Periphytic diatoms of Nakaikemi Wetland, an ancient peaty low moor ...

2 downloads 0 Views 5MB Size Report
Abstract e periphytic diatom flora of Nakaikemi Wetland, a peaty low moor located near the Sea of Japan in ...... N. vandamii Schoeman et R.E.M.Archibald, Nova.
18 Diatom 31: 18–44. DecemberYasuo 2015Kihara, Kumiko Tsuda, Chizu Ishii, Erika Ishizumi and Taisuke Ohtsuka

DOI: 10.11464/diatom.31.18

Periphytic diatoms of Nakaikemi Wetland, an ancient peaty low moor in central Japan Yasuo Kihara, Kumiko Tsuda, Chizu Ishii, Erika Ishizumi and Taisuke Ohtsuka Tansaibou-no-kai, Hashikake system in Lake Biwa Museum, Oroshimo 1091, Kusatsu, Shiga 525–0001, Japan

Abstract The periphytic diatom flora of Nakaikemi Wetland, a peaty low moor located near the Sea of Japan in Fukui Prefecture, central Japan, was studied. This moor was inscribed as a registered wetland under the Ramsar Convention in 2012. We checked a total of 50 diatom samples collected from the surface of filamentous green algae, living/dead spermatophytes, and mud in the moor in May and November, 2008. The water ranged from slightly acidic to alkaline (pH 5.9–8.8), and electrical conductivity also varied greatly among sites (7–32 mS m−1). In all, 297 taxa belonging to 61 genera are listed and illustrated from these samples, although 36 taxa among them have not been identified to species. In terms of taxa richness, the dominant genus was Pinnularia, represented by 35 taxa, followed by Navicula (24 taxa), Nitzschia and Gomphonema (23 taxa each), and Sellaphora (21 taxa). Several brackish and/or marine diatoms occurred in the samples although the water was fresh. Navicula americana var. moesta Temp. et H.Perag. is raised to species level with its transfer to the genus Sellaphora, as S. moesta (Temp. et H.Perag.) Ohtsuka comb. nov. Key index words: low moor, Nakaikemi Wetland, Pinnularia, Ramsar site, Sellaphora moesta

Introduction Nakaikemi Wetland is a peaty low moor with a total area of approximately 0.25 km2, located near the Sea of Japan (1.2 km apart) in the eastern part of Tsuruga N, 136.09° E). The city, Fukui Prefecture, Japan (35.66° wetland is situated at an elevation of ca. 48 m, with a thick peat bed reaching a depth of 40 m. The peat layer has accumulated for about 130 ka, and provides a nearly continuous record of the vegetational history of the surrounding area in the form of fossil pollen (Miyamoto 2013). Due to its unique topographic feature called sac-like waste-filled valley, Koizumi & Aoki (1994) introduced it as one of the most important landforms to be preserved. The wetland was incorporated into Echizen–Kaga Kaigan Quasi-National Park in December 2011, and then inscribed as a registered wetland under the Ramsar Convention in July, 2012 as an example of type U: inland wetlands, marshes on peat soils. The wetland mostly consists of abandoned paddy fields. These had been developed since the early Edo period (17th century), and fully occupied the wetland by 1960 s. However, the paddies were slowly set aside under a national rice acreage reduction policy and eventually were all abandoned (Sugiyama 1997). A liquefied natural gas repository base was planned here in 1992, but these prospect was abandoned in 2002 (Sasaki 2013). Nearly 3,000 species of plants and animals have been Received 19 April 2015 Accepted 7 August 2015

recorded from the Nakaikemi Wetland, including many endangered species such as glacial relicts and those usually live in/around rice paddies (e.g., Nohara & Kawano 2003, Shimoda 2003). In recent years, however, many endangered plants have been decreased at least partly because of abandoned rice cultivation and feeding damage by the introduced crayfish, Procambarus clarkii (Girard). The dominant aquatic plants have changed from annuals to perennial emergents. Furthermore, Phragmites australis (Cav.) Trin. ex Steud. is being replaced by the terrestrial alien plant Solidago canadensis var. scabra L. as many parts of the wetland have been drained (Shimoda 2003). The present study aimed to display the taxonomic diversity of periphytic diatoms in Nakaikemi Wetland. Dozens of diatoms have already been reported from there. Nozaki et al. (1998) followed seasonal changes in the planktonic taxa. Tuji & Nozaki (2003) examined centric diatoms taxonomically and Tuji et al. (1999, 2003) discussed relationships between diatoms and water quality in the wetland. The diatom flora is, however, still scarcely known, because periphytic taxa in the wetland have not been studied in detail until now.

Materials and Methods We collected 15 samples from 8 sites in the moor on 10 May, and 35 samples from 17 sites on 22 November, 2008 (Fig. 1). Samples were collected from the surface of filamentous green algae, living/dead spermatophytes, and mud in pools and streams. The samples of green

Diatoms of Nakaikemi Wetland

19

Fig. 1. (a) Location map of Nakaikemi Wetland. Scale bar=10 km. (b) Sampling points in the wetland. Circles denote the points from which samples were collected on both 10 May and 22 November 2008. Crosses denote the points from which samples were collected only on 22 November 2008. Scale bar=500 m.

algae and spermatophytes were cut by scissors. The mud samples were collected from the topmost layer (<1 cm thick) using small core samplers. Each sample was immediately fixed with formaldehyde solution at a final concentration of 1%. At each sampling point, electrical conductivity (EC) and pH were checked with a conductivity meter (B173, Horiba, Kyoto, Japan) and a pH meter (B-212, Horiba, Kyoto, Japan), respectively. Water temperature was measured with an alcohol thermometer. Water samples for water chemistry analysis were filtered by using syringe-driven filter units with a 0.22 µm pore-size hydrophilic polyethersulfone membrane (Millex-GP, Millipore, Massachusetts, U.S.A.). Part of each water sample was kept in a refrigerator (for soluble reactive silica (SRSi) determination) and the remaining part in a freezer (for the other analyses). In the laboratory, major anions and cations were analyzed by ion column chromatography (DX-AQ: Nippon Dionex, Osaka, Japan). SRSi, soluble reactive phosphrous, NH4-N, NO2-N, and NO3-N were colorimetrically determined using an autoanalyzer (AACS-II: Bran+Luebbe, Tokyo, Japan). After log-transforming the water quality parameters except pH and water temperature, differences between seasons were tested among the eight sites common to both sampling days using pairwise t-tests with sequential Šidák correction. Diatom frustules were cleaned as follows. First, host plants and algae were shredded with scissors. A part of C and then each sample was suspended in 1N HCl at 60° repeatedly rinsed with distilled water to remove calcareous material. Next, it was cleaned by using heated H2SO4 and KNO3 to remove organic matter. After repeated rinse in distilled water, it was boiled in 10% H2O2 to

oxidize all organic matter and again repeatedly rinsed in distilled water. The cleaned frustules were mounted onto slides using Pleurax for light microscopy. We used a compound light microscope (Eclipse 80i: Nikon, Tokyo, Japan) for taking light micrographs with a digital micrographic camera (Digital Sight: Nikon, Tokyo, Japan). The photographs were adjusted to a uniform magnification and resolution of ×1,500 at 500 dpi using Photoshop CS4 (Adobe, California, USA), and then identified by reference to sources cited individually below for each recognized taxon.

Results and Discussion Water quality parameters varied considerably depending on the site (Table 1), as was previously found by Tuji et al. (2003). The water ranged from slightly acidic to alkaline (pH 5.9–8.8), and electrolyte content also varied greatly between sites (e.g., EC of 7–32 mS m−1). Water temperature and the concentration of soluble reactive silica were significantly higher, while pH was significantly lower, in May than in November (p<0.05). The other water quality parameters were not significantly different between May and November (p>0.05) accounting for multiplicity. We recognized 297 diatom taxa belonging to 61 genera in total, although 36 taxa among them have not been identified to species level. All taxa are listed in alphabetical order below, together with illustrations (Figs 2–323), and sometimes with taxonomic remarks. 1. Achnanthes inflata (Kütz.) Grunow; cf. Krammer & Lange-Bertalot 1991b. p. 6. pl. 2. f. 9, 10. Figs 2, 3. 2. Achnanthidium exiguum (Grunow) Czarn.; cf. Kram-

20

Yasuo Kihara, Kumiko Tsuda, Chizu Ishii, Erika Ishizumi and Taisuke Ohtsuka

Table 1. Water quality parameters of the sampling sites.

Date

10 May 2008

22 November 2008

8

17

Min. Mean Max.

Min. Mean Max.

6.3 7.0 12.6 1.2 0.1 0.7 0.3 4.1 7.5 0.5 0.3 1.0 0.0 11.1 0.0 2.0

5.9 7.2 8.0 1.6 0.2 0.4 0.4 1.1 8.2 0.7 0.4 1.1 0.0 12.0 0.0 3.3

Number of sites

pH EC (mS/m) Temperature ( C) NO3-N (µmol/L) NO2-N (µmol/L) NH4-N (µmol/L) PO4-P (µmol/L) SR-Si (mg/L) Na+(mg/L) K+(mg/L) Mg2+(mg/L) Ca2+(mg/L) F− (mg/L) Cl− (mg/L) Br− (mg/L) SO42− (mg/L)

7.0 14.6 14.5 17.2 0.6 6.1 0.9 6.8 13.6 0.9 1.8 5.6 0.1 14.3 0.0 8.6

7.3 21.0 17.5 65.7 1.4 22.1 2.3 13.0 19.1 1.4 3.9 10.1 0.1 17.4 0.1 24.0

7.8 16.3 10.3 25.7 0.4 1.8 2.1 4.2 14.1 1.2 1.4 4.4 0.1 19.3 0.0 5.7

8.8 31.7 13.3 105.1 1.2 9.5 4.7 9.1 28.2 1.7 3.6 8.7 0.4 43.2 0.1 15.0

mer & Lange-Bertalot 1991b. p. 38. pl. 23. f. 1–19 (as Achnanthes exigua). Figs 4, 5. 3. A. lineare W.Sm.; cf. Van de Vijver et al. 2011. p. 170. f. 1–35. Figs 6, 7(?). 4. A. minutissimum (Kütz.) Czarn.; cf. Krammer & Lange-Bertalot 1991b. pl. 32. f. 1–9 (as Achnanthes minutissima). Figs 8, 9. 5. Actinella brasiliensis Grunow in Van Heurck, Syn. Diat. Belg. pl. 35. f. 19. 1881. Fig. 10. 6. Adlafia brockmannii (Hust.) Bruder et F.Hinz in Bruder et Medlin; cf. Simonsen 1987. p. 149. pl. 241. f. 29, 30 (as Navicula brockmannii). Fig. 11. 7. Amphora copulata (Kütz.) Schoeman et R.E.M.Archibald; cf. Nagumo 2003. p. 17. pls 22–26. Fig. 12. 8. A. pediculus (Kütz.) Grunow in A.W.F.Schmidt et al.; cf. Nagumo 2003. p. 35. pls 82–85. Fig. 13. 9. A. rotunda Skvortsov, Philipp. J. Sci., C 62: 342. pl. 12. f. 18. 1937. Fig. 14. 10. Anomoeoneis sphaerophora E.Pfitzer; cf. Krammer & Lange-Bertalot 1986. p. 252. pl. 92. f. 1, 2. Fig. 15. 11. Bacillaria paxillifer var. tumidula (Grunow) Witkowski et al.; cf. Jahn & Schmid 2007. p. 304. f. 9. Fig. 16. 12. Brachysira procera Lange-Bert. et G.Moser, Biblioth. Diatomol. 29: 55. pl. 7. f. 8–18. 1994. Fig. 17. 13. Caloneis aequatrialis Hust.; cf. Simonsen 1987. p. 54. pl. 68. f. 14–16. Fig. 18. 14. C. bacillum ( Grunow ) Cleve ; cf. Krammer & Lange-Bertalot 1986. p. 390. pl. 173. f. 9–20. Fig. 19. 15. C. bryophila Manguin ex Kociolek et Reviers; cf. Moser et al. 1998. p. 25. pl. 1. f. 4–7. Fig. 20.

16. C. hyalina Hust.; cf. Simonsen 1987. p. 224. pl. 330. f. 10–15. Fig. 21. 17. C. leptosoma (Grunow) Krammer in Krammer et Lange-Bert.; cf. Van Heurck 1880. pl. 12. f. 29 (as Navicula leptosoma). Fig. 22. 18. Caloneis sp. 1 This species is similar with Caloneis acuta Levkov et Metzeltin (cf. Levkov et al. 2007. p. 33. pl. 184. f. 1–14), but the valve is somewhat wider. Fig. 23. 19. Caloneis sp. 2 This species is similar with C. bacillum (see above), but the striae are much finer. Fig. 24. 20. Caloneis sp. 3 This species has coarser and more radiate striae than C. hyalina (see above). Fig. 25. 21. Caloneis sp. 4 This species is similar with C. bacillum (see above), but much smaller. Fig. 26. 22. Cavinula sp. This species is similar with Cavinula cocconeiformis (W.Greg. ex Grev.) D.G.Mann et Stickle in Round et al. (cf. Krammer & Lange-Bertalot 1986, p. 158. pl. 59. f. 2–5; as Navicula cocconeiformis), but has smaller and more elliptic valve. It is also similar with Navicula utermoehlii Hust. (cf. Simonsen 1987, p. 199. pl. 306. f. 11–14), but larger. Fig. 27. 23. Cocconeis euglypta Ehrenb.; cf. Romero & Jahn 2013. p. 180. f. 9–18. Figs 28, 29. 24. C. lineata Ehrenb.; cf. Romero & Jahn 2013. p. 178. f. 1–8. The striae density of our specimens was 18–20 in 10 µm. According to Romero & Jahn (2013), sternum valves of C. lineata have striae with the density of (7)10– 15 in 10 µm (amended description) or 12–20 in 10 µm (their Table 3). They themselves showed, however, a sternum valve from the epitype slide with 24 striae in 10 µm (f. 2). We therefore regarded our specimens are within the variation of the type specimens of C. lineata. Figs 30, 31. 25. C. placentula Ehrenb.; cf. Tuji 2009. f. 5a–m, u, w. Jahn et al. (2009) designated Ehrenberg Collection 544206, a dried preparation, as lectotype of C. placentula based on Ehrenberg s original drawing (drawing sheet Nr. 301). Because this slide is not suitable for observing valve morphology, they also designated a modern monoclonal strain as epitype. The morphology of the latter is, however, quite different from the current concept of C. placentula (e.g. Patrick & Reimer 1966, Krammer & Lange-Bertalot 1991b); moreover, it is doubtful whether the epitype even belong to the same species as the lectotype. Therefore, we identify our materal with reference to certain specimens in Ehrenberg Collection 2225 shown by Tuji (2009) that conform to the current concept of C. placentula. Fig. 32.

