Pharmacogenomics: An Holistic Approach to Drug - Organism ...

4 downloads 573 Views 1MB Size Report
Pharmacogenomics: An Holistic Approach to. Drug - Organism Interaction. Michel Eichelbaum. Me2450.ppt. Problems in Drug Therapy and Development. 1.
Problems in Drug Therapy and Development

Dr. Margarete Fischer-Bosch-Institut für Klinische Pharmakologie Robert Bosch Stiftung Stuttgart

IKP STUTTGART

1. No effective drug treatment for many disease; limited

number of evaluated drug targets

Pharmacogenomics:

2. No or only insufficient response to drug treatment in substantial proportion of patients - high attrition rate of NCEs in clinical trial‘s

An Holistic Approach to Drug - Organism Interaction

3. Selection of appropriate dose for individual patient; fixed dose in clinical trials 4. Substantial morbidity and mortality by severe adverse drug reactions

Michel Eichelbaum

Me2450.ppt

Drug associated morbidity and mortality

Pharmacogenomics: Variability in Drug Response Same disease, same drug but different responses

Overall incidence of all severe adverse drug reactions causing admission to hospital plus ADR‘s occurring

no or insufficient response

Class of Drug ACE inhibitors

10- 30 %

Beta - blocker

15- 25 %

Selective serotonin reuptake inhibitors

10- 25 %

Tricylic anti- depressants

20- 50 %

HMG -

30- 70 %

CoA reductase inhibitors

Beta - 2agonists

in the hospital:

6.7 % = 2.216.000 patients

Fatal ADR‘s:

0.32 % = 106.000 patients

Fourth to sixth leading cause of death

40- 70 % Lindpaintner, 2000

ME2435.PPT

Lazarou et al., JAMA 1998 ME2048.PPT

Concentration – Effect Relationship

Dose of Drug is a Poor Predictor for Response and Toxicity Css of Desipramine and Nortriptyline at 25 mg 3x/day

75

20

20 to 40 fold difference

number of patients

[pmol/min/mg]

Drug effect

60 45 30 15

15

Nortriptyline 10

Desmethylimipramine

5

0 -11

-10

-9

-8

-7

-6

-5

-4

-3

0

log [Isoproterenol]

20

40

no response

(Mason et al. 1999) ME3133

60

80 100 120 140

260 280 300

Plasma levels [ng/ml]

Drug concentration ME3129

response

toxicity (Hammer & Sjöqvist 1967)

Pharmacogenetics

Nongenetic Factors and Drug Response

Individual variability in the efficacy and toxicity of drugs due to polymorphisms of genes involved in their disposition and action

Age, body weight, sex, disease, diet, alcohol, smoking, drugs, hepatic and renal function ME3131

Me2818.ppt

Use of genomics to determine an individual‘s drug response

First Description of a Pharmacogenetic Trait

PHARMACOGENE TICS

"Quod aliis cibus est, aliis fuat acre venenum"

PHARMACOGENOMICS

What is food to some men may be fierce poison to others

Use of genomics to design drugs and target drugs to specific patient populations ME2823.PPT

Human Genome • •

25 000 genes 100 000 – 300 000 proteins

• •

99.9 % identical sequences 0.1 – 0.2 % different sequences

Same dose but different plasma concentrations Drug A

10

GCCCCGCCTC

Genetic variability

wild type

100 new mutations per individual 3 deleterious mutations per person per generation 5.4 Mio. SNPs (single nucleotide polymorphisms) identified

P 450

ME3017.PPT

AUC 1

1

Time

Drug

B

10

Genetic polymorphisms approximately every 3rd gene exists in the population with frequent (>1 %) allelic variants. 47 to 61 % of all protein loci polymorphic

Concentration

3. 5 x 109 nucleotides

Mechanism of Genetic Variability in Drug Response

GCCCCACCTC

mutation ME3012.PPT

P450

Concentration



Lucretius Caro De Rerum Natura 4:641, 65 B.C.

