Petrology of the Yerington Batholith, Nevada - GeoScienceWorld

3 downloads 0 Views 1MB Size Report
porphyry copper mineralization immediately above the apices of granite cupolas in the batholith. .... batholith and ore deposits in cross section and facili-.
EconomicGeology Vol. 82, 1987, pp. 1750-1789

Petrologyof the YeringtonBatholith,Nevada:Evidencefor Evolutionof Porphyry Copper Ore Fluids JOHNH. DILLES* Departmentof Applied Earth Sciences, StanfordUniversity,Stanford,California 94305 Abstract

The JurassicYerington batholith, western Nevada, is a compositepluton that contains severalcentersof porphyrycoppermineralizationandis exposedin structuralcrosssection at paleodepthsrangingfrom 0 to 8 km. Within these exposuresthe McLeod Hill quartz monzodiorite,Bear quartz monzonite,andLuhr Hill graniteform successive intrusionsthat are in turn volumetricallysmaller (•75, 19, and 6 vol %, respectively),more deeply emplaced(topsat 2 wt percentH20 waslostbetweenwater saturationand the solidus,estimated at •700 ø to 725øC at 2 kb (after Piwinskii, 1968; Naney, 1983). Bear quartz monzonite

The crystallization conditions of Bear quartz monzonite,Luhr Hill granite, and granite porphyry dikescan be inferred by comparisonof the crystallization ordersof their minerals(Fig. 11) with the 2

, •

•,

•..H?_O - Saturation

•,,• PIIn OpxIn Bt

T(øC)

_

In

800

,-

i

....

700

•DSolidus XAf PI + Af+Qz+Bt

600

+V

•'1 I I I I I I ] I I I 0

2

4

6

8

I0

12

wt. % H20 FIG. 12. Temperature(T) - X(H=O) phasediagramfor synthetic granodiorite(sampleR5 + 10M1) at 9. kb from Naney (1983). "In" lines are liquidi of plagioclase(PI), orthopyroxene(Opx), hornblende(Hbl), quartz (Qz), biotite (Bt), and alkali feldspar (Af); "Out" linesare low-temperaturestabilitylimitsof mineral; "L" is silicateliquid; "V" is a separateH20-rich fluid phase, which existsto the right of and below the "H20-Saturation" curve.As discussed in the text, A-B-C-D is the inferred crystallization path of the granite porphyry dike magma,which has a compositionsimilarto syntheticgranodiorite.

kb T-X(uzo)experimentalphaserelationsof Naney (1977, 1983) on a syntheticgranodiorite(Fig. 12), which has a similar composition(67.5 wt % SiO2). In the main interior quartz monzonitephaseof the Bearintrusion,the rarity of augite(ascores)andthe early crystallizationof hornblendeand sphenerequire that reaction (2) occurredearly and that the magmahadinherentlyhigherH20 andO2 activities than quartz monzodiorite. The crystallization of hornblende before biotite requires >4 wt percent H20 (Fig. 12) and indicatesthat the magmawas at

biotite below •740 ø ___ 15øC (Fig. 12). The reason why hornblendeis stableto the solidusin the quartz monzonite (and not in the border granite) is not clear, but it couldbe due to the higher solidustemperature, lower K20 content, or higher CaO content of the quartzmonzonite.The graphictextureof

border granitesuggests that it wasmoderatelyundercooled and water saturatedduring crystallization (after Fenn, 1977), whichis consistentwith the or near water saturation at 825 ø to 875øC and 2 kb. estimateof >3 wt percent H20 from Naney's data The rarity of biotite also suggeststhat hornblende (Fig. 12). had a significantlyhigher liquidus temperature. During cooling,the magmaintersectedthe water Luhr Hill granite and granite porphyry dikes The porphyriticgraniteof Luhr Hill and granite saturationcurve prior to solidificationand lost •3 wt percent H20 during cooling to its solidus at porphyry dikes are cogeneticand show a similar crystallizationhistory,exceptduringthe late stages. •675øC (Fig. 12). In the more silicic,graniticborder phaseof the Therefore, only crystallizationof dikesis reviewed augite(?),magnetite,andilmenite Bear intrusion,a similarcrystallizationsequenceis here. Plagioclase, inferred, but biotite replaced much hornblende at crystallizedearliestand were followed shortlyby near-solidus temperatures (as discussedbelow). the assemblageplagioclase,hornblende,biotite, This effect is consistentwith Naney's data, which magnetite, and sphene (Fig. 11), which requires show that hornblende is unstablewith respect to conditionsof 740 ø to 830øC and >4 wt percent

YERINGTONBATHOLITH,NV: PETROLOGY

H20 at 2 kb (Fig. 12, point A). The absencein crystalline graniteof orthopyroxene,which is not stable below "--780øC (Fig. 12), suggeststhat the magma completely equilibrated at 6 km) of Luhr Hill granite,and