Diatoms of Nakaikemi Wetland

21

Figs 2, 3. Achnanthes inflata. Figs 4, 5. Achnanthidium exiguum. Figs 6, 7(?). A. lineare. Figs 8, 9. A. minutissimum. Fig. 10. Actinella brasiliensis. Fig. 11. Adlafia brockmannii. Fig. 12. Amphora copulata. Fig. 13. A. pediculus. Fig. 14. A. rotunda, Fig. 15. Anomoeoneis sphaerophora. Fig. 16. Bacillaria paxillifer var. tumidula. Fig. 17. Brachysira procera. Fig. 18. Caloneis aequatrialis. Fig. 19. C. bacillum. Fig. 20. C. bryophila. Fig. 21. C. hyalina. Fig. 22. C. leptosoma. Fig. 23. Caloneis sp. 1. Fig. 24. Caloneis sp. 2. Fig. 25. Caloneis sp. 3. Fig. 26. Caloneis sp. 4. Fig. 27. Cavinula sp. Figs 28, 29. Cocconeis euglypta. Figs 30(?), 31. C. lineata. Fig. 32. C. placentua. Fig. 33. Craticula accomoda. Fig. 34. C. elkab. Fig. 35. C. cuspidata. Scale bar=10 µm.

22

Yasuo Kihara, Kumiko Tsuda, Chizu Ishii, Erika Ishizumi and Taisuke Ohtsuka

26. Craticula accomoda (Hust.) D.G.Mann in Round et al.; cf. Simonsen 1987. p. 365. pl. 550. f. 1–8 (as Navicula accomoda). Fig. 33. 27. C. cuspidata (Kütz.) D.G.Mann in Round et al.; cf. Lange-Bertalot 2001. p. 111. pl. 82. f. 1–3. pl. 83. f. 1, 2. Fig. 35. 28. C. elkab (O.Müll.) Lange-Bert., Diatoms Europe 2: 112. pl. 91. f. 8–14. 2001. Fig. 34. 29. C. riparia var. mollenhaueri Lange-Bert., Biblioth. Diatomol. 27: 14. pl. 70. f. 10–13. 1993. Fig. 36. 30. Craticula sp. This species resembles Craticula riparia (Hust.) LangeBert., but differs in its elliptical outline (cf. Simonsen 1987. pl. 406. f. 21, 22; as Navicula riparia). It is also similar to C. accomoda (see above), but much larger. Fig. 37. 31. Cyclotella meneghiniana Kütz.; cf. Kobayasi et al. 2006. p. 34. pl. 47. Fig. 38. 32. Cymatopleura solea (Bréb.) W.Sm.; cf. Krammer & Lange-Bertalot 1988. p. 168. pl. 116. f. 1–4. pl. 117. f. 1–5. pl. 118. f. 1, 3. pl. 122. f. 4. Fig. 39. 33. Cymbella aspera (Ehrenb.) H.Perag.; cf. Krammer 2002. p. 114. pl. 62. f. 5. pl. 124. f. 1–8. pl. 125. f. 1–4. pl. 126. f. 1–5. pl. 127. f. 7. pl. 142. f. 7. Fig. 40. 34. C. himalaspera Jüttner et Van de Vijver in Jüttner et al., Polish Bot. J. 55: 75. f. 2–3. 2010. Fig. 41. 35. C. tropica Krammer, Diatoms Europe 3: 164. pl. 44. f. 7–10. 2002. Fig. 42. 36. C. tumida (Bréb.) Van Heurck; cf. Krammer 2002. p. 141. pl. 162. f. 1–8 ; pl. 163. f. 1–6. pl. 164. f. 1–8. pl. 165. f. 3–5. pl. 166. f. 3. pl. 168. f. 5, 6. Fig. 43. 37. Cymbopleura apiculata Krammer, Diatoms Europe 4: 152. pl. 7. f. 8–10. pl. 9. f. 1–6. pl. 10. f. 1–4. pl. 11. f. 1–3b. 2003. Fig. 44. 38. C. naviculiformis (Auersw.) Krammer, Diatoms Europe 4: 56. pl. 76. f. 1–11. 2003. Fig. 45. 39. C. peranglica Krammer, Diatoms Europe 4: 158. pl. 84. f. 1–4. 2003. Fig. 46. 40. Diadesmis confervacea Kütz.; cf. Krammer & LangeBertalot 1986. p. 221. pl. 75. f. 29–31 (as Navicula confervacea). Fig. 47. 41. D. contenta (Grunow) D.G.Mann in Round et al.; cf. Lange-Bertalot & Werum 2001. p. 6. f. 1–3. Fig. 48. 42. Diploneis dimorpha Hust.; cf. Simonsen 1987. p. 455. pl. 680. f. 12–14. Fig. 49. 43. D. finnica (Ehrenb.) Cleve; cf. Krammer & LangeBertalot 1986. p. 290. pl. 110. f. 1, 2. pl. 112. f. 1. Fig. 51. 44. D. ovalis subsp. arctica Lange-Bert. in Lange-Bert. et Genkal, Iconogr. Diatomol. 6: 43. pl. 43. f. 1–3. pl. 44. f. 1–5. 1999. Fig. 50. 45. D. parma Cleve; cf. Idei & Kobayasi 1988. p. 397. f. 1–24. Fig. 52. 46. D. pseudovalis Hust.; cf. Simonsen 1987. p. 118. pl. 193. f. 10–14. Figs 53–55. 47. D. smithii (W.Sm.) Cleve; cf. Kobayasi et al. 2006. p.

143. pl. 178. Fig. 56. 48. Diploneis sp. This species probably belongs to D. parma sensu Krammer & Lange-Bertalot (1986. pl. 109. f. 1–7). It is, however, clearly different from the type specimens of D. parma shown by Idei & Kobayasi (1988. f. 1–24; see also Fig. 52) in having smaller and more slender valves with narrower central area. Fig. 57. 49. Encyonema distinctepunctatum Krammer, Biblioth. Diatomol. 36: 162. pl. 11. f. 1–11. 1997. Fig. 58. 50. E. neogracile Krammer, Biblioth. Diatomol. 36: 177. pl. 82. f. 1–7, 12, 13. 1997. Fig. 59. 51. E. silesiacum var. distinctepunctata Krammer, Biblioth. Diatomol. 36: 177. pl. 82. f. 1–7, 12, 13. 1997. Fig. 60. 52. E. simile Krammer, Biblioth. Diatomol. 36: 160. pl. 18. f. 5–10. 1997. Fig. 61. 53. E. vulgare Krammer, Biblioth. Diatomol. 36: 167. pl. 36. f. 4–10. 1997. Fig. 62. 54. Encyonopsis matrioschka Metzeltin et al. in Kulikovskiy et al., Iconogr. Diatomol. 23: 102. pl. 15. f. 3–5. 2012. Fig. 63. 55. Eolimna minima (Grunow) Lange-Bert. in G.Moser et al.; cf. Watanabe et al. 2005. p. 284. pl. IIIB3–20. f. 1–13 (as Navicula minima). Fig. 64. 56. Eunotia ambivalens Lange-Bert. et Tagilaventi in Lange-Bertalot et al., Diatoms Europe 6: 49. pl. 11–13. 2011. Figs 65–67. 57. E. bidens Ehrenb.; cf. Lange-Bertalot et al. 2011. p. 62. pl. 80. f. 1–14. Fig. 69. 58. E. minor (Kütz.) Grunow in Van Heurck, Syn. Diat. Belg. pl. 33. f. 20, 21. 1881. Fig. 70. 59. E. muscicola Krasske; cf. Lange-Bertalot et al. 1996. p. 72. pl. 68. f. 1–38. Fig. 71. 60. E. myrmica Lange-Bert. in Lange-Bert. et al., Diatoms Europe 6: 165. pl. 221. f. 10, 11. pl. 222. f. 8–13. 2011. Fig. 68. 61. E. paludosa Grunow; cf. Lange-Bertalot et al. 2011. p. 186. pl. 146. f. 1–31. pl. 147. f. 1–47. pl. 149. f. 20–22. Fig. 72. 62. E. rhomboidea Hust.; cf. Simonsen 1987. p. 361. pl. 546. f. 3–8. Fig. 73. 63. E. subarcuatoides Alles, Nörpel et Lange-Bert., Nova Hedwigia 53: 188. pl. 4. f. 1–36. 1991. Fig. 74. 64. Eunotia sp. This species is similar to E. boreotenuis Nörpel et Lange-Bert. (cf. Lange-Bertalot & Metzeltin 1996. p. 46. pl. 9. f. 21–23), but differs in its narrower valves. Fig. 75. 65. Fallacia tenera (Hust.) D.G.Mann in Round et al.; cf. Simonsen 1987. p. 162. pl. 255. f. 6–10 (as Navicula uniseriata). Fig. 76. 66. Fragilaria capucina Desm.; cf. Krammer & LangeBertalot 1991a. p. 121. pl. 108. f. 1–8. Fig. 77. 67. F. neoproducta Lange-Bert.; cf. Krammer & Lange-

Diatoms of Nakaikemi Wetland

23

Fig. 36. Craticula riparia var. mollenhaueri. Fig. 37. Craticula sp. Fig. 38. Cyclotella meneghiniana. Fig. 39. Cymatopleura solea. Fig. 40. Cymbella aspera. Fig. 41. C. himalaspera. Fig. 42. C. tropica. Fig. 43. C. tumida. Fig. 44. Cymbopleura apiculata. Fig. 45. C. naviculiformis. Fig. 46. C. peranglica. Fig. 47. Diadesmis confervacea. Fig. 48. D. contenta. Scale bar=10 µm.

Bertalot 1991a. p. 136. pl. 127. f. 1–5A. Fig. 78. 68. F. rumpens (Kütz.) Lange-Bert.; cf. Krammer & Lange-Bertalot 1991a. p. 122. pl. 108. f. 16–21 (as Fragilaria capucina var. rumpens). Fig. 79.

69. F. tenera (W.Sm.) Lange-Bert.; cf. Krammer & Lange-Bertalot 1991a. p. 129. pl. 114. f. 12–16. pl. 115. f. 1–7. Fig. 80. 70. F. vaucheriae (Kütz.) J.B.Petersen; cf. Krammer &

24

Yasuo Kihara, Kumiko Tsuda, Chizu Ishii, Erika Ishizumi and Taisuke Ohtsuka

Fig. 49. Diploneis dimorpha. Fig. 50. D. ovalis subsp. arctica. Fig. 51. D. finnica. Fig. 52. D. parma. Figs 53–55. D. pseudovalis. Fig. 56. D. smithii. Fig. 57. Diploneis sp. Fig. 58. Encyonema distinctepunctatum. Fig. 59. E. neogracile. Fig. 60. E. silesiacum var. distinctepunctata. Fig. 61. E. simile. Fig. 62. E. vulgare. Fig. 63. Encyonopsis matrioschka. Fig. 64. Eolimna minima. Figs 65–67. Eunotia ambivalens. Fig. 68. E. myrmica. Fig. 69. E. bidens. Fig. 70. E. minor. Fig. 71. E. muscicola. Fig. 72. E. paludosa. Fig. 73. E. rhomboidea. Fig. 74. E. subarcuatoides. Fig. 75. Eunotia sp. Fig. 76. Fallacia tenera. Fig. 77. Fragilaria capucina. Fig. 78. F. neoproducta. Fig. 79. F. rumpens. Fig. 80. F. tenera. Fig. 81. F. vaucheriae. Fig. 82. Fragilaria sp. Fig. 83. Fragilariforma bicapitata. Scale bar=10 µm.

