PDF (663.4 KB) - Annales de Limnologie - International Journal of

1 downloads 0 Views 663KB Size Report
dynamics of limnetic zooplankton have been carried out in which parameters such as temperature, oxy- gen concentration, metal ions, nutrients, toxic subs-.
Annls

Limnol.

19 ( 3 } 1983 : 195-201.

High p H and the abundances of two commonly co-occurring freshwater copepods (Copepoda, Cyclopoida)

DO. J.P.

Hessen Nilssen

Mesoc\clops

1

1

letickarti

Th. oilhonoides

i n c r e a s e d r e l a t i v e t o Thermocyclops

s e e m e d t o o u t c o m p e t e M. leuckarii

oilhonoides

in f e r t i l i z e d e x p e r i m e n t a l e n c l o s u r e s ,

whereas

in n o n f e r t i l i z e d o n e s . T h e m o s t r e a s o n a b l e f a c t o r t o e x p l a i n t h e n u m e -

r i c a l r e l a t i o n s h i p b e t w e e n t h e t w o c l o s e l v - r e l a t e d s p e c i e s w a s a s e l e c t i v e p H e f f e c t : h i g h p H f a v o u r i n g M. leuckarii v i c e v e r s a . In the l a k e t h e t w o s p e c i e s s h o w e d a n h i s t o r i c a l d e v e l o p m e n t s u p p o r t i n g

t h e a b o v e h y p o t h e s i s . M.

and

leuckarii

w a s t h e d o m i n a t i n g s p e c i e s w h e n t h e l a k e e x p e r i e n c e d h i g h e s t p H d u r i n g the p e a k e u t r o p h i c p h a s e . F o l l o w i n g r e c o v e r y o f t h e l a k e , Th. oilhonoides

is a g a i n b e c o m i n g t h e m o r e d o m i n a n t s p e c i e s . T h i s c o n t r a s t i n g r e l a t i o n s h i p l o h i g h p H m a y

b e t h e r e a s o n f o r t h e v a r v i n g v e r t i c a l d i s t r i b u t i o n o f t h e t w o s p e c i e s in l a k e s . S i n c e Th. oilhonoides M. leuckarii,

with a lower p H . temperature

m o r e K-selected life

is r e c o r d e d b e l u w

and f o o d a b u n d a n c e , t h i s r e s u l t s in t h e o b s e r v e d s l o w e r d e v e l o p m e n t a n d a

history.

I n f l u e n c e d ' u n f o r t p H s u r l ' a b o n d a n c e de d e u x C o p é p o d e s c o e x i s t a n t d a n s les e a u x d o u c e s ( C o p e p o d a , C y c l o p o i d a ) .

L e s densités, d e p o p u l a t i o n d e Mesocyclops

leuckarti

a u g m e n t e n t p a r r a p p o r t à c e l l e s d e Thermucyclops

d e s e n c e i n t e s e x p é r i m e n t a l e s e n r i c h i e s , t a n d i s q u e Th. oilhonoides

s e m b l e d o m i n e r M. leuckarti

oilhonoides

dans

d a n s les e n c e i n t e s

non

e n r i c h i e s . L e f a c t e u r l e p l u s v r a i s e m b l a b l e q u i p u i s s e e x p l i q u e r la r e l a t i o n n u m é r i q u e e n t r e c e s d e u x e s p è c e s é t r o i t e m e n t l i é e s e s t l ' e f f e t s é l e c t i f d u p H ; l e s f o r t s p H a v a n t a g e a n t M. leuckarti l e l a c a p p u i e c e t t e h y p o t h è s e . M. leuckarti

était

et v i c e v e r s a . L a s u c c e s s i o n d e c e s deux e s p è c e s d a n s

l ' e s p è c e d o m i n a n t e d u r a n t la p h a s e e u t r o p h e l o r s q u e le l a c

u n p H é l e v é . A u c o u r s d e la r é g é n é r a t i o n d u l a c , 77t. oilhonoides

présentait

redevient l'espèce d o m i n a n t e . Cette situation

antagoniste

p a r r a p p o r t a u p H p e u t e x p l i q u e r la d i s t r i b u t i o n v e r t i c a l e d e c e s d e u x e s p è c e s d a n s l e s l a c s . L e fait q u e Th.

oilhonoides

s o i t d o m i n é e p a r M. leuckarti

dans des conditions de faibles p H , t e m p é r a t u r e

et a b o n d a n c e d e n o u r r i t u r e , e x p l i q u e r a i t

son plus lent d é v e l o p p e m e n t ainsi q u e son c y c l e b i o l o g i q u e de t y p e s t r a t è g e - K .