1783

•RANODIORIT

H20 -SATURATb •

SOglDUS--ex.\

2

'\

/ Of ORIGIN

ONE H•,O-NaC:I (kb) I

•/•

dikes are not associated with the older, more shalo

••

-v* •oc,s,•-•

o

lowly emplaced Bear quartz monzonite (Fig. 3). 600 700 800 900 •øC Thesefactssuggest that the 3- to 6-km-depthinterval may be a controllingfactorin the generationof FIC. 19. P-T projectionof granodioriteand NaC1-H20phase graniteporphyrydikes,as proposedby Burnham relations. The water-saturated granodiorite solidus and the (1979). water-saturatedliquidusfor biotite (BIOT-L) are modifiedfrom In the modelpresentedhere (Fig. 18), a separate Burnham(1979) andNaney (1983). NaC1-H20relationsare from Sourirajanand Kennedy(1962) and Bodnaret al. (1985). In the aqueousphase coexistedwith the crystallizing region of two NaC1-HeOfluids, separatehigh- and low-salinity granite and flowed upward alongthe hot, highly fluid phasescoexistwhere the bulk compositionis appropriate permeablegraniteporphyrydikesshortlyafterthey (e.g., 2-60 wt % NaC1at 800øC and 1 kb). Dashedlinesshowwt were emplaced (Dilles, 1984). As proposedby percent NaC1 of the high-salinityfluid. Stippling indicatesthe Burnham (1979), "second boiling" of aqueous preferred area for a magmaticorigin of high-salinityfluidsfrom coppermagmas,suchasthe Yeringtonbatholithgranite fluidsseparatingfrom graniteat thesepaleodepths porphyry magmacontaining>4 wt percent H•O. would createPAV energythat couldproducefluid overpressures (>P lithostatic),which would in turn

fractureoverlyingrockandallowupwardemplace+_hematite _ other salts).Hydrothermallyaltered mentof dikesandupwardflow of aqueousfluids. A slight,but important,variationadvocatedhere

rock at the Ann-Mason porphyry copper deposit

is that aqueousfluidsseparatingfrom the granite containsabundant halite-bearing inclusions,some magmaat 3- to 6-km depth (0.9-1.8 kb), would further separateinto a low-densityaqueousfluid coexistingwith a saline,high-densityaqueousfluid. This possibility,discussed but dismissed by Burnham (1979), has been proposedby Bodnar et al. (1985) on the basisof recent experimentalstudies

whichindicatethat the two-phase field of the system NaC1-H20 extendsto >1.5 kb and >1,000øC

(Fig. 19). This hasalsobeen documentedby coexistinghigh-salinity fluid,low-salinityfluid,andglass inclusions in quartzphenocrysts from the Panguna porphyry copper deposit(Eastoeand Eadington, 1986). For example,a reasonableparent magma, containing 0.1 wt percent C1, upon cooling to 750øCat 1.1 kb pressurewouldlose'-•3 wt percent H20 (due to water saturation),into which 75 wt percentof C1wouldpartition(KilincandBurnham, 1972). The resultant aqueousfluid would further

splitinto two phases:'--98 wt percentlow-salinity fluidcontaining 4 wt percentsaltsand ---2 wt percent high-salinityfluid containing51 wt percent salts(Fig. 19). Fluid inclusionswith high salinity (40- >60 wt % salts)andhighhomogenization temperatures(400ø-800øC) are commonin the porphyry environment(Roedder,1971, 1984) and commonlycoexistwith a low-salinity,vapor-rich fluid (Bodnar,1982). In the Yeringtonbatholith,

of which have up to 62 wt percent saltsand homogenizeat 500ø to 550øC (Dilles, 1984). Low-density aqueousfluids, possibly including H•, were probablylost during the rise of a "vapor plume" (HenleyandMcNabb, 1978), whereashigh-density fluidsremainedwith the magma,to be releasedupward only upon emplacementof porphyry dikes (Fig. 18). Na, K, Ca, Fe, Cu, and S would have stronglypartitioned into the Cl-rich, high-density, aqueousfluid relative to either the magma or the low-densityaqueousfluid (Holland, 1972; Candela and Holland, 1984, 1986). Candela and Holland (1986) calculatethat up to 80 wt percent of Cu couldbe partitionedinto Cl-rich aqueousfluidfrom the magma.The Cu versusSiO• trend during differentiationof the Yeringtonbatholith (Fig. 9) suggeststhat --•80 wt percent of the Cu or '--50 ppm Cu was extracted uniformly from the entire Luhr Hill granitefrom 3- to 8-km paleodepth.Extraction of 50 ppm Cu from a minimumestimatedvolumeof

65 km3 of Luhr Hill granite(Table 1) wouldyield •10

million tons of Cu, more than sufficient to

producethe '-•6 milliontonsof Cu depositedin the Yeringtondistrict (Einaudi, 1982). The concentration of saltsand Cu into high-densityaqueousore fluids containingonly 3 wt percent of the water originallyin the granite magmareducesthe probmodelsof igneousquartz commonlycontainsabundanthigh- lem inherentin previousorthomagmatic salinityfluidinclusions (containing halite +_sylvite transportinglarge volumesof dilute aqueousfluids

1784

JOHNH. DILLES

from the crystallizingmagmaupwardthroughthe smallcrosssectionalarea of the stockapex. The proposed orthomagmatic model can in theory provide all the Cu deposited. However, whether it is practicableto uniformly remove 50

ship,the AnacondaCompany,the Harvey S. Mudd Fund of the Departmentof AppliedEarth Sciences, and GeologicalSocietyof AmericaPenrosegrants. Critical reviews by and discussions with Einaudi, A. L. Grunder, G. A. Mahood, and E. Seedorff have

ppm Cu from >65 km3 of magmais debatable.As substantiallyimprovedthis manuscript.The preshownabove, the mineralizinggranite porphyry vious work and ideas of J. M. Proffett, M. T. Eindikesand therefore ore fluidsappearto have their sourcesat '--3- to 6-km depth in the upper part of the Luhr Hill granite. However, Cu must also be extractedfromdeeperparts(6-8 km) of the granite magmaby evolutionand upward migrationof an aqueousfluid to 6-km depthwouldhavebeeninitiallywaterundersaturateddue to the increaseof water solubility

audi, R. B. Carten, K. L. Howard, Jr., and other AnacondaCompanygeologists providedthe framework for this study. M. L. Rivers assistedwith the microprobeanalyses. Reviewsof the manuscript by two EconomicGeologyrefereeswere helpful. August 19; 1986; March 25, 1987 REFERENCES