Diatoms of Nakaikemi Wetland

Lange-Bertalot 1991a. p. 124. pl. 108. f. 10–15 (as Fragilaria capucina var. vaucheriae). Fig. 81. 71. Fragilaria sp. This species is similar to Fraglaria famelica (Kütz.) Lange-Bert. (cf. Krammer & Lange-Bertalot 1991a. pl. 111. f. 4–17). The striae on both sides are, however, alternately arranged, whereas those of F. famelica face each other. Fig. 82. 72. Fragilariforma bicapitata (Ant.Mayer) D.M.Williams et Round; cf. Krammer & Lange-Bertalot 1991a. p. 141. pl. 118. f. 11–16 (as Fragilaria bicapitata). Fig. 83. 73. Frustulia marginata Amossé; cf. Lange-Bertalot 2001. p. 170. pl. 131. f. 6–8. Fig. 84. 74. F. vulgaris (Twaites) De Toni; cf. Lange-Bertalot 2001. p. 175. pl. 134. f. 1–7. Fig. 85. 75. Gomphonema acuminatum Ehrenb.; cf. Reichardt 1999. p. 45. pl. 49. f. 6. pl. 52. f. 1–14. pl. 53. f. 1–17. pl. 55. f. 1–4. Fig. 86. 76. G. affine Kütz.; cf. Reichardt 1999. p. 13. pl. 7. f. 1–9. pl. 8. f. 1–14. pl. 9. f. 1–14. Fig. 87. 77. G. auritum A.Braun ex Kütz.; cf. Krammer & Lange-Bertalot 1991b. pl. 79. f. 8–12. Fig. 88. 78. G. brasiliense ssp. pacificum Gerd Moser et al., Biblioth. Diatomol. 38: 185. pl. 50. f. 1–6. 1998. Fig. 89. 79. G. cathedralis Lange-Bert. et E.Reichardt in LangeBert. et Metzeltin, Biblioth. Diatomol. 2: 69. pl. 65. f. 1–4. 1996. Fig. 90. 80. G. contraturris Lange-Bert. et E.Reichardt in LangeBert., Biblioth. Diatomol. 27: 57. pl. 78. f. 2–9. pl. 79. f. 1–5. 1993. Fig. 91. 81. G. coronatum Ehrenb.; cf. Reichardt 1999. p. 43. pl. 5. f. 1–14. 2001. Fig. 92. 82. G. exilissimum (Grunow) Lange-Bertalot et E.Reichardt; Jüttner et al. 2013. p. 305. f. 1–36. Fig. 93. 83. G. gautieri (Van Heurck) Lange-Bert. et Metzeltin; cf. Van Heurck 1885. p. 124. pl. 23. f. 28 (as Gomphonema augur var. gautieri). Fig. 96. 84. G. grasmueckii Lange-Bert. et Reichardt in LangeBert. Iconogr. Diatomol. 27: 59. pl. 75. f. 1–5. pl. 77. f. 1–14. 1993. Fig. 94. 85. G. inaequilongum (H.Kobayasi) H.Kobayasi; cf. Kobayasi et al. 2006. p. 394. pl. 124. f. 1–6. Fig. 97. 86. G. insigniforme E.Reichardt et Lange Bert. in E. Reichardt, Iconogr. Diatomol. 8: 10. pl. 3. f. 1–22. pl. 4. f. 1–7. 1999. Fig. 95. 87. G. lagenula Kütz.; cf. Krammer & Lange-Bertalot 1986. pl. 154. f. 8 (as lagenula-Formen of Gomphonema parvulum). Fig. 98. 88. G. laticollum E.Reichardt, Lange-Bertalot-Festschrift. p. 199. pl. 5. f. 1–14. 2001. Fig. 99. 89. G. micropus Kütz.; cf. Reichardt 1999. p. 34. pl. 36. f. 1–14. pl. 37. f. 1–29. pl. 38. f. 1–15. pl. 39. f. 15–17, 27–29. Fig. 100. 90. G. parvulum (Kütz.) Kütz.; cf. Krammer & Lange-

25

Bertalot 1986. pl. 154. f. 1, 2. Fig. 101. 91. G. pseudoaugur Lange-Bert., Arch. Hydrobiol. Suppl. 56: 202. f. 11–16. 1979. Fig. 102. 92. G. sarcophagus W.Greg.; cf. Reichardt 1999. p. 30. pl. 30. f. 1–30. pl. 31. f. 1–6. Fig. 103. 93. G. subclavatum (Grunow in Van Heurck) Grunow; cf. Van Heurck 1880. pl. 23. f. 38–41 (as Gomphonema montanum var. subclavatum). Fig. 104. 94. G. truncatum Ehrenb.; cf. Reichardt 2001. p. 208. pl. 2. f. 10–11. pl. 9. f. 1–21. pl. 11. f. 1–3. pl. 14. f. 14–20. Fig. 105. 95. Gomphonema sp. 1 This species differs from Gomphonema angustatum (Kütz.) Rabenh. (Reichardt 1999. p. 23. pl. 23. f. 1–10, 13–16. pl. 24. f. 1–37) in having coarser striae. Fig. 106. 96. Gomphonema sp. 2 This species is similar to Gomphonema sphaerophorum Ehrenb., but the type specimens of G. sphareophorum (Ueyama & Kobayasi 1988. f. 2–5) have reltively broader valves than our specimens. Fig. 107. 97. Gomphonema sp. 3 This species is similar to Gomphonema pseudopusillum E.Reichardt et Lange-Bert. (Reichardt 1999. pl. 59. f. 1–15), but much larger. Fig. 108. 98. Gyrosigma kuetzingii (Grunow) Cleve; cf. Sterrenburg 1997. p. 158. f. 1–9. Fig. 120. 99. G. obtusatum (Sull. et Wormley) C.S.Boyer; cf. Haraguchi 2014. p. 130. f. 19, 20. Fig. 121. 100. Halamphora normanii (Rabenh.) Levkov, Diatoms Europe 5: 208. pl. 94. f. 1–8, 28–32. 2009. Fig. 109. 101. Hantzschia abundans Lange-Bert., Biblioth. Diatomol. 27: 75. pl. 85. f. 12–17. 1993. Fig. 110. 102. H. amphioxys (Ehrenb.) Grunow; cf. Lange-Bertalot 1993. p. 77. pl. 85. f. 1–11. Fig. 111. 103. Hippodonta capitata (Ehrenb.) Lange-Bert. et al.; cf. Lange-Bertalot 2001. p. 98. pl. 75. f. 1–4. Fig. 112. 104. H. coxiae Lange-Bert., Diatoms Europe 2: 76. pl. 76. f. 29–33. pl. 77. f. 15. 2001. Fig. 113. 105. Lemnicola hungarica (Grunow) Round et Basson, Diatom Res. 12: 77. f. 4–7, 26–31. 1997. Figs 114, 115. 106. Luticola acidoclinata Lange-Bert. in Lange-Bert. et Metzeltin, Iconogr. Diatomol. 2: 76. pl. 24. f. 24–26. pl. 104. f. 10–16. 1996. We have previously identified this species as Luticola aequatorialis (Heiden) Lange-Bert. et Ohtsuka (e.g. Ohtsuka 2002, Kihara et al. 2009) based on the type microphotographs shown by Simonsen (1992; pl. 56. f. 8–11). Levkov et al. (2013), however, concluded that most of the type specimens of L. aequatorialis have narrowly rounded valve ends and that Simonsen (1992) erroneously assigned a specimen with broadly rounded valve ends (pl. 56. f. 8) to this species. Levkov et al. (2013) classified the latter specimen into a different species, Luticola hustedtii Levkov et al. The reported occurrences of these

26

Yasuo Kihara, Kumiko Tsuda, Chizu Ishii, Erika Ishizumi and Taisuke Ohtsuka

Fig. 84. Frustulia marginata. Fig. 85. F. vulgaris. Fig. 86. Gomphonema acuminatum. Fig. 87. G. affine. Fig. 88. G. auritum. Fig. 89. G. brasiliense ssp. pacificum. Fig. 90. G. cathedralis. Fig. 91. G. contraturris. Fig. 92. G. coronatum. Fig. 93. G. exilissimum. Fig. 94. G. grasmueckii. Fig. 95. G. insigniforme. Fig. 96. G. gautieri. Fig. 97. G. inaequilongum. Fig. 98. G. lagenula. Fig. 99. G. laticollum. Fig. 100. G. micropus. Fig. 101. G. parvulum. Fig. 102. G. pseudoaugur. Fig. 103. G. sarcophagus. Fig. 104. G. subclavatum. Fig. 105. G. truncatum. Fig. 106. Gomphonema sp. 1. Fig. 107. Gomphonema sp. 2. Fig. 108. Gomphonema sp. 3. Fig. 109. Halamphora normanii. Fig. 110. Hantzschia abundans. Fig. 111. H. amphioxys. Fig. 112. Hippodonta capitata. Fig. 113. H. coxiae. Figs 114, 115. Lemnicola hungarica. Fig. 116. Luticola acidoclinata. Fig. 117. L. kotschyi. Fig. 118. L. pseudoimbricata. Fig. 119. L. minor. Scale bar=10 µm.

Diatoms of Nakaikemi Wetland

species from various habitats suggest the existence of cryptic species (Levkov et al. 2013). Fig. 116. 107. L. kotschyi (Gronow) D.G.Mann in Round et al.; cf. Krammer & Lange-Bertalot 1986. p. 169. pl. 60. f. 10–15 (as Navicula kotschyi). Fig. 117. 108. L. minor (R.M.Patrick) Mayama in Mayama et Kawashima, Diatom 14: 69. f. 3. 1998. Fig. 119. 109. L. pseudoimbricata Levkov et al., Iconogr. Diatomol. 7: 193. pl. 7. f. 26–43. pl. 13. f. 13–31. pl. 16. f. 1–7. 2013. Fig. 118. 110. Melosira varians C.Agardh; cf. Krammer & LangeBertalot 1991a. p. 7. pl. 3. f. 8. pl. 4. f. 1–8. Fig. 122. 111. Meridion constrictum Ralfs; cf. Krammer & LangeBertalot 1991a. p. 102. pl. 101. f. 8–14. (as Meridion circulare var. constrictum). Fig. 123. 112. Navicula canalis R.M.Patrick, Bol. Mus. Nac. Rio de Janeiro, Bot. 2: 6. f. 7. 1944. Fig. 124. 113. N. cryptocephala Kütz.; cf. Lange-Bertalot 2001. p. 27. pl. 17. f. 1–10. pl. 18. f. 9–20. Fig. 125. 114. N. delicatilineolata H.Kobayasi et Mayama, Diatom 19: 19. f. 11–20. 2003. Fig. 126. 115. N. escambia (R.M.Patrick) Metzeltin et Lange-Bert., Iconogr. Diatomol. 18: 162. pl. 114. f. 14–19. 2007. Fig. 127. 116. N. germainii J.H.Wallace; cf. Lange-Bertalot 2001. p. 85. pl. 35. f. 7–13. Fig. 128. 117. N. gregaria Donkin; cf. Lange-Bertalot 2001. p. 85. pl. 38. f. 8–17. Fig. 129. 118. N. medioconvexa Hust.; cf. Simonsen 1987. p. 405. pl. 122. f. 11, 12. Fig. 130. 119. N. namibica Lange-Bert. et Rumrich, Biblioth. Diatomol. 27: 124. pl. 58. f. 16–24. 1993. Fig. 131. 120. N. nipponica (Skvortzov) Lange-Bert.; cf. Ohtsuka & Tuji 2002. p. 247. f. 22, 23. (as Navicula radiosa f. nipponica). Fig. 132. 121. N. rhynchocephala Kütz.; cf. Lange-Bertalot 2001. p. 64. pl. 9. f. 6–10. Fig. 133. 122. N. riediana Lange-Bert. et U.Rumrich, Iconogr. Diatomol. 9: 169. pl. 43. f. 9–14. 2000. Fig. 134. 123. N. rolandii Wunsam et al. in Witkowski et al., Cryptog. Algol. 19: 88. f. 88–93. 1998. Fig. 135. 124. N. rostellata Kütz.; cf. Lange-Bertalot 2001. p. 91. pl. 35. f. 1–6. Fig. 136. 125. N. salinarum var. minima Kolbe; cf. Lange-Bertalot 2001. p. 65. pl. 45. f. 15–19. Fig. 137. 126. N. simulata Manguin; cf. Van de Vijver & LangeBertalot 2009. p. 422. f. 83–86. Fig. 138. 127. N. tenelloides Hust.; cf. Simonsen 1987. p. 221. pl. 329. f. 27. Fig. 139. 128. N. tripunctata (O.F.Müll.) Bory; cf. Lange-Bertalot 2001. p. 73. pl. 1. f. 1–8. Fig. 141. 129. N. trivialis Lange-Bert. Cryptog. Algol. 1: 31. pl. 1. f. 5–9. 1980. Fig. 140. 130. N. utermoehlii Hust.; cf. Simonsen 1987. p. 199. pl.