1. — Introduction

T h e f e w studies on this subject deal a l m o s t e x c l u s i v e l y w i t h c l a d o c e r a n s . B o g a t o v a (1961) ; I v a n o v a (1969) a n d W a l t e r (1969) all c l a i m e d that the

Several

investigations

concerning

population

pH

limit

for

dynamics of limnetic zooplankton have been carried

(1969) s h o w e d

o u t in w h i c h p a r a m e t e r s

mum

s u c h as t e m p e r a t u r e ,

oxy-

cladocerans

was

10.5-11.5.

upper

Ivanova

relatively l a r g e d i f f e r e n c e s in

p H values

(measured

as filtration

w e e n v a r i o u s c l a d o c e r a n s p e c i e s , but m o s t

tances and vertebrate/invertebrate

had an optimal physiological balance a r o u n d

predation

have

b e e n a n a l y s e d t o e x p l a i n d i f f e r e n c e s in c o m p e t i t i v e ability and p o p u l a t i o n density o f the various of

zooplankton.

The

ecological

lakes

and

ponds,

has

only

been

of

eutrophic

offered

bet-

species neu-

pH.

species

importance

e x t r e m e p H values, f r e q u e n t l y o b s e r v e d in

tral

opti-

rate)

g e n c o n c e n t r a t i o n , m e t a l ions, nutrients, toxic subs-

minor

interest.

A s f a r as w e a r e a w a r e , n o s t u d y has b e e n hed o f the investigation o f the relative

publis-

abundance

o f c y c l o p o i d c o p e p o d s in r e l a t i o n t o h i g h p H , e v e n though

a number

of investigations have been

f o r m e d in e u t r o p h i c

per-

localities w i t h fairly h i g h p H .

In this s t u d y , t h e r e s p o n s e o f t h e c y c l o p o i d c o p e 1. Zoological Institute, University of Oslo, P.O. Box 1050, Blindem, Oslo 3, N o r w a y .

pods

Thermocyclops

leukarti

Article available at http://www.limnology-journal.org or http://dx.doi.org/10.1051/limn/1983022

oilhonoides

and

to artificial eutrophication

Mesocyclops

was tested

by

D.O. H E S S E N ETJ.P. N I L S S E N

196

s h o r t - d u r a t i o n e x p e r i m e n t s in f e r t i l i z e d a n d tilized bags Both occur

in L a k e

unfer­

Gjersjoen.

in o l i g o t r o p h i c ( S a r v a l a

1979),

mesotrophic

( P a t a l a s 1954 ; F a a f e n g a n d

N i l s s e n 1981) a n d

phic

Gliwicz

lakes

(Patalas

In

1954;

oligotrophic

l a k e s , Th.

oithonoides

and

1969;

slightly

hypeoccu-

in W e s t e r n P o m e r a n i a

Poland, including mesotrophic to strongly 1954). W h e n

M.

leuckarti

and

(Pata­

l a s 1 9 5 4 ; G l i w i c z 1 9 6 9 ) . I n l a k e G j e r s j o e n Th. s t r o n g l y d o m i n a t e s o v e r M. leuckarti,

oitho­ and

f o u n d d e e p e r t h a n t h e l a t t e r , in a g r e e m e n t w i t h

is

the

prep).

L a k e G j e r s j o e n has b e e n m o n i t o r e d since the early 1950's, a n d

since

the

lake's

history

during

the

I960

1965



1970

Ml

1975

.

1980

interpretation

last t w o

decades.