Barton,P. B., andSkinner,B. J., 1967, Sulfidemineralstabilities, in Barnes,H. L., ed., Geochemistryof hydrothermalore deposits:New York, Holt, Rinehart,andWinston,p. 236-333. Bence,A. E., andAlbee,A. L., 1968, Empiricalcorrectionfactors

with pressure.The extractionof 3 wt percentwater during saturationwould require that the magma for electronmicroanalysis of silicatesandoxides:Jour.Geolcoolto '--675ø to 700øC (Figs.12 and 19). Thus,if ogy, v. 76, p. 382-403. water were extractedfrom the lower portionsof the Bernotat,W. H., andMorteani,G., 1982, The microcline/saniLuhr Hill granitewhile graniteporphyrydikeswere dinetransformation isogradin metamorphic regions: Western TauernwindowandMerano-Mules-Anterselva Complex(eastbeing emplacedfrom the upper portions,then the ern Alps):Am. Mineralogist,v. 67, p. 43-53. magmachambermusthave been nearly thermally

unzoned'over a "-2-km verticalinterval(Fig. 18).

Bingler,E. C., Trexler, D. T., Kemp, W. R., and Bonham,H. F., Jr., 1976, PETCAL: A BASIC languagecomputerprogramfor petrologiccalculations: NevadaBur. Mines GeologyRept., v.

This modeldiffersfrom the strongthermalzonation 28, 27 p. in Burnham'smodel (1979, fig. 3.5A, B, C). The in mineralexploration: relativelyuniformphenocrystassemblage of granite Bodnar,R. J., 1982,Useof fluidinclusions of observed featureswith theoreticalandexperiporphyrydikesand lack of significantmineralogic Comparison mentaldataon ore genesis[abs.]:Geol. Soc.AmericaAbstracts or compositionalzoning in the dikes or the Luhr with Programs,v. 13, p. 412. Hill granite also suggestthat the magmaslacked Bodnar,R. J., Burnham,C. W., andSterner,S. M., 1985, Synthetic fluid inclusions in naturalquartz.III. Determinationof major thermal gradients(suchas are implied for phaseequilibrium properties in the systemHzO-NaC1to many other shallowsilicicmagmachambers;e.g., 1000øC and 1500 bars:Geochim.et Cosmochim.Acta, v. 49, Smith,1979). Conversely,if graniteporphyrydikes p. 1861-1873. tappedonly a narrowverticalintervalat the top of Brigham,R. H., 1984, K-feldspargenesisandstableisotoperelathe magmachamber,the smallobservedvariations tionsof the Papoosefiat pluton,Inyo Mountains,California: Unpub.Ph.D. thesis,StanfordUniv., 172 p. of the phenocrystto groundmass ratio could indiG. H, Jr., 1977, Earlyfracture-controlled disseminated cate slight thermal gradients.Internal, thermally Brimhall, mineralizationat Butte, Montana:ECON.GEOL.,v. 72, p. driven convection(Shaw, 1965) could have kept 37-59. the magmawell mixed and nearly isothermal.A Buddington, A. F., 1959, Graniteemplacement with specialreferenceto North America:Geol. Soc.AmericaBull., v. 70, p. nearly isothermalmagmawould require a minimum of heat input at its base,consistentwith the absence 671-747. Buddington,A. F., andLindsley,D. H., 1964, Iron-titaniumoxide of youngermaficdikesin the Luhr Hill granite,exmineralsand syntheticequivalents: Jour.Petrology,v. 5, p. 310-357. cept for rare quartz monzodioriteporphyrydikes that are "-3 m.y. younger (Dilles and Wright, in Burchfiel, B.C., and Davis, G. A., 1972, Structural framework andevolutionof the southernpart of the Cordilleranorogen, press).The model proposedhere is that the Luhr westernUnitedStates:Am. Jour.Sci.,v. 272, p. 97-118. Hill granite crystallizedinward under low thermal Burnham,C. W., 1967, Hydrothermalfluidsat the magmatic gradientsfromits top, sides,andbottom(?)andthat stage,in Barnes,H. L., ed., Geochemistryof hydrothermalore the aqueousfluids evolved during crystallization deposits:New York,Holt, Rinehart,andWinston,p. 34-76. and water saturationmigratedto the upper part of -- 1979, Magmasand hydrothermalfluids,in Barnes,H. L., ed., Geochemistry of hydrothermal ore deposits: New York, the magmachamberat 3- to 6-km depth. Wiley Intersci.,p. 71-136.