27

306. f. 11–14. Fig. 142. 131. N. vandamii Schoeman et R.E.M.Archibald, Nova Hedwigia 44: 482. f. 1–43. 1987. Fig. 144. 132. N. veneta Kütz.; cf. Lange-Bertalot 2001. p. 78. pl. 14. f. 23–30. Fig. 145. 133. N. vilaplanii (Lange-Bert. et Sabater) Lange-Bert. et Sabater in U.Rumrich et al.; cf. Lange-Bertalot 2001. p. 78. pl. 32. f. 48–53. Fig. 143. 134. Navicula sp. 1 This taxa is identified as Navicula oppugnata var. exilis H.Kobayasi (cf. Kobayasi 1965. p. 349. f.11), but this name is invalid because no type has been designated. A detailed taxonomic discussion concerning this taxon is given by Hirota et al. (2013). Fig. 146. 135. Navicula sp. 2 This species is similar to N. tenelloides (see above), but differs in having almost parallel striae. Fig. 147. 136. Neidiopsis elevata (H.Kobayasi) Basionym: Navicula elevata H.Kobayasi, Jap. J. Bot. 20: 106. pl. 4. f. 44–46. 1968. This taxon is similar to Neidiopsis wulffii (J.B.Petersen) Lange-Bert. et Genkal, but has more linear and slender valves (6–8 µm vs. 8.8 µm in width) with denser striae (ca. 20 vs. 18 in 10 µm) than N. wulffii (Petersen 1924, Kobayasi 1968). More detailed observations are necessary to determine whether they present different species or manifestiation of intraspecific variation. Fig. 148. 137. Neidium affine (Ehrenb.) Pfitzer; cf. Hamilton & Jahn 2005. p. 286. f. 1–25. Fig. 151. 138. N. affine var. ceylonicum (Skvortsov) Reimer; cf. Patrick & Reimer 1966. p. 391. pl. 35. f. 6. Fig. 152. 139. N. alpinum Hust.; cf. Simonsen 1987. p. 312. pl. 470. f. 15, 16. Fig. 149. 140. N. ampliatum (Ehrenb.) Krammer in Krammer et Lange-Bert.; cf. Patrick & Reimer 1966. p. 388. pl. 34. f. 5. (as Neidium iridis var. ampliatum). Fig. 150. 141. N. iridis (Ehrenb.) Cleve; cf. Patrick & Reimer 1966. p. 386. pl. 34. f. 1. Fig. 155. 142. N. krasskei Metzeltin et Lange-Bert., Iconogr. Diatomol. 18: 174. pl. 190. f. 1–11. 2007. Fig. 153. 143. N. longiceps W.Greg.; cf. Krammer & Lange-Bertalot 1986. pl. 103a. f. 5–6 (as Neidium affine var. longiceps). Fig. 154. 144. N. subampliatum (Grunow ex A.W.F.Schmidt) Flower; cf. Schmidt et al. 1877. pl. 49. f. 19 (as Navicula firma var. subampliata). Fig. 156. 145. N. tenuissimum Hust.; cf. Simonsen 1987. p. 312. pl. 470. f. 12–14. Fig. 157. 146. Neidium sp. 1 This species is similar to Neidium bislucatum (Lagerst.) Cleve (cf. Krammer & Lange-Bertalot 1986, p. 277. pl. 103. f. 1–10), but has relatively narrower valves. Fig. 158.

28

Yasuo Kihara, Kumiko Tsuda, Chizu Ishii, Erika Ishizumi and Taisuke Ohtsuka

Fig. 120. Gyrosigma kuetzingii. Fig. 121. G. obtusatum. Fig. 122. Melosira varians. Fig. 123. Meridion constrictum. Fig. 124. Navicula canalis. Fig. 125. N. cryptocephala. Fig. 126. N. delicatilineolata. Fig. 127. N. escambia. Fig. 128. N. germainii. Fig. 129. N. gregaria. Fig. 130. N. medioconvexa. Fig. 131. N. namibica. Fig. 132. N. nipponica. Fig. 133. N. rhynchocephala. Fig. 134. N. reidiana. Fig. 135. N. rolandii. Fig. 136. N. rostellata. Fig. 137. N. salinarum var. minima. Fig. 138. N. simulata. Fig. 139. N. tenelloides. Fig. 140. N. trivialis. Fig. 141. N. tripunctata. Fig. 142. N. utermoehlii. Fig. 143. N. vilaplanii. Fig. 144. N. vandamii. Fig. 145. N. veneta. Fig. 146. Navicula sp. 1. Fig. 147. Navicula sp. 2. Fig. 148. Neidiopsis elevata. Fig. 149. Neidium alpinum. Fig. 150. N. ampliatum. Fig. 151. N. affine. Fig. 152. N. affine var. ceylonicum. Fig. 153. N. krasskei. Fig. 154. N. longiceps. Scale bar=10 µm.

Diatoms of Nakaikemi Wetland

29

Fig. 155. Neidium iridis. Fig. 156. N. subampliatum. Fig. 157. N. tenuissimum. Fig. 158. Neidium sp. 1. Fig. 159. Neidium sp. 2. Fig. 160. Neodelphineis pelagica. Fig. 161. Nitzschia amphibia. Fig. 162. N. bremensis var. brunsvigensis. Fig. 163. N. capitellata. Fig. 164. N. clausii. Fig. 165. N. conferta. Fig. 166. N. denticula. Fig. 167. N. hantzschiana. Fig. 168. N. heidenii. Fig. 169. N. heufleriana. Fig. 170. N. intermedia. Fig. 171. N. linearis. Fig. 172. N. nana. Fig. 173. N. palea. Fig. 174. N. pseudofonticola. Fig. 175. N. ruttneri. Fig. 176. N. solgensis. Fig. 177. N. taylorii. Fig. 178. N. suchlandtii. Fig. 179. N. subrostrata. Fig. 180. N. umbonata. Fig. 181. N. terrestris. Fig. 182. Nitzschia sp. 1. Fig. 183. Nitzschia sp. 2. Scale bar=10 µm.

147. Neidium sp. 2 This species is similar with N. alpinum (see above), but has narrower valves. Fig. 159.

148. Neodelphineis pelagica Takano, Bull. Tokai Reg. Fish. Res. Lab. 106: 46. f. 1–34. 1982. Fig. 160. 149. Nitzschia amphibia Grunow; cf. Krammer & Lange-

30

Yasuo Kihara, Kumiko Tsuda, Chizu Ishii, Erika Ishizumi and Taisuke Ohtsuka

Bertalot 1988. p. 108. pl. 78. f. 13–21. Fig. 161. 150. N. bremensis var. brunsvigensis Hust. in A.W.F. Schmidt et al.; cf. Simonsen 1987. p. 58. pl. 76. f. 6–8. Fig. 162. 151. N. capitellata Hust. in A.W.F.Schmidt et al.; cf. Simonsen 1987. p. 78. pl. 103. f. 10–11. Fig. 163. 151. N. clausii Hantzsch; cf. Krammer & Lange-Bertalot 1988. p. 31. pl. 19. f. 1–6A. Fig. 164. 152. N. conferta (P.G.Richt.) Perag.; cf. Krammer & Lange-Bertalot 1988. p. 28. pl. 20. f. 1–7, 13 (as Nitzschia filiformis var. conferta). Fig. 165. 153. N. denticula Grunow; cf. Krammer & Lange-Bertalot 1988. pl. 94. f. 3, 4. pl. 99. f. 11–23. pl. 100. f. 1–14, 18–22 (as Denticula kuetzingii). Fig. 166. 154. N. hantzschiana Rabenh.; cf. Krammer & LangeBertalot 1988. p. 101. pl. 73. f. 9–18. Fig. 167. 155. N. heidenii (F.Meister) Hust.; cf. Krammer & Lange-Bertalot 1988. pl. 40. f. 5, 6. Fig. 168. 156. N. heufleriana Grunow; cf. Krammer & Lange-Bertalot 1988. p. 22. pl. 13. f. 1–5. Fig. 169. 157. N. intermedia Hantzsch ex Cleve et Grunow; cf. Krammer & Lange-Bertalot 1988. p. 87 pl. 61. f. 1. Fig. 170. 158. N. linearis (W.Sm.) W.Sm.; cf. Krammer & LangeBertalot 1988. p. 70. pl. 55. f. 1–4. Fig. 171. 159. N. nana Grunow; cf. Krammer & Lange-Bertalot 1988. p. 26. pl. 17. f. 4–8. Fig. 172. 160. N. palea (Kütz.) W.Sm.; cf. Trobajo & Cox 2006. p. 433. f. 20–25. Fig. 173. 161. N. pseudofonticola Hust.; cf. Simonsen 1987. p. 306. pl. 459. f. 16–20. Fig. 174. 162. N. ruttneri Hust.; cf. Simonsen 1987. p. 243. pl. 355. f. 8–15. Fig. 175. 163. N. solgensis Cleve-Euler; cf. Kobayasi et al. 1994. p. 282. f. 16–28. Fig. 176. 164. N. subrostrata Hust.; cf. Simonsen 1987. p. 293. pl. 432. f. 1–5. Fig. 179. 165. N. suchlandtii Hust.; cf. Simonsen 1987. p. 313. pl. 471. f. 17–23. Fig. 178. 166. N. taylorii Alakananda et al., Phytotaxa 54: 15. f. 1–25. 2012. Fig. 177. 167. N. terrestris (J.B.Petersen) Hust.; cf. Krammer & Lange-Bertalot 1988. p. 30. pl. 22. f. 7–11. Fig. 181. 168. N. umbonata (Ehrenb.) Lange-Bert.; cf. Krammer & Lange-Bertalot 1988. p. 65. pl. 51. f. 1–6A. Fig. 180. 169. Nitzschia sp. 1 This species is similar to Nitzschia aremonica R.E.M.Archibald (cf. Archibald 1983, p. 237. f. 359, 360), but has shorter valves with finer striae. Fig. 182. 170. Nitzschia sp. 2 This specimen differs from the type specimens of Nitzschia frustulum (Kütz.) Grunow in having constricted valve outlines, although this possibly represents intraspecific variation (cf. Trobajo & Cox 2006). Fig. 183.

171. Pinnularia acuminata W.Sm.; cf. Krammer 1992. p. 132. pl. 49. f. 4, 5, 9–13. Fig. 184. 172. P. biceps W.Greg.; cf. Krammer 2000. p. 104. pl. 77. f. 1–6. pl. 78. f. 1–6. Fig. 185. 173. P. brevicostata Cleve; cf. Krammer 2000. p. 146. pl. 124. f. 1–5. Fig. 186. 174. P. dubitabilis Hust.; cf. Simonsen 1987. p. 153. pl. 245. f. 7–9 (as Pinnularia borealis var. rectangulata). Fig. 188. 175. P. graciloides Hust.; cf. Simonsen 1987. p. 160. pl. 259. f. 1–4. Fig. 202. 176. P. grunowii Krammer, Diatoms Europe 1: 222. pl. 77. f. 7–14. pl. 81. f. 10–17. pl. 82. f. 7, 8. 2000. Fig. 187. 177. P. incognita Krasske; cf. Lange-Bertalot et al. 1996. p. 165. pl. 43. f. 1–3. Fig. 189. 178. P. intermedia (Lagerst.) Cleve; cf. Krammer 2000. p. 30. pl. 8. f. 15–25. pl. 14. f. 35–38. Fig. 190. 179. P. latarea Krammer, Diatoms Europe 1: 224. pl. 80. f. 1–6. pl. 84. f. 13–15. 2000. Fig. 191. 180. P. lundii var. linearis Krammer, Diatoms Europe 1: 222. pl. 75. f. 1–6. 2000. Fig. 194. 181. P. macilenta Ehrenb.; cf. Krammer 2000. p. 86. pl. 62. f. 1–6. pl. 63. f. 1–5. pl. 66. f. 1, 2. Fig. 193. 182. P. mayeri Krammer; cf. Krammer 2000. p. 92. pl. 96. f. 9–13. Fig. 192. 183. P. microstauropsis Kulikovskiy et al.; cf. Krammer 2000. p. 74. pl. 51. f. 4–7 (as Pinnularia microstauron var. angusta). Fig. 195. 184. P. neomajor Krammer, Biblioth. Diatomol. 26: 174. pl. 6. f. 1–4. pl. 62. f. 1–5. pl. 63. f. 1. 1992. Fig. 203. 185. P. neomajor var. frequentis Krammer, Diatoms Europe 1: 234. pl.137. f. 2–5. 2000. Fig. 204. 186. P. neomajor var. inflata Krammer, Diatoms Europe 1: 234. pl. 171. f. 1–5. 2000. Fig. 205. 187. P. obscura Krasske; cf. Lange-Bertalot et al. 1996. p. 169. pl. 43. f. 6–10. Fig. 196. 188. P. oriunda Krammer Biblioth. Diatomol. 26: 174. pl. 60. f. 5, 6. pl. 61. f. 1–4. 1992. Fig. 197. 189. P. similis Hust.; cf. Simonsen 1987. p. 152. pl. 244. f. 3–5. Fig. 198. 190. P. socialis (T.C.Palmer) Hust.; cf. Krammer 2000. p. 162. pl. 155. f. 5. Fig. 206. 191. P. subanglica Krammer, Diatoms Europe 1: 223. pl. 78. f. 7. pl. 84. f. 1–7. 2000. Fig. 200. 192. P. subcommutata var. nonfasciata Krammer, Diatoms Europe 1: 229. pl. 120. f. 6–11. 2000. Fig. 199. 193. P. subgibba Krammer, Biblioth. Diatomol. 26: 176. pl. 46. f. 1–4.1992. Fig. 209. 194. P. subgibba var. undulata Krammer, Biblioth. Diatomol. 26: 176. pl. 46. f. 5. pl. 47. f. 5. 1992. Fig. 210. 195. P. subnodosa Hust.; cf. Simonsen 1987. p. 161. pl. 261. f. 1, 2. Fig. 201. 196. P. subrupestris Krammer Biblioth. Diatomol. 26: 177. pl. 53. f. 8–13.1992. Fig. 211.

Diatoms of Nakaikemi Wetland

31

Fig. 184. Pinnularia acuminata. Fig. 185. P. biceps. Fig. 186. P. brevicostata. Fig. 187. P. grunowii. Fig. 188. P. dubitabilis. Fig. 189. P. incognita. Fig. 190. P. intermedia. Fig. 191. P. latarea. Fig. 192. P. mayeri. Fig. 193. P. macilenta. Fig. 194. P. lundii var. linearis. Fig. 195. P. microstauropsis. Fig. 196. P. obscura. Fig. 197. P. oriunda. Fig. 198. P. similis. Fig. 199. P. subcommutata var. nonfasciata. Fig. 200. P. subanglica. Fig. 201. P. subnodosa. Scale bar=10 µm.

197. P. substomatophora Hust.; cf. Simonsen 1987. p. 160. pl. 260. f. 1–3. Fig. 212. 198. P. turgidula Kulikovskiy et al.; cf. Krammer 2000. p. 55. pl. 23. f. 7 (as Pinnularia acrosphaeria var. turgidula).