Me2824.ppt

AUC 20

1

Time

Mechanism of Genetic Variability in Drug Response Same plasma concentrations but different concentrations at site of action

Mechanism of Genetic Variability in Drug Response Same concentration at site of action but differences in response at drug target Ser49Gly

concentration

concentration

Arg389

Arg389Gly

BBB

Gly389

BBB (Hein 2001)

time [h]

(Mason et al. 1999)

time [h] ME2290.PPT

ME2291.PPT

Drug Metabolism: First Line of Defense Against Xenobiotics

Importance of Metabolism for Drug Elimination OG C H

N H

C H

N H

C H

N H

GO

> 3000 > 500

∼ 3 million substances

Industry:

∼ 3000 chemicals/year

Drugs:

∼ 6000 (WHO)

Daily intake of xenobiotics:

ME3105

> 400 3000

3000

2000

2000

[ng/ml]

Biosphere:

[ng/ml]

Rifa

Biotransformation Phase I and II Enzymes

Biotransformation Phase I and II Enzymes

1000

∼ 10.000 substances; 1.5 grams of natural pesticides (plant phenols, flavonoids, saponines) carcinogenes (aflatoxines, pyrrolizidine alkaloids ...)

1000

t½: 30 - 50 hours

0 0

10

20

t½: 800 - 1000 hours

0 0

30

200

Functional Alleles

1A1 1A2 1B1

2A6 2A7 2A13 2A18P

*1

3A4 3A5 3A5P 3A7 3A43

Conversion 2D6/2D7 (Intron 1) 2850C>T

*2

-1584C>G

1C1P

2C8 2C9 2C18 2C19 2D6 2D7P 2D8P

*35

genetic polymorphisms significant

R296C

2D6*1

2D8P

2D7P 2D6*2

2D6*2

2D8P

2D7P 2D6*35 2D6*35

138 ins T

1 2 3 4 5 6 7 8 9

100C>T

*4 N-1

N-1

*5

1 2 3 4 5 6 7 8 9 100C>T

2F1 F1P 2G1P 2G2P 2J2 2R1 2S1 2T2P 2T3P 2U1 2W1

4180G>C

1 2 3 4 5 6 7 8 9 1023C>T

S486T 2850C>T 4180G>C

1 2 3 4 5 6 7 8 9 T107I 100C>T

*36

K281del

R296C S486T Conversion 2D6/2D7

1 2 3 4 5 6 7 8 9 P34S

*41

1 2 3 4 5 6 7 8 9 R296C

S486T

*16

1 2 3 4 5 6 7 8 9

*18

1 2 3 4 5 6 7 8 9

*19

1 2 3 4 5 6 7 8 9

253 ter 4125-33 ins GTGCCCACT

chromosomal deletion of CYP2D6 gene

468-470 ins VPT

T1707 del

1 2 3 4 5 6 7 8 9 153 ter

2399 papers dealing with CYP2D6

*8

1 2 3 4 5 6 7 8 9

1758G>T

2850C>T

*20

1 2 3 4 5 6 7 8 9

*21

1 2 3 4 5 6 7 8 9

253 ter 2573 ins C2850C>T

4180G>C

1 2 3 4 5 6 7 8 9 2850C>T

*38

R296C

S486T

297 ter 1023C>T

1 2 3 4 5 6 7 8 9

*42

1 2 3 4 5 6 7 8 9

*14

T107I 172-74 ins FRPFRP 2850C>T

253 ter 1758G>A 2850C>T

4180G>C

1 2 3 4 5 6 7 8 9 P34S

G169R R296C

1863 ins (TTT CGC CCC) 2 4180G>C

*40

1 2 3 4 5 6 7 8 9 100C>T

1 2 3 4 5 6 7 8 9

4180G>C

2D7P/2D6-hybrid (138 ins T)

*13

4180G>C

2587-90 GACT del

1 2 3 4 5 6 7 8 9 G42R

4180G>C

273 ter

883G>C (splice site) 2850C>T

124G>A

1973 ins G 2850C>T

4180G>C

169 ter

*12

4180G>C

259 ter

*7

*11

2539-42 del AACT 2850C>T

2935A>C

1 2 3 4 5 6 7 8 9

12 amino acid changes

Conversion 2D6/2D7 (Intron 1) 2988G>A (Intron 6) 2850C>T 4180G>C -1584C

2D7P/2D6-Hybrid (138 ins T)