Candela,P. A., 1983, Halogentrendsin apatiteasanindicatorof magmaticvaporevolutionlabs.J:Am. Geophys.UnionTrans.,

Acknowledgments This paper representspart of a Ph.D. dissertation v. 64, p. 343. Candela,P. A., and Holland, H. D., 1984, The partitioningof completedat StanfordUniversityunder the direccopper and molybdenumbetween silicatemelts and aqueous tion of M. T. Einaudi. Supportwasprovidedpartly fluids:Geochim.et Cosmochim.Acta, v. 48, p. 373-380. by a National ScienceFoundation graduatefellow- -- 1986, A masstransfermodelfor copperandmolybdenumin

YERINGTON BATHOLITH, NV: PETROLOGY

1785

magmatichydrothermalsystems: The originof porphyry-type Eastoe,C. J., andEadington,P. J., 1986, High-temperature fluid ore deposits:ECON.GEOL.,v. 81, p. 1-19. inclusionsand the role of the biotite granodioritein mineraliCarmichael, I. S. E., 1967, The iron-titanium oxides of salic volzationat the Pangunaporphyrycopperdeposit,Bougainville, canic rocks and their associatedferromagnesiansilicates: Papua New Guinea: ECON. GEOL.,v. 81, p. 478-483. Contr. MineralogyPetrology,v. 14, p. 36-64. Eggler,D. H., 1972,Water-saturated andundersaturated melting relations in a Paricutin andesite and an estimate of water conCarmichael,I. S. E., Turner, F. J., and Verhoogen,J., 1974, Igneouspetrology:New York, McGraw-Hill, 739 p. tent in the naturalmagma:Contr. MineralogyPetrology,v. 34, Carten, R. B., 1981, Sodium-calcium metasomatism and its

p. 261-271.

space-timerelationshipto potassium metasomatism in the Yer- Eggler, D. H., and Burnham,C. W., 1973, Crystallizationand ingtonporphyrycopperdeposit:Unpub.Ph.D. thesis,Stanford fractionationtrends in the systemandesite-H•O-CO•-O2at Univ., 270 p. pressuresto 10 kb: Geol. Soc. America Bull., v. 84, p. 2517-2532. -1986, Sodium-calcium metasomatism: Chemical,temporal, and spatialrelationships at the Yerington,Nevada,porphyry Eilenberg,S., and Carr, M. J., 1981, Copper contentsof lavas copperdeposit:ECON.GEOL.,v. 81, p. 1495-1519. from activevolcanoesin E1 Salvadorand adjacentregionsin Carter, S. R., Evenson,N.M., Hamilton,D. J., andO'Nions,R. K., Central America:ECON.GEOL.,v. 76, p. 2246-2248. 1978, Neodymiumandstrontiumisotopicevidencefor crustal Einaudi,M. T., 1977,Petrogenesis of thecopper-bearing skarnat contaminationof continentalvolcanics:Science,v. 202, p. the MasonValley mine, Yeringtondistrict, Nevada:ECON. 743-747.

Chivas,A. R., 1981, Geochemical evidenceformagmaticfluidsin porphyry copper mineralization:Part 1, Mafic silicatesfrom

Koloulaigneouscomplex:Contr.MineralogyPetrology,v. 78, p. 389-403.

Chou, I.-M., 1978, Calibrationof oxygenbuffersat elevatedP andT usinghydrogenfugacitysensor:Am. Mineralogist, v. 63,

GEOL., v. 72, p. 769-795.

--

1982, Descriptionof skarnsassociated with porphyrycopper plutons:Southwestern North America,in Titley, S. R., ed., Advances in the geologyof porphyrycopperdeposits,southwestern North America: Tucson, Univ. Arizona Press,p. 139-184.

Eugster,H. P., andWones,D. R., 1962, Stabilityrelationsof the p. 690-703. ferruginous biotite,annite:Jour.Petrology,v. 3, p. 82-125. Cornwall,H. R., 1982, Petrologyandchemistryof igneousrocks: Ewart, A., 1979, A review of the mineralogyand chemistryof Rayporphyrycopperdistrict,PinalCounty,Arizona,in Titley, Tertiary-Recentdacitic, rhyolitic, and related salicvolcanic S. R., ed., Advancesin the geologyof porphyrycopperderocks,in Barker, F., ed., Trondjemites,dacites,and related posits, southwesternNorth America: Tucson, Univ. Arizona rocks:Amsterdam,Elsevier,p. 13-121. Press,p. 259-274. -1982, The mineralogyandpetrologyof Tertiary-Recentorogenicvolcanic rocks:With specialreferenceto the andesiticCzamanske, G. K., andMihalik,P., 1972, Oxidationduringmagbasalticcompositional range,in Thorpe,R. S., ed., Andesites: maticdifferentiation,Finnmarkacomplex,Olsoarea, Norway: Orogenicandesites andrelatedrocks:Chichester,JohnWiley Part 1, The opaqueoxides:Jour.Petrology,v. 13, p. 493-509. andSons,p. 25-95. Czamanske,G. K., and Wones, D. R., 1973, Oxidation during magmaticdifferentiation,Finnmarkacomplex,Oslo area, Nor- Ewart, A., Bryan,W. B., and Gill, J. B., 1973, Mineralogyand geochemistry of the youngervolcanicislandsof Tonga,S. W. way:Part 2, Maficsilicates:Jour.Petrology,v. 14, p. 349-380. Pacific:Jour.Petrology,v. 14, p. 429-465. Davidson,P.M., and Lindsley,D. H., 1985, Thermodynamic analysisof quadrilateralpyroxenes,Part II: Model calibration Farmer,G. L., andDePaolo,D. J., 1983, Origin of Mesozoicand Tertiarygranitein the westernUnitedStatesandimplications fromexperiments andapplications to geothermometry: Contr. for pre-Mesozoic crustalstructure:1. Nd andSr isotopicstudMineralogyPetrology,v. 91, p. 340-404. iesin the geoclineof thenorthernGreatBasin:Jour.Geophys. DePaolo,D. J., 1981, Traceelementandisotopiceffectsof comResearch,v. B4, p. 3379-3401. binedwallrockassimilation andfractionalcrystallization: Earth Fenn,P.M., 1977, Nucleationandgrowthof alkalifeldspars from Planet.Sci. Letters, v. 53, p. 189-202. hydrousmelts:CanadianMineralogist, v. 16, p. 135-161. Dilles, J. H., 1982, Lateral andvertical alterationand mineraliza1986,On the originof graphicgranite:Am.Mineralogist, v. tion patternsaroundthe Ann-Masonporphyrycopperdeposit, -71, p. 325-330. Yerington, Nevada [abs.]:Geol. Soc. America Abstractswith Geissman, J.W., VanDer Voo,R., andHoward,K. L., Jr., 1982, A Programs,v. 14, p. 160. paleomagneticstudyof the structuraldeformationin the Yer-1984, The petrologyand geochemistryof the Yerington ingtondistrict, Nevada;Part 2: Mesozoic"basement"unitsand batholithand the Ann-Masonporphyrycopperdeposit,westtheirtotalandpre-Oligocene tectonism: Am.Jour.Sci.,v. 282, ern Nevada:Unpub.Ph.D. thesis,StanfordUniv., 389 p. p. 1042-1109. Dilles,J. H., andWright,J. E., in press,The chronology of early Gill,J.B., 1978,The roleof traceelementpartitioncoefficients in Mesozoicarc magmatismin the Yeringtondistrict,westernNemodelsof andesitegenesis:Geochim.et Cosmochim.Acta, v. vada,andits regionalimplications: Geol. Soc.AmericaBull. 42, p. 709-724.