Fig. 213. 199. P. viridiformis Krammer, Biblioth. Diatomol. 26: 160. pl. 1. f. 4. pl. 4. f. 1–4. pl. 68. f. 1–4. pl. 69. f. 1–5. 1992. Fig. 207.

32

Yasuo Kihara, Kumiko Tsuda, Chizu Ishii, Erika Ishizumi and Taisuke Ohtsuka

Fig. 202. Pinnularia graciloides. Fig. 203. P. neomajor. Fig. 204. P. neomajor var. frequentis. Fig. 205. P. neomajor var. inflata. Fig. 206. P. socialis. Fig. 207. P. viridiformis. Fig. 208. P. viridis. Scale bar=10 µm.

200. P. viridis (Nitzsch) Ehrenb.; cf. Krammer 2000. p. 175. pl. 185. f. 1–4. pl. 186. f. 3–4. Fig. 208. 201. Pinnularia sp. 1 This species is similar to Pinnularia percuneata var. minor Krammer. (cf. Krammer 2000. p. 156. pl. 140. f. 1–8) but has more slender valves with finer striae. Fig. 214.

202. Pinnularia sp. 2 This specimen is identical to Pinnularia anglica Krammer morphotype 2 sensu Krammer (cf. Krammer 2000, p. 106. pl. 87. f. 1–6). It seems, however, to belong a different species from the type specimens of P. anglica (cf. Krammer 2000, p. 106. pl. 80. f. 11–13) because it has relatively narrower valves with broader fascia. Fig. 215.

Diatoms of Nakaikemi Wetland

33

Fig. 209. Pinnularia subgibba. Fig. 210. P. subgibba var. undulata. Fig. 211. P. subrupestris. Fig. 212. P. substomatophora. Fig. 213. P. turgidula. Fig. 214. Pinnularia sp. 1. Fig. 215. Pinnularia sp. 2. Fig. 216. Pinnularia sp. 3. Fig. 217. Pinnularia sp. 4. Fig. 218. Pinnularia sp. 5. Fig. 219. Placoneis elginensis. Fig. 220. P. elliptica. Fig. 221. P. gracilis. Fig. 222. P. neglecta. Fig. 223. P. opportuna. Fig. 224. P. paraelginensis. Fig. 225. P. pseudanglica. Fig. 226. P. significans. Fig. 227. P. witkowskii. Fig. 228. Placoneis sp. 1. Fig. 229. Placoneis sp. 2. Fig. 230. Plagiotropis lepidoptera var. proboscidea. Figs 231, 232. Planothidium frequentissimum. Figs 233, 234. P. frequentissimum var. magnum. Figs 235, 236. P. lanceolatum. Figs 237, 238. P. reichardtii. Figs 239, 240. P. rostratum. Figs 241, 242. Planothidium sp. Fig. 243. Pseudostaurosira brevistriata. Fig. 244. P. fernandae. Fig. 245. P. diablarum. Fig. 246. Pseudostaurosira sp. Fig. 247. Punctastriata lancettula. Fig. 248. P. linearis. Scale bar=10 µm.

34

Yasuo Kihara, Kumiko Tsuda, Chizu Ishii, Erika Ishizumi and Taisuke Ohtsuka

203. Pinnularia sp. 3 This specimen is identical to Pinnularia nodosa var. robusta (Foged) Krammer sensu Krammer (cf. Krammer 2000, p. 57. pl. 26. f. 13–15). However, Pinnularia mesolepta var. robusta Foged, the basionym of P. nodosa var. robusta, has smaller valves with more strongly undulate sides (cf. Foged 1981, p. 152. pl. 41. f. 6). Fig. 216. 204. Pinnularia sp. 4 This species is similar to P. microstauropsis (see above), but has broader valves. Fig. 217 205. Pinnularia sp. 5 This species is similar to small valves of Pinnularia subcapitata W.Greg. (cf. Krammer 2000, p. 117. pl. 88. f. 49–56), but the striae are more radiate near the central area. Fig. 218. 206. Placoneis elginensis (Grunow) E.J.Cox; cf. Krammer & lange-Bertalot 1986. pl. 46. f. 1–6 (non 7–9; as Navicula elginensis). Fig. 219. 207. P. elliptica (Hust.) Ohtsuka; cf. Simonsen 1987. p. 107. pl. 167. f. 11–13 (as Navicula exigua var. elliptica). Fig. 220. 208. P. gracilis Metzeltin et al., Iconogr. Diatomol. 15: 180. pl. 73. f. 15–17. pl. 76. f. 3. 2005. Fig. 221. 209. P. neglecta Tuji; cf. Lange-Bertalot et al. 1996. p. 133. pl. 13. f. 6, 6a (as Navicula neglecta). Fig. 222. 210. P. opportuna (Hust.); cf. Simonsen 1987. p. 362. pl. 545. f. 15–20 (as Navicula opportuna). This taxon is currently named Placoneis porifera var. opportuna (Hust.) E.Novelo et al., but it is probably not a variety of Placoneis porifera (Hust.) Ohtsuka et Y.Fujita, because it does not have a stigma. Although we tentatively propose raising it to an independent species, more study is necessary to determine whether this is appropriate. Fig. 223. 211. P. paraelginensis Lange-Bert. in U.Rumrich et al., Iconogr. Diatomol. 9: 208. pl. 60. f. 17–20. 2000. Fig. 224. 212. P. pseudanglica E.J.Cox; cf. Krammer & LangeBertalot 1985. pl. 46. f. 13, 14 (as Navicula pseudanglica). Fig. 225. 213. P. significans Lange-Bert. in Metzeltin et al.; cf. Simonsen 1987. p. 319. pl. 476. f. 11–15 (as Navicula exigua var. signata). Fig. 226. 214. P. witkowskii Metzeltin et al., Iconogr. Diatomol. 15: 200. pl. 71. f. 8–15. 2005. Fig. 227. 215. Placoneis sp. 1 This species is similar to P. elliptica (see above) but the striae are more coarsely areolated. Fig. 228. 216. Placoneis sp. 2 This species is similar to Placoneis paraundulata Ohtsuka (cf. Ohtsuka 2002, p. 47. f. 213; Simonsen 1987, p. 276. pl. 409. f. 4–6) but differs in its broader and less protracted valve ends. Fig. 229. 217. Plagiotropis lepidoptera var. proboscidea (Cleve) Reimer in R.M.Patrick et Reimer, Monogr. Acad. Nat. Sci.

Philadelphia 13: 7. pl. 2. f. 3–5. 1975. Although the striae are finer than in the protologue (19 vs. 16 in 10 µm), the other features are almost the same (cf. Cleve 1894, Paddock 1988). Fig. 230. 218. Planothidium frequentissimum (Lange-Bert. in Krammer et Lange-Bert.) Lange-Bert.; cf. Krammer & Lange-Bertalot 1991b. pl. 44. f. 1–3 (as Achnanthes lanceolata var. dubia f. minuta). Figs 231, 232. 219. P. frequentissimum var. magnum (Straub) LangeBert.; cf. Krammer & Lange-Bertalot 1991b. pl. 44. f. 10–13 (as Achnanthes rostrata var. magna). Figs 233, 234. 220. P. lanceolatum (Breb. ex Kütz.) Lange-Bert.; cf. Van de Vijver et al. 2013. p. 108. f. 2–50. Figs 235, 236. 221. P. reichardtii Lange-Bert. et Werum in Werum et Lange-Bert., Iconogr. Diatomol. 13: 172. pl. 15. f. 9–18. pl. 16. f. 1–5. 2004. Figs 237, 238. 222. P. rostratum (Østrup) Lange-Bert.; cf. Krammer & Lange-Bertalot 1991b. p. 77. pl. 43. f. 1–14 (as Achnanthes lanceolata ssp. rostrata). Figs 239, 240. 223. Planothidium sp. This species is similar to Planothidium biporoma (M.H.Hohn et Hellerman) Lange-Bert. (cf. Krammer & Lange-Bertalot 1991b. pl. 43. f. 30–32; as Achnanthes biporoma) but has more slender valves. Figs 241, 242. 224. Pseudostaurosira brevistriata (Grunow) D.M.Williams et Round, Diatom Res. 2: 276. f. 28–31. 1987. Fig. 243. 225. P. diablarum Sedden et Witkowski in Sedden et al., Diatom Res. 29: 202. f. 1–26. 2014. Fig. 245. 226. P. fernandae (García-Rodríguez et al.); cf. Metzeltin et al. 2005. pl. 15. f. 1–9 (as Staurosira fernandae). Hirota et al. (2013) discussed the taxonomic status of this species. It was very rare in our samples and we could not provide further evidence to justify the formal transfer of this species from Staurosira to Pseudostaurosira. Fig. 244. 227. Pseudostaurosira sp. This species is similar with Pseudostaurosira americana E.A.Morales (Cejudo-Figueiras et al. 2011, p. 70. f. 74–93, 112–115), but has narrower valve with broader ends. Fig. 246. 228. Punctastriata lancettula (Scum.) P.B.Ham. et Siver, Diatom Res. 23: 363. f. 1–14. 2008. Fig. 247. 229. P. linearis D.M.Williams et Round, Diatom Res. 2: 278. f. 38–42. 1987. Fig. 248. 230. Rhopalodia acuminata Krammer in Lange-Bert. et Krammer, Biblioth. Diatomol. 15: 75. pl. 46. f. 4. pl. 41. f. 1–11. 1987. Fig. 250. 231. R. gibba (Ehrenb.) O.Müll.; cf. Krammer & LangeBertalot 1988. p. 159. pl. 111. f. 1, 2, 4, 6, 7–13. Fig. 249. 232. R. operculata (C.Agardh) Håk.; cf. Krammer & Lange-Bertalot 1988. p. 165. pl. 115. f. 9–12. Fig. 251. 233. R. sterrenburgii Krammer in Lange-Bert. et Krammer, Biblioth. Diatomol. 15: 85. pl. 61. f. 5–8. 1987. Fig.

Diatoms of Nakaikemi Wetland

35

Fig. 249. Rhopalodia gibba. Fig. 250. R. acuminata. Fig. 251. R. operculata. Fig. 252. R. sterrenburgii. Fig. 253. Sellaphora americana. Fig. 254. S. auldreekie. Fig. 255. S. bacillum. Figs 256, 257. S. bisexualis. Fig. 258. S. disjuncta. Fig. 259. S. japonica. Fig. 260. S. blackfordensis. Fig. 261. S. densistriata. Fig. 262. S. laevissima. Fig. 263. S. lambda var. nipponica. Fig. 264. S. lanceolata. Fig. 265. S. seminulum. Figs 266–268. S. moesta. Fig. 269. S. obesa. Fig. 270. S. pupula. Fig. 271. S. rhombicarea. Fig. 272. S. rectilinearis. Figs 273, 274. Sellaphora sp. 1. Fig. 275. Sellaphora sp. 2. Fig. 276. Sellaphora sp. 3. Fig. 277. Sellaphora sp. 4. Fig. 278. Stauroforma exiguiformis. Fig. 279. Staurosira construens. Fig. 280. S. construens var. binodis. Fig. 281. S. dimorpha. Fig. 282. S. venter. Figs 283, 284. Staurosira sp. 1. Fig. 285. Staurosira sp. 2. Fig. 286. Staurosira sp. 3. Scale bar=10 µm.

36

Yasuo Kihara, Kumiko Tsuda, Chizu Ishii, Erika Ishizumi and Taisuke Ohtsuka

252. 234. Sellaphora americana (Ehrenb.) D.G.Mann; cf. Krammer & Lange-Bertalot 1986. p. 188. pl. 67. f. 1 (as Navicula americana). Fig. 253. 235. S. auldreekie D.G.Mann et S.M.McDonald in D.G. Mann et al., Phycologia 43: 477. f. 4m-o, 21, 43–47. 2004. Fig. 254. 236. S. bacillum (Ehrenb.) D.G.Mann; cf. Krammer & Lange-Bertalot 1986. p. 187. pl. 67. f. 2–4 (as Navicula bacillum). Fig. 255. 237. S. bisexualis D.G.Mann et K.M.Evans in Mann et al., Fottea 9: 201. f. 1–31. 2009. Figs 256, 257. 238. S. blackfordensis D.G.Mann et S.Droop in D.G. Mann et al., Phycologia 43: 476. f. 4g-i, 19, 33–37. 2004. Fig. 260. 239. S. densistriata (Lange-Bert. et Metzeltin) LangeBert. et Metzeltin in Metzeltin et Lange-Bert. ; cf. Lange-Bertalot & Metzeltin 1996. p. 102. pl. 25. f. 9 (as Sellaphora pupula var. densistriata). Fig. 261. 240. S. disjuncta (Hust.) D.G.Mann; cf. Simonsen 1987. p. 119. pl. 194. f. 1–3 (as Navicula disjuncta). Fig. 258. 241. S. japonica (H.Kobayasi) H.Kobayasi in Mayama et Kawashima, Diatom 14: 70. f. 6. 1998. Fig. 259. 242. S. laevissima (Kütz.) D.G.Mann; cf. Schoeman & Archibald 1979. f. 8–10 (as Navicula laevissima). We referred our materials to this species by comparison to the second-step lectotype (designated by Lange-Bertalot et al. 2003, f. 10) and similar specimens (f. 8, 9) among the isotypes shown by Schoeman & Archibald (1979). Fig. 262. 243. S. lambda var. nipponica (Skvortsov) Ohtsuka in Ohtsuka et Tuji, Phycol. Res. 50: 247. f. 17–19. 2002. Fig. 263. 244. S. lanceolata D.G.Mann et S.Droop in D.G.Mann et al., Phycologia 43: 479. f. 4p-r, 22, 48–52. 2004. Fig. 264. 245. Sellaphora moesta (Temp. et H.Perag.) Ohtsuka, comb. nov. Basionym: Navicula americana var. moesta Temp. et H. Perag, Diatom. Monde Ed. 2: 86. No. 159. 1908. Our specimens are almost consistent with the isotype drawn by Patrick & Reimer (1966; pl. 47. f. 2) except for its somewhat coarser striae (14–16 vs. 16–18 in 10 µm) and a relatively narrower central area. The other dimensions of the latter (about 130 µm long, 26 µm wide at the center, 30 µm wide at the broadest part) fall within the respective ranges of the former (61–159 µm long, 21–27 µm wide at the center, 22–31 µm wide at the broadest part). It is unsatisfactory to treat this taxon as a variety of S. americana because the both of them coexist in the same habitat in Nakaikemi Wetland (see above). Figs 266–268. 246. S. obesa D.G.Mann et M.M.Bayer in D.G.Mann et al., Phycologia 43: 473. f. 4d–f, 18, 28–32. 2004. Fig. 269. 247. S. pupula (Kütz.) Mereschk.; cf. Mann et al. 2004. f.