T h e r e h a v e b e e n s t r o n g o s c i l l a t i o n s in the cal relationship

flu 111 M I IjI I I 1111 B 1955

FlG. 1. L a k e G j e r s j o e n , 1953-1980. T h e r e l a t i o n s h i p b e t w e e n Mesocyclops leuckarti ( v e r t i c a l l i n e s ) a n d Thermocyclops oithonoides, related to p H . Black dots : highest r e c o r d e d p H v a l u e f r o m i n t e g r a t e d s a m p l e s 0-10 m , d u r i n g s u m m e r . T r i a n g l e s : h i g h e s t r e c o r d e d p H in epilimnion d u r i n g s u m m e r . Data b a s e d on F a a f e n g and N i l s s e n (1981), a n d i n t e r n a l p u b l i c a t i o n s f r o m N o r w e ­ gian Institute f o r W a t e r R e s e a r c h ( N I V A ) .

1958 b y the N o r w e g i a n I n s t i t u t e

for W a t e r Research, thus permitting of

d e v e l o p m e n t i n t h e s a m e p e r i o d ( f i g . 1).

Th.

w a s m o s t f r e q u e n t l y f o u n d in d e e p e r w a t e r s

et al. in

pH

in

latter

above findings (Brabrand

the

e u t r o p h i c peak. T h e s e c h a n g e s m a y be related to the

eutrophic

c o - o c c u r e d in eutrophic lakes the

noides

subdominants.

domi­

l a k e s i s m o r e o b s c u r e . M. leuckarti

(Patalas

as

Nilssen

1 9 8 1 ) , w h i l e t h e r e l a t i o n s h i p in e u t r o p h i c a n d

lakes

scutifer

eutro-

reutrophic

oithonoides

Cyclops

Karabin

s e e m s to b e the m o r e

of lakes

and

mesotrophic

n a n t o f the t w o ( S a r v a l a 1979 ; F a a f e n g a n d

r e d in all kinds

leuckarti

The opposite relationship was observed during

species have similar ecology and often co-

1978).

(2)

3. — Materials and methods

numeri­

b e t w e e n the c l o s e l y - r e l a t e d c y c l o -

p o i d c o p e p o d s M. leuckarti

a n d Th. oithonoides,

pro­

T h e e x p e r i m e n t s w e r e c a r r i e d o u t in p o l y e t h y l e n e

b a b l y d u e t o c h a n g e s in t h e t r o p h i c status o f the lake

b a g s , 135 j * m t h i c k . W e u s e d

(cf. F a a f e n g a n d

t e r o f 1.5 m , d e p t h 4 . 2 m a n d a v o l u m e o f a b o u t

Nilssen

1981).

m \

experiments

were

zone. performed

in the

meso-

eutrophic L a k e Gjersjoen. S E - N o r w a y (59° 47' N , 10° 47' E ) (area = increased from

an

2

2.7 k m , m a x . d e p t h

sewage

deposition,

oligotrophic

T h e b a g s w e r e c l o s e d at t h e b o t t o m a n d

in a w o o d e n f r a m e w o r k , a n c h o r e d

2. — Study area The

12 b a g s w i t h a d i a m e ­

lake in

=

62 m ) . D u e to

the

lake

the

early

developed 1950's

to

The

experiment

lasted

7

placed

in t h e

pelagic

four

weeks,

for

25.7-28.8.1980. T h e b a g s w e r e filled b y m e a n s o f a water p u m p and vertical net-samples

from

w e r e a d d e d using a 45 ^ m plankton-net m e t e r o f 27

15-0

m

w i t h a dia­

cm.

Twice a week zooplankton samples were

taken,

h i g h l y e u t r o p h i c c o n d i t i o n s in 1972, w h e n a s e w a g e

while phytoplankton-samples w e r e taken three limes

treatment

d u r i n g the e x p e r i m e n t . A l l s a m p l e s w e r e taken f r o m

plant

was

built

1981). S i n c e then, there

(Faafeng

and

Nilssen

has b e e n a s l o w i m p r o v e ­

0 , 1, 2 a n d 4 m d e p t h s u s i n g a m o d i f i e d v a n

Dorn

m e n t a n d a s l i g h t l y l o w e r p H , b u t the l a k e still e x h i ­

s a m p l e r as d e s c r i b e d b y B l a k a r (1978). W a t e r f r o m

bits p h y t o p l a n k t o n b l o o m s being mainly

all d e p t h s w a s m i x e d , a n d t w o 5 1 s a m p l e s w e r e fil­

by

dominated

tered

blue-greens. The zooplankton community

nated

by small species, caused

is a t p r e s e n t

domi­

b y the intense

dation of a huge stock of planktivorous roach lus

rutilus)

poid

pre(Ruti-

( B r a b r a n d e t al. 1979). A m o n g t h e c y c l o -

copepods,

Th.