Dilles,J. H., Wright,J.E., andProffett,J.M., 1983,Chronology -1981, Orogenic andesitesand plate tectonics:New York, of earlyMesozoic plutonism andvolcanism in the Yerington Springer-Verlag,390 p. district,westernNevadalabs.I:Geol. Soc.AmericaAbstracts Goldman,D. S., andAlbee,A. L., 1977, Correlationof Mg/Fe with Programs, v. 15, p. 383. partitioningbetweengarnetand biotite with •80/•60 parti-

Dodge,F. C. W., Smith,V. C., andMays,R. E., 1969, Biotites tioningbetweenquartzandmagnetite:Am. Jour.Sci.,v. 277, fromgraniticrocksof thecentralSierraNevadabatholith,Calip. 750-767. fornia:Jour.Petrology,v. 10, p. 250-271. Grunder,A. L., 1986,The Calabozos calderacomplex: Geology, Drake, M. J., andWeill, D. F., 1975, Partitionof Sr, Ba, Ca, Y, petrology,and geochemistryof a major silicicvolcaniccenter Eu+2,Eu+3,andotherREEbetweenplagioclase feldspar and andhydrothermal system in thesouthern Andes:Unpub.Ph.D. magmaticliquid:An experimental study:Geochim.et Cosmothesis,StanfordUniv., 171 p. chim.Acta,v. 39, p. 689-712. Gustafson, L. B., 1979,Porphyrycopperdeposits andcalc-alkaDuncan,A. R., andTaylor,S.R., 1968,Traceelementanalyses of line volcanism, in McElhinney,M. W., ed., The earth:Its orimagnetites: Contr. MineralogyPetrology,v. 20, p. 30-33. gin, structureand evolution:London,AcademicPress,p. Eastoe,C. J., 1982, Physics andchemistryof the hydrothermal 427-468. systemat the Panguna porphyrycopperdeposit,Bougainville, Gustafson,L. B., and Hunt, J.P., 1975, The porphyrycopper PapuaNew Guinea:ECON.GEOL.,v. 77, p. 127-153. depositat E1Salvador,Chile:ECON.GEOL.,v. 70, p. 857-912.

17 8 6

JOHNH. DILLES

Haggerty,S. E., 1976, Opaquemineraloxidesin terrestrialigneousrocks:Mineralog.Soc.America,ShortCourseNotes,v. 3, p. Hg101-Hg300.

Harris, N. B., and Einaudi, M. T., 1982, Skarndepositsin the Yerington district, Nevada: Metasomaticskarn evolution near Ludwig: ECON.GEOL.,v. 77, p. 877-898. Helgeson,H. C., Delany,J. M., Nesbitt,H. W., andBird, D. K., 1978, Summaryandcritiqueof the thermodynamic properties of rock-formingminerals:Am. Jour.Sci.,v. 278-A, 229 p. Hendry,D. A. F., Chivas,A. R., Reed,S.J. B., andLong,J. V. P., 1981, Geochemical evidencefor magmatic fluidsin porphyry coppermineralization:Part 2, Ion-probeanalysisof Cu contentsof maficminerals,Koloulaigneouscomplex:Contr.MineralogyPetrology,v. 78, p. 404-412. Hendry,D. A. F., Chivas,A. R., Long,J. V. P., andReed,S.J. B., 1985, Chemical differences between minerals from mineraliz-

Kuno, H., 1959, Origin of Cenozoicpetrographicprovincesof Japanandsurroundingareas:Bull. Volcanol.,v. 20, p. 37-76. Leake,B. E., 1978, Nomenclatureof amphiboles: Am. Mineralogist, v. 63, p. 1023-1056.