4a–c, 17, 23–27. Fig. 270. 248. S. rectilinearis Lange-Bert. et al., Iconogr. Diatomol. 12: 121. pl. 19. f. 12–17. 2003. Fig. 272. 249. S. rhombicarea Metzeltin et al., Iconogr. Diatomol. 15: 209. pl. 66. f. 1–17. pl. 69. f. 5, 6. 2005. Fig. 271. 250. S. seminulum (Grunow) D.G.Mann; cf. Krammer & Lange-Bertalot 1986. p. 230. pl. 76. f. 30–36 (as Navicula seminulum). Fig. 265. 251. Sellaphora sp. 1 This species has a broad conopeum like Sellaphora fallacioides Metzeltin et al. (cf. Metzeltin et al. 2005, p. 206. pl. 67. f. 1–12), but more broadly capitate valve ends. In addition, spines are present around the edge of the valve face. Figs 273, 274. 252. Sellaphora sp. 2 This species is similar to S. capitata (see above) but has relatively narrower central area and distinct conopeal grooves alongside the raphe (Mann et al. 2008). Fig. 275. 253. Sellaphora sp. 3 This species is similar to Navicula subvasta Hust. (cf. Simonsen 1987, p. 197. pl. 306. f. 22–31), but the central area is wider and the conopeal grooves alongside the raphe branches are not separated at the center (cf. Mann et al. 2008). Fig. 276. 254. Sellaphora sp. 4 This species is similar to Sellaphora pseudopupula Krasske (cf. Lange-Bertalot et al. 1996, p. 138. pl. 18. f. 35–37) but has narrower fascia and less radiate striae. Fig. 277. 255. Stauroforma exiguiformis (Lange-Bert.) Flower et al., Diatom Res. 11: 53. f. 16–22. 1996. Fig. 278. 256. Stauroneis acuta W.Sm., Syn. Brit. Diatom. 1: 59. f. 187. 1853. Fig. 287. 257. Stauroneis circumborealis Lange-Bert. et Krammer in Lange-Bert. et Genkal, Iconogr. Diatomol. 6: 90. pl. 34. f. 1–14. 1999. Fig. 288. 258. S. gracilior E.Reichardt, Iconogr. Diatomol. 1: 34. pl. 18. f. 1–15. 1995. Fig. 289. 259. S. gracilis Ehrenb.; cf. Reichardt 1995. p. 27. pl. 19. f. 1–6. pl. 20. f. 1–6. Fig. 290. 260. S. kriegeri R.M.Patrick cf. Krammer & LangeBertalot 1986. p. 248. pl. 90. f. 23–27. Fig. 292. 261. S. pergracilis Van de Vijver et Lange-Bert., Biblioth. Diatomol. 51: 54. pl. 35. f. 1–5. pl. 36. f. 1–5. 2004. Fig. 291. 262. S. pseudoagrestis Lange-Bert. et Werum in Werum et Lange-Bert., Iconogr. Diatomol. 13: 179. pl. 43. f. 1–10. 2004. Fig. 293. 263. S. reichardtii Lange-Bert. et al., Iconogr. Diatomol. 12: 142. pl. 36. f. 1–8. pl. 37. f. 1–14. pl. 61. f. 6, 7. 2003. Fig. 294. 264. S. smithii Grunow; cf. Krammer & Lange-Bertalot 1986. p. 244. pl. 89. f. 16–23. Fig. 295. 265. Stauroneis sp. 1

Diatoms of Nakaikemi Wetland

37

Fig. 287. Stauroneis acuta. Fig. 288. S. circumborealis. Fig. 289. S. gracilior. Fig. 290. S. gracilis. Fig. 291. S. pergracilis. Fig. 292. S. kriegeri. Fig. 293. S. pseudoagrestis. Fig. 294. S. reichardtii. Fig. 295. S. smithii. Fig. 296. Stauroneis sp. 1. Fig. 297. Stauroneis sp. 2. Fig. 298. Staurosirella leptostauron. Figs 299, 300. Staurosirella sp. Fig. 301. Surirella amphioxys. Fig. 302. S. angusta. Fig. 303. S. bohemica. Fig. 304. S. linearis. Fig. 305. S. minuta. Fig. 306. S. ovata. Scale bar=10 µm.

This species is similar to Stauroneis lauenburgiana Hust. (cf. Simonsen 1987, p. 361. pl. 545. f. 5, 6), but has narrower valves (5.5–7.5 µm wide vs. about 10 µm wide

in S. lauenburgiana). Fig. 296. 266. Stauroneis sp. 2 This species is similar to Stauroneis nobilis Schum. (cf.

38

Yasuo Kihara, Kumiko Tsuda, Chizu Ishii, Erika Ishizumi and Taisuke Ohtsuka

Krammer & Lange-Bertalot 1986, p. 242. pl. 87. f. 1, 2) but differs in having elliptical valves. Fig. 297. 267. Staurosira construens Ehrenb.; cf. Kobayasi et al. 2006. p. 71. pl. 89. Fig. 279. 268. S. construens var. binodis (Ehrenb.) P.B.Ham.; cf. Kobayasi et al. 2006. p. 72. pl. 90. The current taxonomic position of this taxon as a variety of S. construens needs re-examination. The former has often been reported as co-occurring with the latter (Kobayasi et al. 2006). They must be, therefore, either independent species or manifestiation of morphological variation within a population. Fig. 280. 269. S. dimorpha E.Morales et al., Phycol. Res. 58: 103. f. 20–29, 42–53. 2010. Fig. 281. 270. S. venter (Ehrenb.) H.Kobayasi in Mayama et al.; cf. Kobayasi et al. 2006. p. 76. pl. 94. f. 1, 2, 4, 5, 7, 8. Fig. 282. 271. Staurosira sp. 1 This species is similar to S. venter (see above) but has more rhombic valves with somewhat coarser striae (11–13 in 10 µm vs. 13–14) and a relatively broader axial area. It is also similar to Pseudostaurosira pseudoconstruens (Marciniak) D.M.Williams et Round (cf. Marciniak 1982, pl. 1. f. 1, 2, Krammer & Lange-Bertalot 1991a, p. 163. pl. 130. f. 25–19; as Fragilaria pseudoconstruens). Under light microscopy, however, the areolae comprising each stria are never resolved in our Staurosira sp. 1, whereas in P. pseudoconstruens, those are often resolved as two or three elongate punctae around the valve center. Figs 283, 284. 272. Staurosira sp. 2 This species is most similar to Fragilaria inflata (Heiden) Hust. nom. illeg. (syn. Synedra inflata Heiden and Fragilaria heidenii Østrup, but not Fragilaria inflata Pant.) drawn by Hustedt (1959, f. 669), but has relativey narrower valves. It is also similar to F. heidenii sensu Krammer et Lange-Bert. (cf. Krammer & Lange-Bertalot 1991a, p. 132. pl. 116. f. 8–10) but has a relatively wider axial area. Fig. 285. 273. Staurosira sp. 3 This undescribed taxon has usually been included in S. venter (e.g., Kobayasi et al. 2006, Morales 2010) but it has valves with less protracted ends and a relatively broader axial area than that species (see Fig. 282). Fig. 286. 274. Staurosirella leptostauron (Ehrenb.) D.M.Williams et Round; cf. Kobayasi et al. 2006. p. 79. pl. 97. Fig. 298. 275. Staurosirella sp. This species has previously been reported as Fragilaria pinnata Ehrenb. or Staurosirella pinnata (Ehrenb.) D.M.Williams (e.g., Krammer & Lange-Bertalot 1991a, Kobayasi et al. 2006). According to Morales et al. (2013), however, the type of F. pinnata is not an araphid diatom, but rather has links to the genus Denticula Kütz. There-

fore, we cannot identify this species with certainty. Figs 299, 300. 276. Surirella amphioxys W.Sm. ; cf. Krammer & Lange-Bertalot 1988. p. 187. pl. 138. f. 1–5. pl. 139. f. 1–8. Fig. 301. 277. S. angusta Kütz.; cf. Krammer & Lange-Bertalot 1988. p. 189. pl. 138. f. 1–5. pl. 134. f. 1, 6–10. Fig. 302. 278. S. apiculata var. constricta Hust.; cf. Simonsen 1987. p. 49. pl. 54. f. 1, 2. Figs 311, 312. 279. S. bohemica G.Maly; cf. Krammer & Lange-Bertalot 1988. p. 204. pl. 155. f. 2–9. Fig. 303. 280. S. elegans Ehrenb.; cf. Krammer & Lange-Bertalot 1988. p. 204. pl. 160. f. 5. pl. 161. f. 1, 2. pl. 162. f. 1–7. pl. 163. f. 1–4. Fig. 307. 281. S. linearis W.Sm.; cf. Krammer & Lange-Bertalot 1988. p. 198. pl. 149. f. 1–9. Fig. 304. 282. S. minuta Bréb. ex Kütz.; cf. Krammer & LangeBertalot 1988. p. 186. pl. 127. f. 14. pl. 134. f. 2, 11, 12. pl. 135. f. 1–14. Fig. 305. 283. S. ovata Kütz., Bacill. 62. pl. 7. f. 1–3. 1844. Krammer & Lange-Bertalot (1987) described this species as a new variety, Surirella brebissonii var. kuetzingii Krammer et Lange-Bert., because an undisputable type of S. ovata was not available. The density of the striae (in fact alar canals) of S. ovata was described as 7–9 in 0.01 line (Kützing 1844), eqivalent to 33–43 in 100 µm, quite diffetrent from S. minuta, another candidate for the type of S. ovata (Krammer & Lange-Bertalot 1987, 1988). Therefore, we conclude the type of S. ovata belong to the same taxon as S. brebissonii var. kuetzingii, and thus the latter becomes a later synonym. Fig. 306. 284. S. pantocsekii F.Meister, Arch. Hydrobiol. Planktonk. 9: 231. f. 15. 1914. Fig. 310. 285. S. splendida (Ehrenb.) Kütz.; cf. Krammer & LangeBertalot 1988. p. 202. pl. 158. f. 1–3. pl. 159. f. 1–6. pl. 160. f. 3, 4. Fig. 308. 286. S. tenera W. Greg. ; cf. Krammer & Lange-Bertalot 1988. p. 203. pl. 164. f. 1–4. Fig. 309. 287. Surirella sp. 1 This species is similar to Surirella splendida var. punctata Hust. (cf. Simonsen 1987, p. 18. pl. 2. f. 7. pl. 3. f. 1), but smaller. Fig. 313. 288. Surirella sp. 2 This species is similar to Surirella terryi H.B.Ward ex W.A.Terry (cf. Veselá et al. 2013, p. 505. f. 1–27), but smaller. Fig. 314. 289. Synedrella parasitica (W.Sm.) Round et Maidana, Diatom Res. 17: 24. f. 11–14. 2001. Fig. 315. 290. Tabellaria fenestrata (Lyngb.) Kütz.; cf. Kobayasi et al. 2006. p. 202. pls 108, 109. Fig. 316. 291. Thalassiosira lacustris (Grunow) Hasle; cf. Kobayasi et al. 2006. p. 22. pl. 32. Fig. 317. 292. Tryblionella angustata W.Sm.; cf. Krammer & Lange-Bertalot 1988. p. 48. pl. 36. f. 1–5 (as Nitzschia

Diatoms of Nakaikemi Wetland

39

Fig. 307. Surirella elegans. Fig. 308. S. splendida. Fig. 309. S. tenera. Fig. 310. S. pantocsekii. Figs 311, 312. S. apiculata var. constricta. Fig. 313. Surirella sp. 1. Fig. 314. Surirella sp. 2. Fig. 315. Synedrella parasitica. Fig. 316. Tabellaria fenestrata. Scale bar=10 µm.

angustata). Fig. 318. 293. T. calida W.Sm.; cf. Krammer & Lange-Bertalot 1988. p. 40. pl. 30. f. 1–5 (as Nitzschia calida). Fig. 319.

294. T. levidensis (Grunow in Cleve et Grunow) D.G. Mann in Round et al.; cf. Krammer & Lange-Bertalot 1988. p. 38. pl. 28. f. 1–4 (as Nitzschia levidensis). Fig.

40

Yasuo Kihara, Kumiko Tsuda, Chizu Ishii, Erika Ishizumi and Taisuke Ohtsuka

Fig. 317. Thalassiosira lacustris. Fig. 318. Tryblionella angustata. Fig. 319. T. calida. Fig. 320. T. levidensis. Fig. 321. T. plana. Fig. 322. Ulnaria acus. Fig. 323. U. danica. Scale bar=10 µm.

