*exp(-(x+eps)/eta)

Model

y = kappa*(x+eps)*exp(-(x+eps)/eta)

Equation

-5

5,0x10

Reduced Chi-Sqr

5,24772

Adj. R-Square

0,98214

-4

Isotope production [nuclei/g/d]

Equation

1,2x10 Value

kappa P1-R3

Reduced Chi-Sqr

4,80382E-6

6,87492

0,00624

eta

7,52632

0,33997

0,878

Value kappa

-4

P2-R3

1,0x10

-5

Reduced Chi-Sqr

-5

0,99884

Adj. R-Square

Standard Error

1,83395E-5

eps

Standard Error

3,62404E-5

2,94316E-6

eps

6,88067

0,00288

eta

8,48746

0,12934

6,0x10

1,06853 0,99786

Adj. R-Square

Value kappa P3-R3

4,0x10

Standard Error

2,04508E-5

1,97008E-6

eps

6,88915

0,00443

eta

8,48386

0,15257

88Y

88Y -5

88Y

8,0x10

-5

4,0x10

-5

3,0x10

-5

6,0x10 -5

2,0x10

-5

4,0x10

-5

2,0x10

87Y 87Y

-5

1,0x10

87Y

-5

2,0x10

86Y

86Y 86Y

0,0

85Y

90Y

0

20

0,0

0,0

90Y

0

20

40

Energy (MeV)

Equation

Reduced Chi-Sqr

1,44892

Adj. R-Square

0,99583

Reduced Chi-Sqr

kappa

2,42811 0,99509

Adj. R-Square Value

Standard Error

1,11636E-5

1,35822E-6

eps

6,89488

0,00629

eta

8,53758

0,19627

Value

-5

1,5x10

kappa P5-R3

Standard Error

5,07318E-6

8,36614E-7

eps

6,87985

0,00542

eta

8,95644

0,29287

88Y

88Y

-5

P1-R3 P2-R3 P3-R3 P4-R3 P5-R3 fitting

-5

2,0x10

1,0x10

87Y

87Y

-6

5,0x10

86Y

86Y

85Y

85Y

90Y

0

40

y = kappa*(x+eps)*exp(-(x+eps)/eta)

Equation

0,0

20

Maxw_Boltz1 (U ser)

Model

y = kappa*(x+eps)*exp(-(x+eps)/eta)

P4-R3

90Y

0

Energy (MeV)

-5

2,0x10

Maxw_Boltz1 (U ser)

Model

85Y

85Y

40

Energy (MeV)

-5

4,0x10

Isotope production [nuclei/g/d]

Maxw_Boltz1 (U ser) y = kappa*(x+eps)*exp(-(x+eps)/eta)

Equation

0,0 20 Energy (MeV)

40

90Y

0

20

40

Energy (MeV)

Ed = 4 GeV, axis R3 - yttrium isotope production dependence on reaction threshold energy at various axial positions.

Stanislaw Kilim

Baldin seminar 4-9.10.2010

30

Ed = 1.6; 2.52 and 4.0 GeV - Neutron flux energy spectra comparison at various R3-axis positions - common Y-scale. 2,0x10

-4

1,5x10 Neutron spectrum

P2-R3 Ed = 1.6 GeV P2-R3 Ed = 2.52 GeV -4 P2-R3 Ed = 4.0 GeV 2,0x10

P1-R3 Ed = 1.6 GeV P1-R3 Ed = 2.52 GeV -4 P1-R3 Ed = 4.0 GeV 2,0x10

-4

-4

-4

1,5x10

-4

1,0x10

-5

5,0x10

1,5x10

-4

1,0x10

-5

5,0x10

1,0x10

5,0x10

0,0

-4

-5

0,0 0

10

20

30

40

50

60

70

80

90 100

0,0 0

10 20 30 40 50 60 70 80 90 100 110

Energy (MeV)

10

20

30

-4

1,5x10

-4

-4

1,0x10

1,0x10

BEAM

-5

60

70

80

90 100

R 13.5 R 10.5 R 8.5 R6 R3 R0

U-nat Pb

BEAM AXIS

U-nat

-5

5,0x10

50

RADIUS

-4

40

Energy (MeV)