oithonoides

is at

d o m i n a n t s p e c i e s , as in t h e 1950's, w i t h

present

the

Mesocyclops

through

plankton. taken

for

a 45

M

m

net

for collecting the

100 m l w a t e r f r o m t h e m i x e d s a m p l e phytoplankton-analysis.

Both

zoo­ was

zoo-and

phytoplankton w e r e fixed w i t h L u g o l ' s solution. Che­ mical analyses o f N H wegian

Institute

4

w a s c a r r i e d o u t at t h e

for W a t e r Research

by

w i t h h y p o c h l o r i t e in a n a l k a l i n e s o l u t i o n , a n d sured by a Technicon

autoanalyzer.

Nor­

reaction mea­

(3)

HIGH

A solution of a m m o n i u m hydrogenphosphate,

PH A N D T H E A B U N D A N C E S OF

nitrate and

ammonium

w h i c h g a v e a final

concentra­ I

tion

of

added

3200

Pre-adult bags

and

to half the

660

^g

1

I "

respectively,

D I N O P H Y C E A E

was

bags.

J C R Y P T O -

r o a c h (5-7 c m ) w e r e a d d e d t o t w o o f t h e

in o r d e r

197

COPEPODS

to detect

a possible selective

:

:] C H R Y S O

-

préda­

t i o n o n t h e t w o s p e c i e s . 12 f i s h w e r e a d d e d t o

each

j B A C I LLAR10

-

bag. 1CHLORO

HIM

4. — Results Phytoplankton lume

:

of algae

throughout

was

the

O A

relatively

observed

stable

in

experimental

total

unfertilized

soon

collapsed.

Then

increase of chlorophyceans, ciliatum,

Golenkia

there

,

vo-

the

increase (fig.

2 ) . A t f i r s t t h e r e w a s a b l o o m o f Synedra this

] C YA N O P H Y C E A E

bags

period, whereas

fertilized bags s h o w e d a considerable

-

spp.,

was

a

but

sudden

s u c h a s Collodictyon

s p p . , Scenedesmus

28.8

tri-

quadricauda

a n d s m a l l , e l l i p s o i d , u n i d e n t i f i e d g r e e n a l g a e ( c a . 4-5 x

3 ^m). There w a s also a marked

increase

t h e c r y p t o p h y c e a n s , e s p e c i a l l y Cryptomonas noidifera.

cf.

T h e C y a n o p h y c e a e o c c u r e d in s i m i l a r

of

pyreden­

s i t i e s a n d s p e c i e s c o m p o s i t i o n in b o t h f e r t i l i z e d a n d F E R T I L I Z E D

U N F E R T I L I Z E D

unfertilized

bags,

Chrysophyceae

as

did

the

Dinophyceae

and F i g . 2. D e v e l o p m e n t o f t h e d i f f e r e n t a l g a l g r o u p s in f e r t i ­ lized and u n f e r t i l i z e d bags. M e a n values o f 5 b a g s f o r each group.

(Tab. I).

T a b l e 1. T o t a l c e l l v o l u m e ( m m

3

m

J

) o f t h e d i f f e r e n t a l g a l g r o u p s in u n f e r t i l i z e d ( U 1 - U 5 ) a n d f e r t i l i z e d ( F 1 - F 5 ) U2

Ul

U3

U4

bags.