320. 295. T. plana (W.Sm.) Pelletan; cf. Krammer & LangeBertalot 1988. p. 42. pl. 33. f. 1–3 (as Nitzschia plana). Fig. 321. 296. Ulnaria acus (Kütz.) M.Aboal; cf. Kobayasi et al. 2006. p. 83. pl. 101. Fig. 322. 297. U. danica (Kütz.) Compère et Bukht.; cf. Patrick & Reimer 1966. p. 151. pl. 7. f. 10 (as Synedra ulna var. danica). Fig. 323.

In terms of taxa richness, the dominant genus in our samples from Nakaikemi Wetland was Pinnularia, represented by 35 taxa, followed by Navicula (24 taxa), Nitzschia and Gomphonema (23 taxa each) and Sellaphora (21 taxa). Nakaikemi Wetland resembles neither high moors nor marshes/swamps in terms of taxa abundance within genera. Hirano (1981) suggested that higher proportions of Eunotia and Pinnularia (E+P) species in the total diatom biota characterize high moors, while Cymbella and Gomphonema (C+G; sensu lato) are relatively highly specious in marshes and swamps. In Nakaikemi Wetland, E+P and C+G were 44 and 36 taxa, respectively, accounting for 15% and 12% of the total. Compared with high moors (cf. Hirano 1981), the proportion of E+P was much smaller and that of C+G was at least not larger. To characterize the diatom flora of Nakaikemi Wetland, it was compared with those of a mixed bog (Yamakado Moor; Kihara et al. 2009), a rice paddy (in Takatsuki city, Osaka; Ohtsuka & Fujita 2001), and a coastal lagoon (Koyamaike Pond; Hirota et al. 2013), after re-examination of those flora. Taking Quotient of Similarity (Sørensen 1948), Koyamaike Pond was the most similar to Nakaikemi Wetand in diatom taxonomic composition (Table 2). By the Nomura–Simpson s Coefficient (Nomura 1940, Simpson 1943), a similarity index that is less affected by differences in sample size, the rice paddy was the most similar (Table 2). Yamakado Moor was dissimilar to Nakaikemi Wetland in taxonomic composition of diatoms (Table 2), despite both having a similar substratum (Kihara et al. 2009). Despite its being a peaty moor, therefore, Nakaikemi Wetland appears to be more similar to rice paddies and coastal lagoons than to bogs as a habitat for diatoms. This may be partly explained by the electrolyte-rich conditions in parts of the wetland (Table 1). Many diatom taxa that usually occur in saline waters constituted part of the present diatom flora, even though the wetland is a freshwater marsh. Such species as Diploneis pseudovalis, Navicula rolandii, Navicula salinarum var. minima, and Nitzschia clausii are generally regarded as brackish species (Krammer & LangeBertalot 1986, 1988, Dam et al. 1994, Witkowski et al. 2000), and Diploneis dimorpha and Neodelphineis pelagica are usually considered marine species (Witkowski et al. 2000, Hasle & Sivertsen 1996). Their occurrence in Nakaikemi Wetland may partly be explained by the temporalrily high electrical conductivity, reaching 100 mS m−1 (ca. 0.5 salinity), in snowy season (Sasaki et al. 2013). Rice paddies as well are usually inhabited by some brackish diatoms in addition to freshwater ones (see discussion in Ohtsuka & Fujita 2001). Although marine diatoms may be transported from the nearby seacoast into

Diatoms of Nakaikemi Wetland

41

Table 2. Comparison of the diatom flora of Nakaikemi Wetland with those of a rice paddy (Ohtsuka & Fujita 2001), a mixed moor (Kihara et al. 2009), and a coastal lagoon (Hirota et al. 2013), using two similarity indices. Number of diatom taxa in Nakaikemi Wetland, N1=297.

Number of taxa, N2 Number of common taxa, C12 Quotient Similarity1 Nomura–Simpson s coefficient2

2C12/(N1+N2) C12/min (N1, N2)

Rice Paddy

Mixed moor

Lagoon

93 44 0.226 0.473

130 34 0.159 0.262

225 88 0.337 0.391

Sørensen (1948); 2Nomura (1940), Simpson (1943).

1

the wetland by wind, they should not be able to grow well at such a low salinity. Kanetsuna (1960, 1961), however, reported some marine diatoms from paddy fields within 1,500 m of the seacoast, in which the water was of similar salinity (17–42 mg Cl− l−1) to that in Nakaikemi Wetland (11–43 mg Cl− l−1). Previously, 35 taxa of diatoms had been reported from Nakaikemi Wetland (Nozaki et al. 1998, Tuji et al. 1999, Tuji & Nozaki 2003). In the present study, we newly added 280 taxa to the diatom flora of the wetland by examining periphytic diatoms intensively. Despite our effort, we were not able to reconfirm the presence of 18 taxa recorded in the previous studies. This may be the results of differences in sampling method or spatio-temporal variations in the taxonomic composition of the diatom. More comprehensive investigations will be necessary to understand the diatom diversity in the wetland fully.

Acknowledgements We wish to thank Chieko Sasaki and Susumu Sasaki for guidance in the field, members of Tansaibo-no-kai for help in sampling, Yusuke Nakamura for preparing diatom slides, Takako Uchikoshi for analyzing water chemistry, and Mark J. Grygier for proofreading a draft of the manuscript and valuable advice. The present study was partly supported by a JSPS Grant-in-Aid for Scientific Research, No. 24241011, 15H02858, and partly by Lake Biwa Museum Cooperative Research Project K1202. References Archibald, R.E.M. 1983. The diatoms of the Sundays and Great Fish Rivers in the Eastern Cape Province of South Africa. 362 pp., 34 pls. Bibliotheca Diatomologica 1. J. Cramer. Vaduz. Cejudo-Figueiras, C., Morales, E.A., Wetzel, C.E., Blanco, S., Hoffmann, L. & Ector, L. 2011. Analysis of the type of Fragilaria construens var. subsalina (Bacillariophyceae) and description of two morphologically related taxa from Europe and the United States. Phycologia 50: 67–77. Cleve, P.T. 1894. Synopsis of the naviculoid diatoms. Part 1. Kongliga Svenska Vetenskapsakademiens Handlingar, series

4 26(2): 1–194, 5 pls. Dam, H. van, Mertens, A. & Sinkeldam, J. 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology 28: 117–131. Foged, N. 1981. Diatoms in Alaska. 317 pp. Bibliotheca Phycologica 53. J. Cramer, Vaduz. Hamilton, P.B. & Jahn, R. 2005. Typification of Navicula affinis Ehrenberg; type for the name of the genus Neidium Pfitzer. Diatom Research 20: 281–294. Haraguchi, K. 2014. Genus Gyrosigma in Japan. Diatom 30: 127– 139. (in Japanese) Hasle, G.R. & Syvertsen, F.E. 1996. Marine diatoms. In: Thomas, C.R. (ed.) Identifying marine phytoplankton. pp. 5–385. Academic Press, San Diego. Hirano, M. 1981. Freshwater algae of Mizorogaike Pond. pp. 139– 162. In: Scientific Research Group of Mizorogaike Pond (ed.) Mizorogaike Pond: nature and man. Department of Culture and Tourism, Kyoto City, Kyoto. (in Japanese) Hirota, M., Kihara, Y., Arita, S. & Ohtsuka, T. 2013. Periphytic diatom flora of Koyama-ike pond, Tottori Prefecture, Japan. Diatom 29: 24–41. (in Japanese) Hustedt, F. 1959. Die Kieselalgen 2. Teil. 845 pp. Dr. L. Rabenhorst s Kryptogamen-Flora von Deutschland, Österreichs und der Schweiz 7(2). Akademische Verlagsgesellschaft, Geest & Portig, Leipzig. Idei, M. & Kobayasi, H. 1988. Examination of the type specimens of Diploneis parma Cl. In: Round, F.E. (ed.) Proceedings of the Ninth International Diatom Symposium. pp. 397–403. Biopress, Bristol & Koeltz Scientific Books, Koenigstein. Jahn, R., Kusber, W.-H. & Romero O.E. 2009. Cocconeis pediculus Ehrenberg and C. placentula Ehrenberg var. placentula (Baciariophyta): typification and taxonomy. Fottea 9: 275–288. Jahn, R. & Schmid, A.-M.M. 2007. Revision of the brackish-freshwater diatom genus Bacillaria Gmelin (Bacillariophyta) with the description of a new variety and two new species. European Journal of Phycology 42: 295–312. Jüttner, I., Ector, L., Reichardt, E., Van de Vijver, B. Jarlman, A., Krokowski, J. & Cox, E.J. 2013. Gomphonema varioreduncum sp. nov., a new species from northern and western Europe and a re-examination of Gomphonema exilissimum. Diatom Research 28: 303–316. Kanetsuna, Y. 1960. Studies on the diatom- and desmid-flora of the reclaimed paddy fields by drainage in the city of Toyohashi, Aichi Prefecture. Japanese Journal of Limnology 23: 73–86. (in Japanese)

42

Yasuo Kihara, Kumiko Tsuda, Chizu Ishii, Erika Ishizumi and Taisuke Ohtsuka

Kanetsuna, Y. 1961. Studies on the diatom- and desmid-flora of the paddy-fields of two small islands, Ôtsu-jima and Ôsaki-jima, on the western part of Toyohashi City, Aichi Prefecture. Japanese Journal of Phycology 9: 1–8. (in Japanese) Kihara, Y., Sahashi, Y., Arita, S. & Ohtsuka, T. 2009. Diatoms of Yamakado Moor in Shiga Prefecture, Japan. Diatom 25: 91–105. Kobayasi, H. 1965. Notes on the new diatoms from River Arakawa (Diatoms from River Arakawa-4). Journal of Japanese Botany 40: 347–351. Kobayasi, H. 1968. A survey of the fresh water diatoms in the vicinity of Tokyo. Japanese Journal of Botany 20: 93–122. Kobayasi, H., Idei, M., Mayama, S., Nagumo, T. & Osada, K., 2006. H. Kobayasi s Atlas of Japanese Diatoms Based on Electron Microscopy 1. 590 pp. Uchida Rokakuho, Tokyo. (in Japanese) Kobayasi, H., Kobori, S. & Sunaga, S. 1994. Taxonomy and morphology of two forms of the Nitzschia sinuata complex. In: Kociolek, J.P. (ed.) Proceedings of the 11th International Diatom Symposium. pp. 281–289. California Academy of Sciences, San Francisco. Koizumi, T. & Aoki, K. (eds) 1994. Nihon-no-chikei red data book 1st series. 226 pp. Kokon-syoin, Tokyo. (in Japanese) Krammer, K. 1992. Pinnularia. Eine Monographie der europäischen Taxa. 353 pp. Bibliotheca Diatomologica 26. J. Cramer, Berlin-Stuttgart. Krammer, K. 2000. The genus Pinnularia. 703 pp. In: Lange-Bertalot, H. (ed.) Diatoms of Europe: Diatoms of the European Inland Waters and Comparable Habitats 1. A.R.G. Gantner, Ruggell. Krammer, K. 2002. Cymbella. 584 pp. In: Lange-Bertalot, H. (ed.) Diatoms of Europe: Diatoms of the European Inland Waters and Comparable Habitats 3. A.R.G. Gantner, Ruggell. Krammer, K. & Lange-Bertalot, H. 1985. Naviculaceae. Neue und wenig bekannte Taxa, neue Kombinationen und Synonyme sowie Bemerkungen zu einigen Gattungen. 230 pp. Bibliotheca Diatomologica 9. J. Cramer, Berlin-Stuttgart. Krammer, K. & Lange-Bertalot, H. 1986. Bacillariophyceae 1. Teil: Naviculaceae. 876 pp. In: Ettl, H., Gerloff, J., Heynig, H. and Mollenhauer, D. (eds) Süßwasserflora von Mitteleuropa 2/1. Gustav Fischer, Jena. Krammer, K. & Lange-Bertalot, H. 1987. Morphology and taxonomy of Surirella ovalis and related taxa. Diatom Research 2: 77–95. Krammer, K. & Lange-Bertalot, H. 1988. Bacillariophyceae 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. 596 pp. In: Ettl, H., Gerloff, J., Heynig, H. & Mollenhauer, D. (eds) Süßwasserflora von Mitteleuropa 2/2. Gustav Fischer, Jena. Krammer, K. & Lange-Bertalot, H. 1991a. Bacillariophyceae 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. 576 pp. In: Ettl, H., Gerloff, J., Heynig, H. & Mollenhauer, D. (eds) Süßwasserflora von Mitteleuropa 2/3. Gustav Fischer, Jena. Krammer, K. & Lange-Bertalot, H. 1991b. Bacillariophyceae 4. Teil: Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. 437 pp. In: Ettl, H., Gerloff, J., Heynig, H. & Mollenhauer, D. (eds) Süßwasserflora von Mitteleuropa 2/4. Gustav Fischer, Jena. Kützing, F.T. 1844. Die kieselschaligen Bacillarien oder Diato-