Lindsley,D. H., 1976, Someexperiments pertainingto the magnetite-ulvospinelmiscibility gap: Mineralog. Soc. America, ShortCourseNotes,Vol. 3, p. L61-L88. Lipman,P. W., 1971, Iron-titaniumoxidephenocrysts in compositionallyzoned ash-flowsheetsfrom southernNevada:Jour. Geology,v. 79, p. 438-456. Lofgren,G. E., and Donaldson,C. H., 1975, Curvedbranching crystalsand differentiationin comb-layeredrocks:Contrib. MineralogyPetrology,v. 49, p. 309-319. Lowder, G. G., and Carmichael, I. S. E., 1970, The volcanoesand

calderaof Talasea,New Britain:Geologyandpetrology:Geol. Soc.AmericaBull., v. 81, p. 17-38.

ingandbarrenintrusions fromsomeNorthAmericanporphyry Luhr, J. F., and Carmichael,I. S. E., 1980, The Colima volcanic complex,Mexico: I. Post-calderaandesitesfrom Colima volcopper deposits:Contr. Mineralogy Petrology, v. 89, p. 317-329.

cano:Contrib. MineralogyPetrology,v. 71, p. 343-372.

Henley,R. W., andMcNabb,A., 1978, Magmaticvaporplumes Mason,D. R., 1978, Compositionalvariationsin ferromagnesian mineralsfrom porphyrycopper-generating and barren intruand ground-waterinteractionin porphyrycopperemplacement: ECON. GEOL., v. 73, p. 1-20. sionsof the Western Highlands,Papua New Guinea: ECON. GEOL., v. 73, p. 878-890. Hewitt, D. A., 1978, A redeterminationof the fayalite-magnetite-quartzequilibriumbetween650ø and 850øC:Am. Jour. Moore, W. J., and Czamanske,G. K., 1973, Compositionsof bio-

Sci., v. 278, p. 715-724.

Hewitt, D. A., andWones,D. R., 1984, Experimentalphaserelationsof the micas:Rev. Mineralogy,v. 13, p. 201-256. Hildreth,W., 1979, The Bishoptuff:Evidencefor the originof compositional zoningin silicicmagmachambers:Geol. Soc. America Spec. Paper 180, p. 43-75.

--

1981, Gradientsin silicicmagmachambers:Implicationsfor lithosphericmagmatism: Jour. Geophys.Research,v. 86, p. 10153-10192.

Holland, H. D., 1972, Granites, solutions,and base metal deposits:ECON. GEOL., v. 67, p. 281-301.

tites from

unaltered

and altered

monzonitic

rocks in the

Bingham mining district, Utah: ECON. GEOL., v. 68, p. 269-274.

Naney, M. T., 1977, Phaseequilibriaand crystallizationin ironandmagnesium-bearing graniticsystems: Unpub.Ph.D. thesis, StanfordUniv., 229 p. -1983, Phaseequilibriaof rock-formingferromagnesian silicates in granitic systems:Am. Jour. Sci., v. 283, p. 993-1033.

Neumann,E.•R., 1974, The distributionof Mn+2 and Fe+2 between ilmenitesand magnetitesin igneousrocks:Am. Jour. Sci., v. 274, p. 1074-1088.

Holloway,J. R., andBurnham,C. W., 1972, Meltingrelationsof Norton,D., 1982, Fluid andheat transportphenomenatypicalof copper-bearingpluton environments:Southeastern Arizona,in basaltwithequilibriumwaterpressures lessthantotalpressure: Jour.Petrology,v. 13, p. 1-29. Titley, S. R., ed., Advancesin geologyof the porphyrycopper deposits,southwesternNorth America:Tucson,Univ. Arizona Huang, W.-L., and Wyllie, P. J., 1986, Phaserelationships of gabbro-tonalite-granite-water at 15 kbarswith applicationto Press,p. 59-72. differentiation and anatexis:Am. Mineralogist, v. 71, p. Ohmoto,H., 1986, Stableisotopegeochemistryof ore deposits: 301-316.

Rev. Mineralogy, v. 19, p. 491-559.

Huebner,J. S.,andSato,M., 1970,The oxygenfugacity-tempera- Ohmoto,H. andRye,R. O., 1979, Isotopesof sulfurandcarbonin ture relationships of manganese oxideand nickel-nickeloxide Barnes,H. L., ed., Geochemistryof hydrothermalore deposits: buffers:Am. Mineralogist,v. 55, p. 934-952. New York, Wiley Intersci., p. 509-567. Irving, A. J., 1978, A review of experimentalstudiesof crystal- Oldow, J. S., 1983, Tectonicimplicationsof a late Mesozoicfold liquid trace element partitioning:Geochim. et Cosmochim. and thrust belt in northwesternNevada: Geology, v. 11, p. Acta, v. 42, p. 743-770.

542-546.