US

Date

1.8

14.8

28.8

1.8

14.8

28.8

1.8

14.8

28.8

1.8

14.8

28.8

1.8

14.8

21.8

Dinophyceae Cryptophyceae Chrysophyceae Bacillariophyceae Chlorophyceae Cyanophyceae

699 57 242 886 108 527

402 33 371 140 99 346

113 23 1005 76 187 28

410 427 347 740 67 747

875 258 1493 391 208 384

715 137 603 191 218 1117

815 542 197 795 63 820

530 204 162 366 166 231

330 363 450 186 203 2066

18 55 296 184 69 663

652 24 795 395 168 539

164 98 317 22 294 209

695 643 34 = 994 194 991

947 31 720 512 80 500

105 25 1718 195 242 239

F2

FI Date Dinophyceae Cryptophyceae Chrysophyceae Bacillariophyceae Chlorophyceae Cyanophyceae

F4

F3

1.8

14.8

28.8

1.8

14.8

28.8

1.8

14.8

28.8

49 320 208 1742 191 763

18 1277 454 8 2832 4684

86 3650 52 94 3115 574

41 134 142 541 159 674

2497 252 3 5 4092 967

87 891 76 33 2309 770

414 392 176 1386 257 1 174

1029 804 190 819 2292

2554 208 7037 2709

1.8 416 26 480 586 101 380

F5

14.8

28.8

1.8

14.8

28.8

288 77 1 1 63 3173 1 049 1730

978 35 549 9394 576

105 392 184 1762 366 1071

1386 1394 75 3764 875

1526 359 77 4142 319

DO.

198

Species composition was almost the hags, but of

H E S S E N ET J.P. N I L S S E N

identical

a great v a r i a n c e in the total

leuckarti

in all

e x p e r i e n c e h i g h e s t p H , Th. oithonoides

bags w a s the small ellipsoid g r e e n algae. T h e y

w i t h a r e c o r d e d m a x i m u m of 46 X 10 cells 1~ 9394 m m pH

3

1

The

relation

shown

or

relation­

m .

between

disappeared.

77i. oithonoides

and

pH

i n F i g . 5, w h e r e i t i s e v i d e n t t h a t a h i g h

favours

3

: Simultaneously

copepods

s h i p b e t w e e n t h e t w o w a s 1 : 1. I n b a g s F 4 a n d F 5 , w h i c h

w e r e r e c o r d e d in h u g e n u m b e r s in all f e r t i l i z e d b a g s , 7

for 90-100 % o f the

f e r t i l i z e d b a g h a v i n g l o w e s t p H ( f i g . 3), t h e

spe­

c i e s o f a l g a e w h i c h o c c u r e d a l m o s t s o l e l y in f e r t i l i ­ zed

accounted

in 4 o f the 5 f e r t i l i z e d b a g s ( T a b . 2). In b a g F2, the

volume

the various species w a s observed, T h e only

(4)

M. leuckarti

and

vice

is pH

versa.

with the increased algal bioT a b l e 2. P e r c e n t a g e o f Th. oithonoides in unfertilized ( U 1 - U 5 ) a n d fertilized ( F 1 - F 5 ) b a g s at start ( S ) a n d e n d (E) of the e x p e r i m e n t .

m a s s in f e r t i l i z e d b a g s , t h e r e w a s a n i n c r e a s e in p H . W h e n the s t u d y w a s initiated all the b a g s had a p H o f a b o u t 9.5-9.7, w h i c h a g r e e d w i t h t h e p H in t h e l a k e e p i l i m n i o n at t h a t t i m e . In u n f e r t i l i z e d b a g s a s l i g h t

U3

U2

Ul

U4

U5

i n c r e a s e in p H w a s f o u n d d u r i n g the first w e e k ( u p to

10.0), b e f o r e the p H b e c a m e s t a b l e

(fig.

at a b o u t

increase

in p H t o o k p l a c e a n d w i t h i n a w e e k the p H

became

s t a b l e at a b o u t 10.6-10.7. T h e h i g h e s t r e c o r d e d

s

E

S

E

95.0

98.8

91.6

71.4

S

E

S

E

S

E

S

E

S

E

71.4

6.9

94.0

50.5

71.1

2.2

70.1

0

58.1

0

9.5

3). In f e r t i l i z e d b a g s , h o w e v e r , a s u d d e n

and

10.9 r e s p e c t i v e l y . A l s o b e t w e e n f e r t i l i z e d b a g s ,

there was fairly good agreement

between pH

dings. The development of p H and

F3

equally eliminated

These bags are therefore res a n d

:The only crustaceans which s h o w e d

a s t r o n g r e s p o n s e d u r i n g this s h o r t - t e r m e x p e r i m e n t a n d M. leuckarti.