P5-R3 Ed = 1.6 GeV P5-R3 Ed = 2.52 GeV P5-R3 Ed = 4.0 GeV

-4

2,0x10

1,5x10 Neutron spectrum

0

Energy (MeV)

P4-R3 Ed = 1.6 GeV P4-R3 Ed = 2.52 GeV P4-R3 Ed = 4.0 GeV

-4

2,0x10

P3-R3 Ed = 1.6 GeV P3-R3 Ed = 2.52 GeV P3-R3 Ed = 4.0 GeV

5,0x10

0,0

0,0 0

10

20

30

40

50

60

Energy (MeV)

70

80

90 100

0

10

20

30

40

50

60

70

80

90 100

PLANE 1 0 P1

PLANE 2 11.8 CM P2

PLANE 3 24.2 CM P3

PLANE 4 38.4 CM P4

PLANE 5 48.4 CM P5

Energy (MeV)

Ed = 1.6; 2.52; and 4.0 GeV - Neutron flux energy spectra comparison at various R3-axis positions - common Y-scale.

Stanislaw Kilim

Baldin seminar 4-9.10.2010

31

Ed = 1.6; 2.52 and 4.0 GeV - Neutron flux spectra comparison at various P2 radial positions - common Y-scale P2-R0 Ed = 1.6 GeV P2-R0 Ed = 2.52 GeV P2-R0 Ed = 4.0 GeV

-4

4,0x10

Neutron spectrum

3,0x10

-4

2,0x10

-4

1,0x10

3,0x10

-4

2,0x10

-4

1,0x10

2,0x10

1,0x10

0,0

-4

-4

-4

0,0 0

10 20 30 40 50 60 70 80 90 100 110

0,0 0

10

20

30

Energy (MeV)

50

60

70

80

90 100

3,0x10

-4

2,0x10

-4

1,0x10

2,0x10

1,0x10

0,0 10

20

30

40

50

60

Energy (MeV)

10

20

30

70

80

90 100

40

50

60

70

80

90 100

P2-R13.5 Ed = 1.6 GeV P2-R13.5 Ed = 2.52 GeV P2-R13.5 Ed = 4.0 GeV

-4

4,0x10

-4

3,0x10

-4

-4

2,0x10

-4

1,0x10

-4

-4

0,0 0

0

Energy (MeV)

P2-R10.5 Ed = 1.6 GeV P2-R10.5 Ed = 2.52 GeV P2-R10.5 Ed = 4.0 GeV

-4

4,0x10

-4

3,0x10 Neutron spectrum

40

Energy (MeV)

P2-R8.5 Ed = 1.6 GeV P2-R8.5 Ed = 2.52 GeV P2-R8.5 Ed = 4.0 GeV

-4

4,0x10

P2-R6 Ed = 1.6 GeV P2-R6 Ed = 2.52 GeV P2-R6 Ed = 4.0 GeV

-4

4,0x10

-4

-4

3,0x10

P2-R3 Ed = 1.6 GeV P2-R3 Ed = 2.52 GeV P2-R3 Ed = 4.0 GeV

-4

4,0x10

0,0 0

10

20

30

40

50

60

70

80

90 100

Energy (MeV)

0

10

20

30

40

50

60

70

80

90 100

Energy (MeV)

Ed = 1.6; 2.52 and 4.0 GeV - Neutron flux spectra comparison at various P2 radial positions - common Y-scale

Stanislaw Kilim

Baldin seminar 4-9.10.2010

32

Ed = 1.6, 2.52 and 4.0 GeV parameter kappa comparison Ed = 2.52 GeV - Kappa

Ed = 1.6 GeV - Kappa

1,2E-04

6,0E-05

1,0E-04

5,0E-05

8,0E-05

4,0E-05

6,0E-05

3,0E-05

4,0E-05

2,0E-05

2,0E-05

Ra d

iu.

..