Irving, A. J., and Frey, F. A., 1978, Distribution of trace elements

Osiecki,R. A., 1981, Textural developmentof pegmatite,aplite, betweengarnetmegacrysts and hostvolcanicliquidsof kimandassociated rocktypesin the Mason-Milfordgranite:Unpub. berlitic to rhyolitic composition:Geochim. et Cosmochim. Ph.D. thesis,StanfordUniv., 158 p. Acta, v. 42, p. 771-787. Parry, W. T., and Jacobs,D.C., 1975, Fluorine and chlorinein biotite from basinand rangeplutons:ECON.GEOL.,v. 70, p. Jacobs, D.C., andParry,W. T., 1976, A comparison of the geo554-558. chemistryof biotite from somebasinandrangestocks:ECON. GEOL., v. 71, p. 1029-1035. Philpotts,J. A., and Schnetzler,C. C., 1970, Phenocryst-matrix partitioncoefficients for K, Rb, Sr, andBa, with applications to -1979, Geochemistryof biotite in the SantaRita porphyry copperdeposit,New Mexico:ECON.GEOL.,v. 74, p. 860-887. anorthositeand basaltgenesis:Geochim.et Cosmochim.Acta, Jahns,R. H., andBurnham,C. W., 1969, Experimentalstudiesof v. 34, p. 307-322. pegmatitegenesis: I, A modelfor the derivationandcrystalli- Piwinskii, A. J., 1968, Experimental studies of igneous rock series,central SierraNevadabatholith,California:Jour.Geolzationof graniticpegmatites: ECON.GEOL.,v. 64, p. 843-864. ogy, v. 76, p. 548-570. Kilinc,I. A., andBurnham,C. W., 1972, Partitioningof chloride betweena silicatemeltandcoexisting aqueous phasefrom2 to Price, J. G., 1977, Geologicalhistoryof alterationand minerali8 kilobars:ECON.GEOL.,v. 67, p. 231-235. zation at the Yerington porphyry copper deposit, Nevada: Kistler,R. W., 1983, Isotopegeochemistry of plutonsin the Unpub. Ph.D. thesis,Univ. California-Berkeley,168 p. northernGreat Basin:GeothermalResearchCouncil Spec. Proffett,J. M., 1977, Cenozoicgeologyof the Yeringtondistrict, Rept. 13, p. 3-8.

Nevada,andimplicationsfor the natureandoriginof basinand rangefaulting:Geol. Soc.AmericaBull., v. 88, p. 247-266. Na andinitial 87Sr/86Sr in Mesozoicgraniticrocksin central -1979, Ore depositsof the western United States:A sumCalifornia:Geol. Soc.AmericaBull., v. 84, p. 3489-3512. mary: NevadaBur. Mines and GeologyRept. 33, p. 13-32.

Kistler,R. W., andPeterman,Z. E., 1973, Variationsin Sr, Rb, K,

YERINGTONBATHOLITH,NV: PETROLOGY Proffett,J. M., andDilles,J. H., 1984, Geologicmapof the Yeringtondistrict,Nevada:NevadaBur. Minesand Geology,map

1787

Spencer,K. J., andLindsley,D. H., 1981, A solutionmodelfor coexistingiron-titaniumoxides:Am. Mineralogist,v. 66, p. 1189-1201.

77.

Proffett,J. M., Jr., andProffett,B. H., 1976, Stratigraphyof the Stewart,J. H., 1972, Initial depositsin the Cordillerangeosyncline:Evidenceof a late Precambrian(•850 m.y.) continental Tertiary ashflowtuffs in the Yeringtondistrict, Nevada:NevadaBur. Mines and GeologyRept. 27, 28 p. separation:Geol. Soc.AmericaBull., v. 83, p. 1345-1360. 1980, Geologyof Nevada:NevadaBur. MinesandGeology Roberts,J. L., 1976, Titaniumsolubilityin syntheticphlogopite -Spec.Pub. 4, 136 p. solidsolutions:Chem. Geology,v. 17, p. 213-227. onestimates of Robie,R. A., Hemingway,B. S., andFisher,J. R., 1978, Thermo- Stormer,J. C., 1983, The effectsof recalculation temperatureandoxygenfugacityfromanalyses ofmulticompodynamicpropertiesof mineralsand related substances at nent iron-titanium oxides: Am. Mineralogist, v. 68, p. 298.15Kand1 bar (105pascals) pressure andhighertempera586-594. tures:U.S. Geol. SurveyBull., v. 1452, 456 p. Robinson,A., and Kistler, R. W., 1986, Maps showingisotopic Stormer,J. C., andCarmichael,I. S.E., 1971, Fluorine-hydroxyl exchangein apatiteandbiotite:A potentialigneousgeotherdatingin the Walker Lake 1ø X 2 ø quadrangle,Californiaand mometer:Contrib. MineralogyPetrology,v. 31, p. 121-131. Nevada:U.S. Geol. SurveyMisc. Field StudiesMap MF-1382N, scale 1:250,000. Stormer,J. C., andNicholls,J., 1978,XLFRAC,a programfor the interactivetestingof magmaticdifferentiationmodels:ComRoedder,E., 1971, Fluid inclusionstudieson the porphyry-type puter Geosci.,v. 4, p. 143-159. ore depositsat Bingham,Utah, Butte, Montana,and Climax, Streckeisen,A. L., 1976, To eachplutonic rock its proper name: Colorado:ECON. GEOL., v. 66, p. 98-120. Earth-Sci.Rev., v. 12, p. 1-33. -1984, Fluid inclusions: Rev. Mineralogy,v. 12, 644 p. Schnetzler,C. C., andPhilpotts,J.A., 1970, Partitioncoefficients Swanson,S. E., 1977, Relationof nucleationand crystal-growth rate to the developmentof granitictextures:Am. Mineralogist, of rare earth elementsbetween igneousmatrix material and v. 62, p. 966-978. rock-formingmineralphenocrysts-II: Geochim.et Cosmochim. Swanson,S. E., and Fenn, P.M., 1986, Quartz crystallizationin Acta, v. 34, p. 331-340. igneousrocks:Am. Mineralogist,v. 71, p. 331-342. Schweickert, R. A., 1978, TriassicandJurassic paleogeography of the SierraNevadaandadjacentregions,Californiaandwestern Taylor, H. P., Jr., 1968, The oxygenisotopegeochemistryof igneousrocks:Contr. MineralogyPetrology,v. 19, p. 1-71. Nevada, in Howell, D. G., and McDougall, K. A., eds., Meso1980, The effectsof assimilation of countryrocksby magmas zoic paleogeographyof the western United States,Pacific -on •sO/•60andS7Sr/SaSr systematics of igneousrocks:Earth CoastPaleogeography Symposium2: Soc.Econ. PaleontoloPlanet. Sci. Letters, v. 47, p. 243-254. gistsMineralogists, PacificSec.,1978, Sacramento, California, Taylor, S. R., 1965, The applicationof trace element data to p. 361-384. problemsin petrology: PhysicsChemistry Earth, v. 6, p. Shaw,H. R., 1965, Commentson viscousity,crystalsettling,and 325-363.

convection in granitic magmas: Am. Jour. Sci., v. 263, p.