In the

tilized b a g s the f o r m e r o f these species

a b o u t 70-90 % o f the c y c l o p o i d n u m b e r s , as

the

lake. In fertilized bags, h o w e v e r , there w a s

increase. wed karti

After the first

f o l l o w i n g the

l o w d e n s i t i e s , t h e n a s u d d e n i n c r e a s e o f M.

leuc-

w a s o b s e r v e d . A t the end o f the e x p e r i m e n t

.

U

produces few clutches

with

bags w i t h water-temperatures ment within

from

late

Lake

h a s a l a r g e r c l u t c h - s i z e (20leuckarti

h a d a n e x t r e m e l y s h o r t d e v e l o p m e n t t i m e , in

M.

nauplii

to

some

16-20° C the d e v e l o p ­ adult

female

occured

two weeks.

U3

U2

7

figu­

3 0 e g g s ) , w i t h s m a l l e g g s . I n f e r t i l i z e d b a g s M.

pH sho­

predation. in t h e

t i m e (ca. 2 m o n t h s in

G j e r s j o e n ) , M. leuckarti

a

to fish

a n d l a r g e e g g s (8-15 p e r c l u t c h ) a n d has a r e l a ­

tively long generation

in

10 d a y s , b o t h s p e c i e s

705

few

due

not included

tables.

W h i l e Th. oithonoides

unfer­

accounted

for

s t r o n g d e c r e a s e o f Th. oithonoides

F5

F4

In t h e t w o b a g s c o n t a i n i n g f i s h , b o t h s p e c i e s w e r e almost

oithonoides

83.0

species c o m p o ­

in f i g . 4.

w e r e Th.

E

S

rea­

s i t i o n o f c y c l o p o i d c o p e p o d s ( m e a n v a l u e s ) is s h o w n

Zooplankton

E

S

80.7 99.0 71.5 8 1.0 81.8

F2

Fl

mean

v a l u e w a s 10.7, w i t h u p p e r a n d l o w e r v a l u e s o f 10.5

E

S

U5

U4

70.0

95

pH 705 700

F2

95

14.8

28.B1.8

14. B

F

. 2B.81.B

14.B

2B.81.8

14.8

F 5

4

28.81.8

F i g . 3. V a r i a t i o n s in p H in unfertilized ( U 1 - U 5 ) a n d fertilized ( F 1 - F 5 ) b a g s .

14.8

28.8

199

HIGH PH A N D T H E A B U N D A N C E S OF C O P E P O D S

(5)



30-

O

20-

."X

z

o E

5

°f"

V)

MÉMT[!WmTTTTTM: 1.8

¿8



7.8

118

U S

188

21.8

25.8

28.8

T oithonoides

F i g . 5. R e l a t i o n b e t w e e n p H a n d Th. oithonoides (as p e r cent of total n u m b e r o f c y c l o p o i d c o p e p o d s ) . O p e n s q u a res : unfertilized bags. Filled squares : f e r t i l i z e d bags.

a) Release of toxic substances from certain

blue-

g r e e n s is k n o w n f r o m t h e e a r l y 1950's ( L e f e v r e

1950)

and

later v e r i f i e d by several a u t h o r s ( S h i l o 1964 ;

G e n t i l e a n d M a l o n e y 1969 ; A r n o l d 1971). T h e b l u e 1.8

¿ 1

11.8



U.6

16.8

21.8

25.8

g r e e n s p e c i e s f o u n d i n t h e b a g s w e r e Anabaena

28.8

tenericaulis, F i g . 4 . R e l a t i o n s h i p b e t w e e n M. leuckarii ( v e r t i c a l l i n e s ) a n d Th. oithonoides in u n f e r t i l i z e d ( u p p e r ) a n d f e r t i l i z e s b a g s ( l o w e r ) . M e a n v a l u e s . p H i n d i c a t e d as b l a c k dots.