03

68,5 P4 P5 10,5 13,5 P1 P2 P3

Ra d

0,0E+00

l Ax ia

iu.

..

1,0E-05 03 0,0E+00 6 8,5 P5 P4 10,5 13,5 P1 P2 P3 ition l pos Ax ia

7,0E-05 6,0E-05 5,0E-05 4,0E-05 3,0E-05 2,0E-05 1,0E-05 0,0E+00

l Ax ia

Kappa

RADIUS

03 6 8,5 P4 P5 10,5 13,5 P1 P2 P3

Stanislaw Kilim

..

tion posi

Ed = 4 GeV - Kappa

Ra d

iu.

BEAM

R 13.5 R 10.5 R 8.5 R6 R3 R0

U-nat Pb

BEAM AXIS

U-nat

tion posi

PLANE 1 0 P1

Baldin seminar 4-9.10.2010

PLANE 2 11.8 CM P2

PLANE 3 24.2 CM P3

PLANE 4 38.4 CM P4

PLANE 5 48.4 CM P5

33

Ed = 1.6, 2.52 and 4.0 GeV parameter eta comparison Ed = 2.52 GeV - eta

Ed = 1.6 GeV - eta

Ra diu .

10

10

8

8

6

6

4

4

2

2

03 0 68,5 P4 P5 10,5 P3 13,5 P1 P2

..

Ra d

iu.

l Ax ia

posi

tion

4

Eta

6

BEAM

R 13.5 R 10.5 R 8.5 R6 R3 R0

03

68,5 P4 P5 10,5 13,5 P1 P2 P3

tion

U-nat Pb

BEAM AXIS

0

l Ax ia

Stanislaw Kilim

posi

U-nat

2

..

0

RADIUS 10 8

iu.

68,5 P4 P5 10,5 13,5 P1 P2 P3

l Ax ia

Ed = 4 GeV - eta

Ra d

03

..

posi

tion

PLANE 1 0 P1

Baldin seminar 4-9.10.2010

PLANE 2 11.8 CM P2

PLANE 3 24.2 CM P3

PLANE 4 38.4 CM P4

PLANE 5 48.4 CM P5

34

Ed = 1.6, 2.52 and 4.0 GeV parameter eps comparison Ed = 1.6 GeV - eps

Ed = 2.52 GeV - eps

6,90

6,89 6,88 6,88 6,87 6,87 6,86 6,86 6,85 6,85

6,89 6,88 6,87

iu.

..

6,85 03 6,84 6 8,5 P4 P5 10,5 P3 13,5 P1 P2

l Ax ia

Ra d

iu.

posi

iu.

03

..

l Ax ia

tion posi

Eps

RADIUS

68,5 P4 P5 10,5 13,5 P1 P2 P3

6,92 6,91 6,90 6,89 6,88 6,87 6,86 6,85 6,84

l Ax ia

Stanislaw Kilim

6 8,5 10,5 13,5

tion

Ed = 4 GeV - eps

Ra d

03

..

P2 P3 P4 P5

Ra d

P1

6,86

posi

BEAM

R 13.5 R 10.5 R 8.5 R6 R3 R0

U-nat Pb

BEAM AXIS

U-nat

tion

PLANE 1 0 P1

Baldin seminar 4-9.10.2010

PLANE 2 11.8 CM P2

PLANE 3 24.2 CM P3

PLANE 4 38.4 CM P4

PLANE 5 48.4 CM P5

35

Ed = 1.6, 2.52 and 4.0 GeV E(max) comparison Ed = 2.52 GeV - E(fimax)

Ed = 1.6 GeV - E(fimax)

Ra d

iu.

03

..

68,5 P4 P5 10,5 13,5 P1 P2 P3

16 14 12 10 8 6 4 2 0

Ra d

iu.

l Ax ia

posi

tion

iu.

03

..

posi

tion

Energy of maximum [MeV]

RADIUS

68,5 P4 P5 10,5 13,5 P1 P2 P3

14 12 10 8 6 4 2 0

l Ax ia

Stanislaw Kilim

36 8,5 P4 P5 10,5 13,5 P1 P2 P3

l Ax ia

Ed = 4 GeV - E(fimax)

Ra d

0

..