1 2 3 4 5 6 7 8 9 P34S L91M 182 ter H94R

*6

Since 1982 PubMed:

1 2 3 4 5 6 7 8 9 253 ter

984A>G 1846G>A (splice site) 4180G>C 974C>A

H324P

*9

*15

260 ter

N-1

S486T

AGA 2613-5 del

P34S

ME2569.ppt

2D7P 2D6*1

1 2 3 4 5 6 7 8 9

Alleles with decreased function

*17

http://drnelson.utmem.edu/CytochromeP450.html

*2xN *35xN

2D8P

A237S Conversion 2D6/2D7 (Intron1) G31A 2850C>T 4180G>C V11M

*10

2E1

*1xN

S486T

1 2 3 4 5 6 7 8 9

*3

Alleles with increased function

4180G>C

1 2 3 4 5 6 7 8 9 R296C 2483G>T

*33

2B6 2B7

Nonfunctional Alleles A2549 del

1 2 3 4 5 6 7 8 9 -1584C>G

ME3043

2D8P 2D7P 2D6

Alleles with normal function

CYP3

800

Genetics of CYP2D6 Chr. 22q13.1

CYP2

600

time [h]

ME2283

Human Drug-Metabolizing Cytochromes P450

CYP1

400

time [h]

S486T

3259 ins GT 4180G>C

R296C 375 ter

CYP2D6: Consequences of genotype for systemic drug exposure Enzyme

60

chromosome 22

decreased slow metabolism

PM

CYP2D6 5’

q13.1

2 3 - 13

13 0

24

48

normal normal metabolism 60 - 70 %

normal

EM UM

ca. 2 - 3%

side effects 1

10

drug response 1

2-4

10

no drug response 1

amplification

ME3016.PPT

Time [h]

Pharmacogenetics Like most disease phenotypes, drug phenotypes

Nonresponse

PM 7%

UM

ultra rapid metabolism

(response, nonresponse, toxicity) are complex

UM

100 80

1

increased

The Impact of CYP2D6 Genotype on Adverse Drug Reaction and Nonresponse During Treatment with Antidepressants Adverse Effects

10

Time [h]

72 (Bertilsson et al., 1997)

1

Time [h]

EM

time [h] ME2828.PPT

toxicity, side effects

mutations

3’

1 (*9 *10 *17 *41) IM

0

Response

10

Concentration

phenotype

0

10

IM 0.2

genes

20

0.1

5 - 10 %

functional

30

PM

5 - 10 %

Concentration

Time [h]

50 40

Dose 1

Concentration

plasma concentration [nmol/l]

mutations

Phenotype

deficient extreme slow metabolism

Concentration

Gene

Nortriptyline plasma levels in relation to CYP2D6 genotype

Concentration

How predictive is the Genotype for the Phenotype

polygenic traits with nongenetic factors

29 %

contributing to the manifestation of phenotypes.

60

The extent to which genetic factors contribute to

40

phenotype will depend whether the candidate

20

expected observed

Rau et al., 2004

Kawanishi et al., 2004

ME3019

ME2848.ppt

amplification

time [h]

Concentration

time [h]

MDR1

Dose [mg]

T/T 97

C/T 97

Level [nmol/l] Hypotension MADRS

293 25 % 12.5

306 11 % 13.7

C/C 103 345 0% 12.7

10

normal

MAO

time [h]

SERT

10

TCA

BBB

time [h]

BBB

time [h]

BBB

time [h]

Mechanism: Autonomic and central α-receptor blockade

1

mutations

time [h]

TPH2

concentration

1

5-HT

ME3045

BBB

concentration

Concentration

BBB

conc.

1

time [h]

CYP2D6

MDR1 C3435T SNP and nortriptyline-induced postural hypotension

10

conc.