Anabaena

a n d Oscillatoria

solitaria,

limnetica.

agardhii

The occurrence of these

s p e c i e s w a s , h o w e v e r , v e r y s i m i l a r in b o t h and

unfertilized

cf.

Oscillatoria

bags. T h e b i o m a s s of

fertilized

bluegreens

w a s in fact h i g h e r in s o m e o f the u n f e r t i l i z e d s o m e o f the fertilized

T h e only algal groups

5. — Discussion

greater

numbers

in

which always occured

fertilized

Cryptophyceae (represented a n d Rhodomonas Species d o m i n a n c e within the c y c l o p o i d c o m m u nity w a s obviously related to nutrient perturbations, both

regarding

longterm

short-duration experiments

changes

in

the

lake

and

in t h e b a g s . S e v e r a l fac-

tors may have caused this :

predation.

lacustris)

bags,

in

were

b y Cryptomonas and the

the spp.

Chlorophyceae

mainly by smalt ellipsoid and

species). W i t h i n the c h l o r o p h y c e a n s ,

coccoid

some

species

might be suspected to cause toxic effects ( S k u l b e r g p e r s . c o m m . ) . N e v e r t h e l e s s , an a l g a l toxin Th.

a) A selective toxic effect caused b y algal b l o o m s . b) Selective vertebrate or invertabrate

(represented

than

bags.

oithonoides

M. leuckarti

but

affecting

not the c l o s e l v - r e l a t e d

species

w o u l d be an interesting observation

i t s e l f a n d w i l l b e p u r s u e d in f u r t h e r s t u d i e s .

in

During

c) S e l e c t i v e toxic effects f r o m the fertilizers added.

the

d ) A c h a n g e in a v a i l a b l e f o o d , t h u s f a v o u r i n g

i n c r e a s e in the a b o v e a l g a e w a s o b s e r v e d h o w e v e r ,

of the

species.

e) An increase species.

one

in p H , a f f e c t i n g o n l y o n e o f

historical

something the

development

which

may

of Lake Gjersjoen

indicate

that a h i g h

m o r e important for the numerical w e e n the t w o

species.

no

pH

relationship

is

bet-

D O . H E S S E N ET J.P N I L S S E N

200

b) Fish karii,

predators

could

have favoured

M.

leuc-

the l a r g e r o f the t w o species. In the t w o b a g s

The

use some of her unpublis­ hed results. We should also like to thank Age Braband and Björn Faa Ieng for helpful assistance, discussion and comments. The work was partly supported by the Norwegian Council for Technical and Natural Research, being a research program on eutrophication of inland waters.

decline

d u r i n g t h e f i r s t w e e k , w h i l e i n c r e a s e o f M.

leuckarti

References

w a s f i r s t o b s e r v e d in t h e last h a l f o f t h e e x p e r i m e n ­ tal p e r i o d (cf. f i g . 3 a n d 4 ) . A t h e o r v b a s e d o n c o m ­ p e t i t i v e e x c l u s i o n t h e r e f o r e h a s t o b e r e j e c t e d in t h i s case. e ) O f all p o s s i b l e e x p l a n a t i o n s ,

the p H s e e m s

to

b e the m o s t r e a s o n a b l e to account for the o b s e r v e d p a t t e r n s in t h e b a g s . M o r e o v e r , a s f a r a s t h e

long-

t e r m c h a n g e s in L a k e G j e r s j o e n a r e c o n c e r n e d , and algal biomass are the onlv parameters

p H

which are

closely-related to the o b s e r v e d changes w i t h i n

the

c y c l o p o i d c o p e p o d s (cf. F a a f e n g & N i l s s e n 1981). E v e n if the p H s e e m s to be of m a j o r it is u n c l e a r w h e t h e r

importance,

the p H - e f f e c t s act d i r e c t l y o r

indirectly, o r o n l y as an additional stress-factor. physiological effects o f high p H are no w a r d , but

it is c l e a r t h a t t h e i o n - e x c h a n g e

m a n y z o o p l a n k t o n s p e c i e s is s t r i c t l y p H

The

straightfor­ among

dependent

( P o t t s & F r y e r 1979 ; N i l s s e n & al. 1983). M a n y c o p e p o d s s h o w e d a g o o d s o d i u m balance up to about = sen

pH

9.5 ; a b o v e t h i s p H t h e y s h o w e d a net l o s s ( N i l s & al. 1983).