14 12 10 8 6 4 2 0

posi

tion

BEAM

R 13.5 R 10.5 R 8.5 R6 R3 R0

U-nat Pb

BEAM AXIS

U-nat

PLANE 1 0 P1

Baldin seminar 4-9.10.2010

PLANE 2 11.8 CM P2

PLANE 3 24.2 CM P3

PLANE 4 38.4 CM P4

PLANE 5 48.4 CM P5

36

Ed = 1.6, 2.52 and 4.0 GeV E(max) comparison Plane P2 - Energy of spectrum maximum comparison

14

1.6 GeV 2.52 GeV

12

4.0 GeV

10 P1-R3

P2-R3

P3-R3

P4-R3

P5-R3

Energy of maximum [MeV]

Energy of maximum [MeV]

Axis R3 - Energy of spectrum maximum comparison

14 1.6 GeV

10 P2-R0

Axial position

P2-R3

P2-R6

P2-R8.5 P2-R10.5 P2-R13.5

RADIUS

Radial position

Ed = 4 GeV, Energy of spectrum maximum

Energy of maximum [MeV]

2.52 GeV 4.0 GeV

12

14,00

P1 P2

12,00

BEAM

R 13.5 R 10.5 R 8.5 R6 R3 R0

P3

U-nat Pb

BEAM AXIS

U-nat

P4

10,00 0

3

6

8,5

Radial position

Stanislaw Kilim

10,5

13,5

P5

PLANE 1 0 P1

Baldin seminar 4-9.10.2010

PLANE 2 11.8 CM P2

PLANE 3 24.2 CM P3

PLANE 4 38.4 CM P4

PLANE 5 48.4 CM P5

37

Energy of spectrum maximum P1

R0

R3

R6

P5

Efmax

Efmax Error

Efmax

Efmax Error

Efmax

Efmax Error

Efmax

Efmax Error

1.6

10,13

2,33

14,17

0,16

14,75

0,36

14,58

0,26

14,27

0,36

12,78

0,27

2.52 4.0

10,74

0,17

12,78

0,07

12,59

0,06

12,67

0,17

13,55

0,11

1.6

10,79

0,18

12,38

0,18

12,71

0,25

13,12

0,38

14,44

0,48

2.52

10,88

0,41

11,42

0,15

12,47

0,26

12,32

0,09

13,30

0,81

4.0

11,29

0,51

12,73

0,19

12,73

0,23

12,81

0,29

13,43

0,44

1.6

12,10

0,19

2.52

11,08

0,15

12,10

0,07

12,48

0,11

12,90

0,47

13,49

0,65

1.6

11,60

0,35

2.52

11,01

0,25

11,93

0,11

11,97

0,16

12,42

0,39

13,09

0,74

1.6

11,48

0,21

2.52

10,18

0,34

11,33

0,23

12,51

0,20

12,36

0,26

13,30

1,17

1.6

11,30

0,21

2.52

10,99

0,08

11,45

0,16

12,34

0,51

12,49

0,51

13,07

0,68

4.0

R13.5

P4

Efmax Error

4.0

R10.5

P3

Efmax

4.0

R8.5

P2

Ed [GeV]

4.0

Stanislaw Kilim

10,41

10,81

10,68

11,00

0,11

0,13

0,19

0,15

Baldin seminar 4-9.10.2010

38

The method error discussion • Typical errors like count statistics, deuteron fluence error, sample mass error and so on are of less importance; •Y89(n,2n)Y88 reaction cross section approximation (fitting) error of much more importance, but difficult to assess; •Y89(n,xn) reaction cross section approximation by Y89(n,2n)Y88 parameters makes additional error; •Approximation of infinite number of ideal gas particles with 50 neutrons (statistical model of nucleus); •Relativistic effects?

In some sense the method tests itself saying that where both , kT and  are fitting parameters.