Concentration

Polygenic Nature of Drug Response: Antidepressants

Drug

gene is a gene of major, moderate or minor effect.

concentration

0

19 % 2% 1% 10 % expected observed expected observed

HT Receptors

Roberts et al, The Pharmacogenomics Journal, 2002

ME2648.ppt

Polygenic Nature of Drug Response: Antidepressants

Polygenic Nature of Drug Response: Antidepressants Drug Target

Drug Target

SERT: 5‘-upstream regulatory region: 44 base pair insertion / deletion with

1. Concentration of serotonin in synaptic cleft is influenced by biosynthesis (TPH2), re-uptake (SERT) and catabolism (MAOA)

Gene MAOA

2. Inhibition of serotonin re-uptake depends on drug concentration in synaptic cleft 3. Mutations of receptors and signalling pathways affect neurotransmitter and drug effects

long (L) and short (S) variant Short variant: Two fold decreased expression and transport activity

MDR1

5-HT

SERT

Response predictive genotype

SERT

L/L VNTR D/D

ACE DRD 2/3/4 MAOA TPH1 (2) ß1AR GNB3 HTR2A HTR6

TPH2

TCA

HT Receptors

ME3122

OR 1.3 – 5.6 inconsistent ~ 2.0 n.s. n.s. n.s. – 5.3 < 0.05 1.8 < 0.02 n.s.

promoter 218A>G Gly389Arg 825C>T 102T>C 267C>T

Kirchheimer et al., 2004

ME3051

5-Fluorouracil: Therapeutic Use and Toxicity

RNA-turnovergenes

colorectal Cancer:



RNA

cell alteration

FUTP

NDP-kinase

300.000 new cases 200.000 deaths

FUDP

each year in Europe and the USA

FUMP FUrd

5-Fluorouracil: drug of first choice in adjuvant and metastatic setting



transporter (?)

response rate: 10- 30%



toxicity: 3- 30% (severe 3 - 5%)



Application type: Bolus > Continuous Infusion (Meta Analysis Group in Cancer 1998)

orotatephosphoribosyltransferase

dTMP

FdUDP FdUMP

DHF DHFR

NMP-kinase

thymidylate synthase

thymidinkinase

FdUrd dUMP 5,10-MeTHF thymidine phosphorylase

5-fluorouracil

anabolism catabolism

dihydropyrimidine dehydrogenase (DPD) dihydrofluorouracil

neutropenia, anemia mucositis, diarrhea neurological symptoms ME2717.ppt

Candidate Genes: 5-FU Toxicity and Response Dihydropyrimidine dehydrogenase

DPYD

Methylene tetrahydrofolate reductase

MTHFR

Orotate phosphoribosyl transferase

OPRT

Thymidine phosphorylase

TP

Thymidylate synthase

TS

Uridine kinase

UK

Uridine phosphorylase

UP

Fluoropyrimidines

MRP8 (ABC C11)

Uracil transporter

Fur4p

Concentrative nucleoside transporter

CNT1&2

ME3026

apoptosis genes cellcycle genes

NDP-kinase

dUTPhydrolase

uridinphosphorylase

uptake

apoptosis

FdUTP

ribonucleotidreductase

NMP-kinase

uridine kinase

DNA

DNA-repairenzyme

elimination

transporter (?)

dihydropyrimidinase

fluoroureidopropionic acid

patient

ß-ureidopropionase

fluoro-ß-alanine

versus

tumor

ME2774.ppt

Dihydropyrimidine Dehydrogenase (DPD) • DPD catalyzes 1st and rate limiting step • Commonly expressed Fe - Sprotein (predominately in human liver) dihydropyrimidine dehydrogenase (DPD)

• Cytosolic enzyme • Endogenous substrates known • Association to inborn error (familial pyrimidinemia) and

β-alanine

α-F-β-alanine

β-aminoisobutyrate

• Severe 5-FU toxicity (Diasio et al., 1988)

ME2755.ppt

Age of Patient and 5-FU Toxicity

German Study-Group on 5-FU Toxicity

798 patients included

Reasons for exclusion

80

80 (10.0 %) concomitant chemotherapy

70 60

30 (3.8 %) incomplete documentation

< 70 years

50

not significant

40

≥ 70 years

WHO 0-II

30

5 other causes (0.6 %)