--

120-152.

Smith, R. L., 1979, Ash-flow magmatism:Geol. Soc. America Spec. Paper 180, p. 5-27. Solomon,G. C., Dilles, J. H., Criss,R. E., andTaylor, H. P., Jr.,

1983, •80/•60 andD/H characteristics of the Ann-Mason porphyry copperdeposit,Yerington,Nevada labs.l:Geol. Soc. America Abstractswith Programs,v. 15, p. 277. Sourirajan,S., andKennedy,G. C., 1962, The systemH•O-NaC1 at elevatedtemperaturesandpressures: Am. Jour.Sci.,v. 260, p. 115-141.

Speed,R. C., 1978, Paleogeographic andplate tectonicevolution of the early Mesozoicmarineprovinceof the westernGreat Basin,in Howell D. G., and McDougall,K. A., eds., Mesozoic paleogeographyof the western United States,Pacific Coast Paleogeography Symposium2: Soc.Econ.Paleontologist Mineralogists, Pacific Sec., 1978, Sacramento, California, p. 253-270.

--

1979, CollidedPaleozoicmicroplatein the westernUnited States:Jour.Geology,v. 87, p. 279-292.

APPENDIX

1969, Trace elementchemistryof andesitesand associated calc-alkalinerocks:OregonDept. Mineral IndustriesBull., v. 65, p. 43-63.

Tuttle, O. F., and Bowen, N. L., 1958, Origin of granite in the light of experimental studies in the system NaA1Si3OsKA1Si3Os-SiO2-H20: Geol. Soc.AmericaMem., v. 74, 153 p. Wedepohl,K. H., 1969, Compositionandabundanceof common

igneousrocks,in Wedepohl,K. H., ed., Handbookof geochemistry,vol. 1: Berlin-Heidelberg-New York, Springer-Verlag, p. 227-249. Williams, H., Turner, F. J., and Gilbert, C. M., 1955, Petrography: SanFrancisco,W. H. FreemanCo., 406 p. Winkler, H. G. F., 1976, Petrogenesis of metamorphicrocks,4th ed.: New York, Springer-Verlag,334 p. Wones,D. R., 1981, Mafic silicatesasindicatorsof intensivevariablesin graniticmagmas:Mining Geology,v. 31, p. 191-212. Wones,D. R., and Eugster,H. P., 1965, Stabilityof biotite:Experiment,theory,andapplication:Am. Mineralogist,v. 50, p. 1228-1272.

A

PetrographicDescriptionsof Units of the YeringtonBatholith Biotite-hornblendequartz monzodiorite(QMD) of McLeod Hill is fine to medium grained (0.5-2 mm), increasingwith depth and distancefrom wallrockcontacts,andis commonlygrayto purple-gray, with a color index of 15 to œœ(Fig. 3, Table œ).It is characterized by tabular plagioclase, prismatic hornblende,and/or anhedralaugite, euhedralbiotite, equant opaqueoxides,and accessorysphene,

euhedral apatite, and zircon enclosedby intergrownmicroclineand quartz.Augite occursonly with hornblendecoronasand is only abundantin structurally shallow, fine grained biotite-hornblende quartz monzodiorite(compareFig. 5C and D). Hornblende containsabundantinclusionsof magnetite and minor sphene and ilmenite. The hornblende (+ augite) to biotite ratio is high

1788

JOHN H. DILLES

("-4:1), magnetite and sphene are abundant,and ilmenite forms sparse isolated grains sometimes rimmed by discontinuoussphene.Biotite includes apatite_ zirconandis stablewith augite (Fig. 5D). Spheneformsanhedralgrainsintergrownwith and overgrowingmagnetite,hornblende,ilmenite, and locally biotite, showingthat it is paragenetically late. In shallowexposuresplagioclaseformseuhedral normallyzoned(tn4o-17)tabletswith fine-scale oscillatoryzoningand sparse,resorbed,calciccores (An65-5o).K-feldsparand quartz poikiloblastically encloseplagioclaseand maficminerals.In deep exposures, subhedral plagioclase is less zoned (An35_17), doesnot containcalciccores,and is intergrownwith K-feldsparand quartz. Biotite-hornblende gabbro (GB) is allotriomorphic andfine to mediumgrained,with a colorindex of '-'60. It is composedof hornblende,zoned plagioclase(An42_22 with coresascalcicasAn72),biotite, magnetite,sphene,apatite,ilmenite,andtraces of augite(Table2, Fig. 3). Exceptfor prismaticapatite, all grainsare subhedralto anhedraland subequant, showing no interlocking textures. The hornblendeto plagioclaseratio variesfrom >2:1 to 1:1. Most biotite occursas a replacementof hornblende along cleavage,but someoccursas poikilobiastic grainsenclosingplagioclase,augite, minor hornblende, and opaques.Sphene forms isolated subhedralgrainsbut alsocommonlyformssmaller