2kT   kT

Discrepancy between the direct fitting  value and calculated using , kT should be an error measure of the method. While direct fitting  value ranges from 6.87 to 6.91 MeV the , kT calculated from ranges from 7.44 to 8.5. This suggests the method error to be of order of 10-20%.

This still doesn’t explain the high energy of the spectrum maximum!

Are there any other errors of the method? Note: These are the experimental values. Yurevich’s measurement of spallation neutron spectrum (but induced by protons) gave high average neutron energy too.

Stanislaw Kilim

Baldin seminar 4-9.10.2010

39

What else could be done Done

To be done

Reaction

Threshold energy [MeV]

Reaction

Threshold energy [MeV]

Y89(n,g)Y90

-6,857

Y89(n,He4)Rb86

-0,6916

Y89(n,2n)Y88

11,6048

Y89(n,p)Sr89

0,7183

Y89(n,3n)Y87

21,0645

Y89(n,d)Sr88

4,8995

Y89(n,4n)Y86

33,008

Y89(n,2a)Br82

7,0633

Y89(n,5n)Y85

42,633

Y89(n,np)Sr88

7,1494

Y89(n,T)Sr87

9,8104

Y89(n,He3)Rb87

10,0774

Y89(n,2p)Rb88

11,7317

Y89(n,2d)Rb86

23,4207

Y89(n,dT)Rb85

25,8424

But how?

Stanislaw Kilim

Baldin seminar 4-9.10.2010

40

Conclusions •

The method is simple, the results are coherent.



Surprising is that using threshold detector with few threshold energies one can say so much about the spectrum in the entire energy range.



According to the method there’s no big difference between Ed = 1.6, 2.52 and 4.0 GeV spectra. The spectrum seems to have a kind of saturation at these energies of deuterons.

Stanislaw Kilim

Baldin seminar 4-9.10.2010

41

References: 1. 2. 3. 4. 5. 6.

7. 8.

M.I. Krivopustov et al., JINR Preprint R1-2000-168, Dubna, 2000// Kerntechnik 2003, 68, p.p. 48-55// JINR-Preprint E1-2004-79, Dubna, 2004. Martsynkevich B. A. et al. „Unfolding of Fast Neutron Spectra in the Wide Energy Range (up to 200 MeV) in Heterogeneous Subcritical Assembly of an Electronuclear System „Energy plus Transmutation” – in Russ. – JINR report P1-2002-65. ANL/NDM-94 “Evaluated Neutronic Data File for Yttrium”, A.B. Smith, D.L. Smith, P. Rousset, R.D. Lawson, and R.J. Howerton, January 1986 Yu.N. Shubin, V.P. Lunev, A.Yu. Konobeyev, A.I. Dityuk „Cross-Section Data Library MENDL2 to Study Activation and Transmutation of Materials Irradiated by Nucleons of Intermediate Energies” – INDC(CCP)-385 Distrib.: G M.I. Krivopustov, M. Bielewicz, S. Kilim et al., JINR Preprint R1-2007-7, Dubna, 2007 S. Kilim et al., Spallation Neutron Energy Spectrum Determination with Yttrium as a Threshold Detector on U/Pb-assembly „Energy plus Transmutation”, p 343-352; Progress in High Energy Physics and Nuclear Safety – Edited by V. Begun, L.L. Jenkovszky, A. Polański, Springer, 2009 “Study of Deep Subcritical Electronuclear Systems and Feasibility of their Application for Energy Production and Radioactive Waste Transmutation” – E&T RAW Collaboration – JINR Dubna preprint E1-2010-61. Yurevich et al. //PEPAN Lett. 2006. V. 3. P. 49.