20

WHO 0-II

10

683

0

125 patients

study patients GI tumors 95.6 %, breast cancer 2.3 %, CUP 2.0 % ME3039.ppt

Female Sex is a Risk Factor for 5-FU Toxicity 70

WHO III-IV

5-FU Toxicity in Relation to Continuous Infusion versus Bolus Administration WHO° toxicity

male

50

555 patients

ME3028

p = 0.0015

60

WHO III-IV

IV

III

II

I-0

female

40 30 20

DYPD wt/*2A

10 0

Sex ratio [%] Total

WHO° 0-I 476 patients

♂:♀

WHO° II 81 patients

61:39

WHO° III 92 patients

WHO° IV 34 patients

42:58

47:53

47:53

4 bolus N

n=4

2 infusion

34

56:44

2 bolus 1 infusion

92

bolus infusion 26 8

ME3030

n=2

n=3 81

bolus infusion 55 37

3 bolus 1 both

both 3 bolus infusion 51 27

n=4 476

both 4

bolus infusion 269 203

ME3033.ppt

Sex and DPYD*2 Allele associated 5-FU Toxicity

Phenotype is only in part caused by candidate gene DPYD Exon 14 Skipping Mutation explains only ~ 15 % of 5 - FU toxicity

20

Distribution of DPYD*2 ( %)

18

no difference in allele *2 frequency between females (2.3%) and males (1.6%)

14

male:

12

female:

10

p < 0.0001 n. s.

patients

685

wt / *2 *2 / *2

13 0

8

4

0 patients (n)

III

II

I-0

n= 2

n= 3

n=4

Tox 4+3 vs 0-2: 1.9%

n= 4

Odds Ratio 3.9 95%CI 1.3-12, P = 0.019

8/2003

6

2

ME3035

WHO grade IV

16

3 0

4

WHO° 0-I 476 (4)

1 WHO° II 81 (3)

3

1

11.4%

2 0 WHO° III 92 (2)

WHO° IV 34 (4)

number of pts ME2844.ppt

35

2.2% 3.8% 0.8%

91 80 479

German Study-Group on 5-FU Toxicity

Functional Consequences of the TS-promoter Polymorphism promoter

5´ repeats

0

Points

0

Sex (DPD wt)

TSER*2 TSER*3

10

90

Age



Sex (DPD*2) response

2 tandem repeats

TS activity toxicity

thymidylate thymidylate synthase synthase (TS) (TS)

FdUMP

Nomogram for the Prediction of 5-FU Toxicity

response

3 tandem repeats

TS activity 2.6 fold

toxicity

ME2775.ppt

30

40

80

50

75

60 70

25 60

17 17/17 26

70

80

90

100

50/50 100

DPD: Dihydropyrimidine dehydrogenase

wt

Thymidylate synthase

mt

Folinic acid

no

yes

Bolus 11 Mode Infusion wt Methylenetetrahydro8 folate reductase mt Total Points 0 20 40

27/27

139

94

77 60

80 0.1

0.07

ME3128

196

100 120 140 160 180 200 220 0.2

Probability (WHO≥3) [%]

Kaneda et al., Nucleic Acids Res 1987 Kawakami et al., Anticancer Res 1999

20

85

0.4 0.3

0.14

0.6 0.8 0.5 0.7

0.48

0.9

0.88

Pharmacogenetics and Drug Therapy

Pharmacogenetics and Drug Therapy Selection of drug

Avoidance of severe adverse drug reactions

Section of SNP genotype profile Patients with efficacy

with efficacy

SNP profile for toxcicity

without efficacy without toxicity

Predictability of efficacy efficacy

with toxicity

no efficacy Roses, 2000

Roses, 2000 ME2474

ME2476

Pharmacogenetics and Drug Therapy IKP

Selection of dose

STUTTGART

Patients with efficacy

Dr. Margarete Fischer-Bosch-Institut für Klinische Pharmakologie Robert Bosch Stiftung Stuttgart

Acknowledgement % average dose

250 200 150 100 50 25

PM

ME2475

IM

EM

UM

IKP: O. Burk M. Fromm U. Hofmann K. Kivistö U. Klotz T. Mürdter M. Niemi E. Schaeffeler M. Schwab U. Zanger

U. Brinkmann I. Cascorbi Robert Bosch Stiftung I. Hauser DFG (FR 1298/2-1) H. Kroemer BMBF (BEO/310311782) U. Meyer M. Oskarsson Alexander von Humboldt Stiftung I. Roots G. Treiber M. Stanulla, ALL Study Group Hannover M. Kostrzewa, Bruker Leipzig

ME3062.ppt