meen. 152 pp., 30 pls. Nordhausen. Lange-Bertalot, H. 1993. 85 Neue Taxa und über 100 weitere neu definierte Taxa ergänzend zur Süßwasserflora von Mitteleuropa Vol. 2/1–4. 454 pp. Bibliotheca Diatomologica 27. J. Cramer, Berlin · Stuttgart. Lange-Bertalot, H. 2001. Navicula sensu stricto, 10 genera separated from Navicula sensu lato, Frustulia. 526 pp. In: Lange-Bertalot, H. (ed.) Diatoms of Europe: Diatoms of the European Inland Waters and Comparable Habitats 2. A.R.G. Gantner, Ruggell. Lange-Bertalot, H., B k, M. & Witkowski, A. 2011. Eunotia and some related genera. 747 pp. In: Lange-Bertalot, H. (ed.) Diatoms of Europe: Diatoms of the European Inland Waters and Comparable Habitats 6. A.R.G. Gantner, Ruggell. Lange-Bertalot, H., Cavacini, P., Tagliaventi, N. & Alfinito, S. 2003. Diatoms of Sardinia. Rare and 76 new species in rock pools and other ephemeral waters. 438 pp. In: LangeBertalot, H. (ed.) Iconographia Diatomologica 12. A.R.G. Gantner, Ruggell. Lange-Bertalot, H., Külbs, K., Lauser, T., Nörpel-Schempp, M. & Willmann, M. 1996. Dokumentation und Revision der von Georg Krasske beschriebenen Diatomeen-Taxa. 358 pp. In: Lange-Bertalot, H. (ed.) Iconographia Diatomologica 3. Koeltz Scientific Books, Königstein. Lange-Bertalot, H. & Metzeltin, D. 1996. Indicators of oligotrophy. 800 taxa representative of three ecologically distinct lake types. Carbonate buffered-oligodystrophic-weakly buffered soft water. 390 pp. Iconographia Diatomologica 2. Koelts Scientific Books, Königstein. Lange-Bertalot, H. & Werum, M. 2001. Diadesmis fukushimae sp. nov. and some other new or rarely observed taxa of the subgenus Paradiadesmis Lange-Bertalot & Le Cohu. Diatom 17: 3–19. Levkov Z., Krstic, S., Metzeltin, D., & Nakov, T. 2007. Diatoms of Lake Prespa and Ohrid. About 500 taxa from ancient lake system. 613 pp. In: Lange-Bertalot, H. (ed.) Iconographia Diatomologica 16. A.R.G. Gantner, Ruggell. Levkov Z., Metzeltin, D., & Pavlov, A. 2013. Luticola and Luticolopsis. 698 pp. In: Lange-Bertalot, H. (ed.) Diatoms of Europe: Diatoms of the European Inland Waters and Comparable Habitats 7. A.R.G. Gantner, Ruggell. Mann, D.G., McDonald, S.M., Bayer, M.M., Droop, S.J.M., Chepurnov, V.A., Loke, R.E., Ciobanu, A. & du Buf, J.M.H. 2004. The Sellaphora pupula species complex (Bacillariophyceae): morphometric analysis, ultrastructure and mating data provide evidence for five new species. Phycologia 43: 459–482. Mann, D.G., Thomas, S.J. & Evans, K.M. 2008. Revision of the diatom genus Sellaphora: a first account of the larger species in the British Isles. Fottea 8: 15–78. Marciniak, B. 1982. Late glacial and Holocene new diatoms from a glacial lake Przedni Staw in the Piec Stawów Poliskich Valley, Polish Tatra Mts. Acta Geologica, Academiae Scientiarum Hungariacae 25:161–171. Metzeltin, D., Lange-Bertalot, H. & García-Rodríguez. 2005. Diatoms of Uruguay. Compared with other taxa from South America and elsewhere. 736 pp. In: Lange-Bertalot, H. (ed.) Iconographia Diatomologica 15. A. R. G. Gantner, Ruggell. Miyamoto, S. 2013. Vegetational changes since the Last Glacial

Diatoms of Nakaikemi Wetland

from the pollen influx in Naka-Ikemi moor, Central Japan. Bulletin of Kansai Organization for Nature Conservation 35: 95–102. (in Japanese) Morales, E. 2010. Staurosira construens. In: Diatoms of the United States. Retrieved September 29, 2014, from http://westerndia toms.colorado.edu/taxa/species/staurosira_construens_var._ venter Morales, E.A., Guerrero, J.M., Wetzel, C.E., Sala, S. & Ector, L. 2013. Unraveling the identity of Fragilaria pinnata Ehrenberg and Staurosira pinnata Ehrenberg: research in progress on a convoluted story. Cryptogamie, Algologie 34: 89–102. Moser, G., Lange-Bertalot, H. & Metzeltin, D. 1998. Insel der Endemiten Geobotanisches Phänomen Neukaledonien. 464 pp. Bibliotheca Diatomologica 38. Gebrüder Borntraeger, Berlin·Stuttgart. Nagumo, T. 2003. Taxonomic studies of the subgenus Amphora Cleve of the genus Amphora (Bacillariophyceae) in Japan. 265 pp. Bibliotheca Diatomologica 49. Gebrüder Borntraeger, Berlin·Stuttgart. Nohara, S. & Kawano, S. (eds) 2003. Scientific report of Nakaikemi Marsh, Tsuruga, Fukui Prefecture. 387 pp. Research Report from the National Institute for Environmental Studies, Japan 176. National Institute for Environmental Studies, Tsukuba. (in Japanese). Nomura, K. 1940. On the methods of comparison of insectfaunae, with special reference to the correlation method. Science Bulletin of the Faculty of Agriculture, Kyushu University 9: 235–262. (in Japanese) Nozaki, K., Tuji, A., Kohmatsu, Y., Ishikawa, T. & Yamamoto, T. 1998. Seasonal succession of a planktonic algal community and its characteristics in a small pond of Naka-ikemi Marsh, Tsuruga, Fukui, Japan. Japanese Journal of Limnology 59: 329–339. (in Japanese) Ohtsuka, T. 2002. Checklist and illustration of diatoms in the Hii River. Diatom 18: 23–56. Ohtsuka, T. & Fujita, Y. 2001. Diatom flora and its seasonal changes in a paddy field in Central Japan. Nova Hedwigia 73: 97–128, 74: 545–546 (errata). Ohtsuka, T. & Tuji, A. 2002. Lectotipification of some pennate diatoms described by Skvortzow in 1936 from Lake Biwa. Phycological Research 50: 243–249. Paddock, T.B.B. 1988. Plagiotropis Pfizer and Tropidoneis Cleve, a summary account. 152 pp. 38 pls. Bibliotheca Diatomologica 16. J. Cramer, Berlin-Stuttgart. Patrick, R.M. & Reimer, C.W. 1966. The diatoms of the United States, exclusive of Alaska and Hawaii. Volume 1. 688 pp. Academy of Natural Sciences of Philadelphia, Pennsylvania. Petersen, J.B. 1924. Freshwater algae from the north coast of Greenland collected by the late Dr. Th. Wulff. In: Den II Thule Expedition til Groenlands Nordskyst (1916–18) Nr. 13. Meddelelser om Grønland 64: 307–319. Reichardt, E. 1995. Die Diatomeen (Bacillariophyceae) in Ehrenbergs Material von Cayenne, Guyana Gallica (1843). 107 pp. In: Lange-Bertalot, H. (ed.) Iconographia Diatomologica 1. Koeltz Scientific Books, Königstein. Reichardt, E. 1999. Zur Revision der Gattung Gomphonema. 203 pp. In: Lange-Bertalot, H. (ed.) Iconographia Diatomologica 8. Koeltz Scientific Books, Königstein.

43

Reichardt, E. 2001. Revision der Arten um Gomphonema truncatum und G. capitatum. In: Jahn, R., Kociolek, J.P., Witkowski, A. and Compère, P. (eds) Lange-Bertalot-Festschrift. Studies of Diatoms. pp. 187–224. A.R.G. Gantnter, Ruggell. Romero, O.E. & Jahn R. 2013. Typification of Cocconeis lineata and Cocconeis euglypta (Bacillariaphyta). Diatom Research 28: 175–184. Sasaki, C. 2013. Construction plan of the Shinkansen and conservation of the Nakaikemi Wetland: the problems of environmental assessment of construction plan of the Shinkansen in Nakaikemi . Bulletin of Kansai Organization for Nature Conservation 35: 5–10. (in Japanese) Sasaki, C., Sasaki, S., Kawabata, Y. & Murakami, T. 2013. The recent high electric conductivity (EC) in winter in the Nakaikemi Wetlands, Tsuruga City, Fukui Prefecture, Central Japan. Limnology in Tokai Region of Japan 60: 41–43. (in Japanese) Schmidt, A, Schmidt, M., Fricke, F., Heiden, H., Müller, O. & Hustedt, F. 1874–1959. Atlas der Diatomaceen-Kunde. 480 pls. Akademie-Verlag, Berlin. Schoeman, F.R. & Archibald, R.E.M. 1979. Navicula laevissima Kützing. 3. pp., 41 figs. In: Schoeman, F.R. & Archibald, R.E.M. The diatom flora of Southern Africa 5. Council for Scientific and Industrial Research, Pretoria. Shimoda, M. 2003. Suiden-no-seibutu-wo-yomigaeraseru. 214 pp. Iwanami-syoten, Tokyo. (in Japanese) Simpson, G.G. (1943) Mammals and the nature of continents. American Journal of Science 241: 1–31. Simonsen, R. 1987. Atlas and catalogue of the diatom types of Friedrich Hustedt. 525 pp. 772 pls. J. Cramer, Berlin · Stuttgart. Simonsen, R. 1992. The diatom types of Heinrich Heiden in Heiden & Kolbe 1928. 100 pp. 86 pls. Bibliotheca Diatomologica 24. J. Cramer, Berlin · Stuttgart. Sterrenburg, F.A.S. 1997. Studies on the genera Gyrosigma and Pleurosigma (Bacillariophyceae): Gyrosigma kützingii (Grunow) Cleve and G. peisonis (Grunow) Hustedt. Proceedings of the Academy of Natural Sciences of Philadelphia 148: 157–163. Sørensen, T.A. 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content, and its application to analyses of the vegetation on Danish commons. Kongelige Danske Videnskabernes Selskabs Biologiske Skrifter 5: 1–34. Sugiyama, K. 1997. Present status, conservation and management of Nakaikemi Area, Tsuruga City, Fukui Prefecture. Bulletin of Kansai Organization for Nature Conservation 19: 81–87. (in Japanese) Trobajo,R. & Cox, E.J. 2006. Examination of the type matrial of Nitzschia frustulum, N. palea and N. palea var. debilis. In: Witkowski, A. (ed.) Proceedings of the Eighteenth International Diatom Symposium. pp. 431–445. Biopress, Bristol. Tuji, A. 2009. Examination of type material and typification of seven diatoms described by C.G. Ehrenberg. National Museum of Nature and Science Monographs 40: 13–21. Tuji, A., Karasaki, C., Kohmatsu, Y., Yamamoto, T., Hirasawa, R., Ishikawa, S., Murayama, K. & Nozaki, K. 2003. Chapter 4. Water quality and vegetation of Nakaikemi Marsh. (1) Importance of water quality on the conservation of marsh

44

Yasuo Kihara, Kumiko Tsuda, Chizu Ishii, Erika Ishizumi and Taisuke Ohtsuka

vegetation. Research Report from the National Institute for Environmental Studies, Japan 176: 79–95. (in Japanese) Tuji, A., Karasaki, C., Kohmatsu, Y., Yamamoto, Murayama, K. & Nozaki, K. 1999. Water quality and vegetation of Naka-ikemi Marsh, Tsuruga, Fukui, Japan-importance of water quality on the conservation of marsh vegetation. Japanese Journal of Limnology 60: 201–213. (in Japanese) Tuji, A. & Nozaki, K. 2003. Chapter 4. Water quality and vegetation of Nakaikemi Marsh. (3) Centric diatom assemblages in Nakaikemi Marsh. Research Report from the National Institute for Environmental Studies, Japan 176: 109–115. (in Japanese) Ueyama, S. & Kobayasi, H. 1988. Two Gomphonema species with strongly capitate apices: G. sphaerophorum Ehr. and G. pseudosphaerophorum sp. nov. In: Round, F.E. (ed.) Proceedings of the Ninth International Diatom Symposium. pp. 449–458. Biopress, Bristol & Koeltz Scientific Books, Koenigstein. Van de Vijver, B., Ector, L., Beltrami, M.E., de Haan, M., Falasco, E., Hlúbiková, D., Jarlman, A., Kelly, M., Novais, M.H. & Wojtal, A.Z. 2011. A critical analysis of the type material of Achnanthidium lineare W. Sm. (Bacillariophyceae). Algologi-

cal Studies 136/137: 167–191. Van de Vijver, B. & Lange-Bertalot, H. 2009. New and interesting Navicula taxa from Western and Northern Europe. Diatom Research 24: 415–429. Van de Vijver, B., Wetzel, C., Kopalová, K., Zidarova, R. & Ector, L. 2013. Analysis of the type material of Achnanthidium lanceolatum Brébisson ex Kützing (Bacillariophyta) with the description of two new Planothidium species from the Antarctic Region. Fottea 13: 105–117. Van Heurck, H. 1880–1885. Synopsis des diatomées de Belgique. 235 pp. Table Alphabétique 120 pp. pls. 1–132, A-C. Anvers. Veselá, J., Johansen, J.R. & Potapova, M. 2013. Surirella terryi and S. cruciata: two rare diatoms from North America. Diatom Research 28: 503–516. Watanabe, T., Asai, K., Ohtsuka, T., Tuji, A. & Houki, A. 2005. Picture book and ecology of the freshwater diatoms. 784 pp. Uchida Rokakuho, Tokyo. (in Japanese) Witkowski. A., Lange-Bertalot, H. & Metzeltin D. 2000. Diatom flora of marine coast I. 925 pp. In: Lange-Bertalot, H. (ed.) Iconographia Diatomologica 7. A.R.G. Gantner, Ruggel.