Stanislaw Kilim

Baldin seminar 4-9.10.2010

42

Thank You for attention

Stanislaw Kilim

Baldin seminar 4-9.10.2010

43

Background slides

Stanislaw Kilim

Baldin seminar 4-9.10.2010

44

Neutron spectrum determination stages

EXFOR (barns)

1,5

a)

Y89(n,2n)Y88 CS fitting

1,0

Y89(n,2n)Y88 reaction CS EXFOR data fitting to get parameters  and kT

0,5

0,0 10

15

20

25

30

Energy (MeV)

Reaction CS [barn]

6

Y89(n,g)Y90 CS sim Y89(n,n')Y89 CS sim Y89(n,2n)Y88 CS sim Y89(n,3n)Y87 CS sim Y89(n,4n)Y86 CS sim Y89(n,5n)Y85 CS sim

b)

4

Any Y89(n,xn) reaction CS determination using  and kT parameters and Ethr

2

0 0

10

20

30

40

50

60

70

80

90

100

Energy (MeV) C18 experiment fitting

c)

-4

1,2x10

-4

Production

1,0x10

-5

8,0x10

88Y

-5

6,0x10

Yttrium isotope production fitting to get parameters ,  and 

-5

4,0x10

87Y

-5

2,0x10

86Y

0,0

85Y

90Y

-10

0

10

20

30

40

50

Reaction threshold energy [MeV] P2-R3 n. spectrum

d) -4

NSpectrum (User)

2,0x10

-4

1,5x10

-4

1,0x10

-5

Spallation neutron spectrum determination as A function of , kT,  and .

5,0x10

0,0 0

10

20

30

40

50

60

70

80

90

100

110

Energy (MeV)

Fig. ??. Spallation neutron energy spectrum reconstruction stages a) Y89(n,2n)Y88 reaction cross section (CS) data fitting to get "alpha" and" kT" parameters b) generalized Y89(n,xn)reaction CS construction c) isotope production data fitting to get generalized isotope production function I(E ) Stanislaw Kilim Baldin seminar 4-9.10.2010 d) Neutron energy spectrum reconstyruction. thr

45

Y89(n,2n)Y88 reaction CS EXFOR data various fittings

Y89(n,2n)Y88 CS (barns)

1,5

EXFOR fitting with y=alfa/sqrt(kT)/sqrt(x)* ((x-Ethr)/kT)*exp(-(x-Ethr)/kT)

a)

1,0

0,5

Model

Maxw_BoltzC S (User)

Equation

y=alfa/sqrt(kT )/sqrt(x)*(x-Et hr)/kT*exp(-(x -Ethr)/kT)

Reduced Chi-Sqr

0,00929

Adj. R-Square

0,88299

E  E88 



kT  2 3

Value

Standard Err

Y89(n,2n)Y88 alfa Y89(n,2n)Y88 kT

41,7125

1,16615

8,02267

0,26505

Y89(n,2n)Y88 Ethr

11,8439

0,05482

E

 E  Ethr,k exp   kT 

  

0,0 0

5

10

Y89(n,2n)Y88 CS (barns)

1,0

Model

Maxw_BoltzS QCS (User)

Equation

y=alfa/sqrt(kT )/sqrt(x)*((x-Et hr)/kT)^2*exp( -(x-Ethr)/kT)

25

EXFOR fitting with y=alfa/sqrt(kT)/sqrt(x)* ((x-Ethr)/kT)^2*exp(-(x-Ethr)/kT)

Value

kT 

Standard Erro

Y89(n,2n)Y88 alfa Y89(n,2n)Y88 kT

21,6892

0,52543

4,33228

0,13764

Y89(n,2n)Y88 Ethr

10,5980

0,11516

0,0 0

5

10

15

20

25

Energy (MeV) c)

Equation

0,5

Reduced Chi-Sqr

0,01045

Adj. R-Square

0,86833 Value 52,9453

2,71832

18,6042

1,20092

Y89(n,2n)Y88 Ethr

12,5678

0,03074

0

5

10

15

Model

Maxw_BoltzCS N (User)

Equation

y=alfa/sqrt(kT)/ sqrt(x)*((x-Ethr)/ kT)^n*exp(-(x-Et hr)/kT)

kT  2

20

25

30

Value Y89(n,2n)Y88

alfa

Y89(n,2n)Y88

kT

Y89(n,2n)Y88

Ethr

Y89(n,2n)Y88

n

Standard Error

43,45287

1,90045

9,11047

0,96073

12,16393

0,08633

0,84421

0,06974

kT  2 3

0,0 0

5

10

15

E

E  E88 n



0,89293

Adj. R-Square

 E  Ethr,k exp   kT 

  