Arnold (D.E.). 1971. — Ingestion, assimilation, survival and repro­ duction by Daphnia pulex fed on seven species of blue-green algae. Limnol. Oceanogr.. 16: 906-920. Blakar (I.A.). 1978. — A simple water and plankton sampler. Freshw. Biol. 8 : 533-537. Bugalova (I.E.). 1962. — Lethal ranges of oxygen content, tempe­ rature and pH for some representatives for the familv Chydoritlae. tool. Zh.. 41 : 58*2. Brabrand (A.), Faafeng fB.) & Nilssen [J.P.). 1981. — Biologisk kon troll av algeuppblomsiringer. Rep. Eutrophication Inland Nor­ wegian Council Scienl. Industrial Res. 0/79 : l-74(Mimeogr. in Norwegian, English Summary). Fryer (G.). 1957. — The food of some freshwater cyclopoid copepods, and its ecological significance. J. Aniin. Ecol, 26 ;263-286. Gentile (J.H.) & Malonev (T.E.). 1969. — Toxicity and environmen­ tal requirements of a strain of Aphanizomenon flos-aqua. (L ). Rails. Can. J. Micmhioi., 15. 165-173. Faafeng (B.\& Nilssen (J.P j 1981 — A twenty-year study of eutro­ phication in a deep, soft water lake. tm. Ver. Theur. Angeiv. Limnui Verb.. 21 : 380-382. Gliwii-7 (Z M ) . 1969. — Studies on the feeding of pelagic zooplank­ ton in lakes with varying trophy. Ekul. Pol. 36: 663-708. Hutchinson (G.E.). 1957. — A treatise on limnology Vol I. Geo­ graphy, physics and chemistry. J- Wiley & Sons New Yorl. 1015 P

(7)

H I G H PH A N D T H E A B U N D A N C E S OF C O P E P O D S

Ivanova (M.B.). 1969. — The influence of active waler reaction on the filtrating rate of cladocera. Pol. Arch. Hydrobiol, 16: 115-124. Karabin (A.). 1978. — The pressure of pelagic predators of the genus Mesoeyclops on smalt Zooplankton. Ekol. Pol, 26 : 241-257. Lefèvre (M.). 1950. — Aphanizomenon gracile Lern. Cyanophyte défavorable au zooplancton, ,4MM. S ta. Cent. Hydrobiol. Appt.. 3 : 205-208. Nüssen (J.P.). 1978. — Eutrophication, minute algae and inefficient grazers. Mem. Ist. liai. Idrobiol, 36 : 121-138. Nüssen (J.P.), östdahl (T.) & Potts ( W . T . W . ) . 1983. — Fysiologitil /.ooplankton under torsurning og kalkning : et piloistuuium med radioisotoper. Kalkningsprosjektel Rapport 7/83 : 1-00. [Mimeogr. in Norwegian).

201

Patalas (K.)_ 1954. — Pelagic crustaceans complexes of 28 Pomerianian lakes. Ekul. Pol. 2 : 61-92. Potts ( W . T . W . ) & Fryer (G.|. 1979. — The effects of pH and salt content of sodium balance in Daphnia magna and Acanthvlebris curvirostris (Crustacea : Cladocera). J. Cvmp. Plnsiol, 129 : 289-294. SarvalafJ.). 1979. — Benthic resting stages of pelagic cvclopoids in an oligotrophia- lake. Holarctic Ecology, 2 : 88-100. S h i l o ( M ) . 1964. — Review of toxigenic algae, hit Ver. Theor. Anut-w. t.inmol. Verb.. 15: 782-795. Trussel (R.P.). 1972. — The percent unionized ammonia in aqueous solutions at different p H levels and temperatures. J. Fish. Res. Bd Can., 29 : 1505-1507. Walter (B.). 1969. — Inter-relations of cladocera and algae. Ph. D. thesis. Westfield Coll. Univ. London.