 E  Ethr,k   exp   kT  

EXFOR fitting with y=alfa/sqrt(kT)/sqrt(x)* ((x-Ethr)/kT)^n*exp(-(x-Ethr)/kT)

0,0085

Reduced Chi-Sqr

0,5

E

E  E88 3

Energy (MeV) d)

1,0

3 2



0,0

1,5

2

30

Standard Erro

Y89(n,2n)Y88 alfa Y89(n,2n)Y88 kT

Reduced Chi-Sqr

Adj. RSquare

0,00929

0,88299

Statistics

Statistics

Reduced Chi-Sqr

Adj. RSquare

0,0112

0,85882

Statistics

Statistics

Reduced Chi-Sqr

Adj. RSquare

0,01045

0,86833

EXFOR fitting with y=alfa/sqrt(kT)/sqrt(x)* sqrt((x-Ethr)/kT)*exp(-(x-Ethr)/kT)

Maxw_BoltzC SSQRT (User ) y=alfa/sqrt(kT )/sqrt(x)*sqrt(( x-Ethr)/kT)*ex p(-(x-Ethr)/kT)

Model

1,0

E  E88 



0,85882

Adj. R-Square

Statistics

30

0,0112

Reduced Chi-Sqr

0,5

1,5

Y89(n,2n)Y88 CS (barns)

20

Energy (MeV) b)

1,5

Y89(n,2n)Y88 CS (barns)

15

Statistics

20

25

30

E

 E  Ethr,k exp   kT 

  

n

Statistics

Statistics

Value

Reduced Chi-Sqr

Adj. RSquare

0,84421

0,0085

0,89293

Energy (MeV)

Y89(n,2n)Y88 reaction CS EXFOR data various fittiings

Stanislaw Kilim

Baldin seminar 4-9.10.2010

46

Y89(n,2n)Y88 CS EXFOR data various fittings – cont. alfa Value Y89(n,2n)Y88 41,71254 CS alfa Value Y89(n,2n)Y88 21,68922 CS alfa Value Y89(n,2n)Y88 52,94533 CS alfa Value Y89(n,2n)Y88 43,45287 CS

Stanislaw Kilim

alfa Standard Error 1,16615

kT Value

alfa Standard Error 0,52543

kT Value

alfa Standard Error 2,71832

kT Value

alfa Standard Error 1,90045

8,02267

4,33228

18,60426

kT Value 9,11047

kT Standard Error 0,96073

kT Standard Error 0,26505

Ethr Value

kT Standard Error 0,13764

Ethr Value

kT Standard Error 1,20092

Ethr Value

Ethr Value 12,16393

11,84393

10,59808

12,5678

Ethr Standard Error 0,08633

Baldin seminar 4-9.10.2010

Ethr Standard Error 0,05482

Statistics Reduced ChiSqr 0,00929

Statistics Adj. RSquare 0,88299

Ethr Standard Error 0,11516

Statistics Reduced ChiSqr 0,0112

Statistics Adj. RSquare 0,85882

Ethr Standard Error 0,03074

Statistics Reduced ChiSqr 0,01045

Statistics Adj. RSquare 0,86833

n Value 0,84421

n Standard Error 0,06974

Statistics Reduced Chi-Sqr 0,0085

Statistics Adj. RSquare 0,89293

47

Evaporation mechanism of Y89(n,xn) reaction

ENERG Y

Incident neutron energ y

E MITTE D NE UTRONS E NE RGY S P E CTRUM E MITTE D NE UTRONS

0

-V0 "REAL" NUCLEUS

Stanislaw Kilim

F ERMI G AS MO DEL NUCLEUS

F ERMI G AS MO DEL O F EXCIT ED CO MPO UND NUCLEUS

Baldin seminar 4-9.10.2010

F ERMI G AS MO DEL O F RESIDUAL NUCLEUS AND EVAPO RAT ED NEUT RO NS

48