Physics of Imaging Systems Basic Principles of Computer ...

23 downloads 40 Views 9MB Size Report
Computer Assisted Clinical Medicine. Prof. Dr. Lothar Schad. 12/9/2008 | Page 1. Physics of Imaging Systems. Basic Principles of Computer Tomography (CT) I.
RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 1

Master‘s Program in Medical Physics

Physics of Imaging Systems Basic Principles of Computer Tomography (CT) I Prof. Dr. Lothar Schad

Chair in Computer Assisted Clinical Medicine Faculty of Medicine Mannheim University of Heidelberg Theodor-Kutzer-Ufer 1-3 D-68167 Mannheim, Germany [email protected] www.ma.uni-heidelberg.de/inst/cbtm/ckm/

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 2

Literature I

Dance et al.: “Diagnostic Radiology Physics” Publisher: International Atomic Energy Agency http://www-pub.iaea.org/books/IAEABooks/8841/ Diagnostic-Radiology-Physics-A-Handbook-forTeachers-and-Students Free download !!!

Seite 1 1

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 3

Literature II

Kalender: “Computertomographie. Grundlagen, Gerätetechnologie, Bildqualität, Anwendungen”, 2006

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 4

Literature III

Dössel: “Bildgebende Verfahren in der Medizin”, Chapter 4, 2000

Seite 2 2

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 5

Computer Tomography Introduction

Computer Tomography Introduction

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 6

Literature

source: Kalender. Computertomographie, Publicis MCD Verlag 2000

Seite 3 3

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 7

Mean Effective Dose per Head in 1997

nuclear diagnostic

radon with derivates other radiation sources (nuclear wappons & fallout, Tschernobyl reactor accident, nuclear units, science, technic, household) food

X-ray diagnostic

terrestic radiation cosmic radiation at see level

Regulla et al. ZMP 2003

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 8

Radiodiagnostic Examinations in 1997 percentage of typical radiodiagnostic examinations to the collective effective dose and their frequency

collective effective dose

thorax skeletal esophagus uretic system Mammography angiography CT else

incidence

Regulla et al. ZMP 2003

Seite 4 4

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 9

Visionary Idea in 1896

„Und läßt man der Phantasie weiter die Zügel schießen, stellt man sich vor, daß es gelingen würde, die neue Methode des photographischen Prozesses mit Hilfe der Strahlen aus den Crookeschen Röhren so zu vervollkommnen, daß nur eine Partie der Weichteile des menschlichen Körpers durchsichtig bleibt, eine tiefer liegende Schicht aber auf der Platte fixiert werden kann, so wäre ein unschätzbarer Behelf für die Diagnose zahlloser anderer Krankheitsgruppen als die Knochen gewonnen.“

Frankfurter Zeitung, 7. Januar 1896

source: Kalender. Computertomographie, Publicis MCD Verlag 2000

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 10

CT History

Seite 5 5

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 11

Computer Tomography 1973

original EMI CT head scanner 1973 (Mayo Clinic, Rochester, USA) and 80 x 80 matrix head CT image obtained with it source: Gray and Orton. Radiology 2000

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 12

Brain Image 1974, Matrix 80 x 80

source: Kalender. Computertomographie, Publicis MCD Verlag 2000

Seite 6 6

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 13

Historical Question …

in the early years of CT, an often-heard remark was „ Why would anyone want a new X-ray technique that when compared with traditional X-ray imaging: • yields

10 times more coarse spatial resolution

• is 1/100 as fast in collecting image data • costs 10 times more “

Hendee and Ritenour. Medical Imaging Physics, 4th ed. Wiley, 2002

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 14

… and Answer ! Ct volume data set, matrix 1024 × 1024

source: Kalender. Computertomographie, Publicis MCD Verlag 2000

Seite 7 7

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 15

X-Ray and CT Contrast

source: Kalender. Computertomographie, Publicis MCD Verlag 2000

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 16

Why Cross-Sections ?

1. no superposition → higher contrast 2. three-dimensional localization

Seite 8 8

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 17

CT Contrast

CT image

X-ray image

high local contrast of soft tissue structure

low soft tissue contrast due to superimposed bone

source: Kalender. Computertomographie, Publicis MCD Verlag 2000

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 18

Computer Tomography Principle

Computer Tomography Principle

Seite 9 9

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 19

CT Measurement: Principle I

- gives system of equations for each projection - generate enough projections to solve system of equations

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 20

CT Measurement: Principle II

case 1: homogeneous object, monochromatic radiation

- intensity of X-ray radiation can be used to calculate the attenuation- or projection-value P which can lead to the absorption coefficient µ in a simple case (homogeneous object) - µ can not be calculated in inhomogeneous objects since µ is a function of (x, y) → tomographic method !

case 2: inhomogeneous object, monochromatic radiation

case 3: inhomogeneous object, polychromatic radiation

source: Kalender. Computertomographie, Publicis MCD Verlag 2000

Seite 10 10

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 21

CT Measurement: Principle III

X-ray tube collimator detector with electronic collimator

intensity profile

attenuation profile = “projection”

in the simplest case object is scanned linearly by a needle beam at different angles to determine the attenuation profile source: Kalender. Computertomographie, Publicis MCD Verlag 2000

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 22

CT Measurement: Principle IV

algebraic reconstruction technique (ART)

source: Kalender. Computertomographie, Publicis MCD Verlag 2000

Seite 11 11

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 23

CT Image Reconstruction and Convolution

X-ray tube

without convolution

back projection

with convolution

collimator collimator detector with electronic

attenuation profile (simplified)

- corresponds to high pass filter

profile cut source: Kalender. Computertomographie, Publicis MCD Verlag 2000

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 24

Hounsfield Values

definition CT-value: CT-values contain the linear absorption coefficients of the underlying tissue in every volume element with respect to the µ-value of water. Using this definition the CT-values of different organs are relatively stable and independent of the X-ray spectrum.

CT-value = (µ - µwater) / µwater x 1000 HU

Seite 12 12

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 25

Hounsfield Scale compact bone

CT-number [HU]

liver blood pancreas

spongy bone water

kidney

fat

lung

air

4096 values → 212 → 12 Bit source: Kalender. Computertomographie, Publicis MCD Verlag 2000

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 26

CT Windowing

CT-number [HU]

bone window

- windowing of Hounsfield values at different evaluations of CT images mediastinum window

- human eye can distinguish only 60-80 grey values !

lung window

source: Kalender. Computertomographie, Publicis MCD Verlag 2000

Seite 13 13

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 27

Radon Transformation I

Θ = 0 - 180° s = smin - smax

source: Dössel. “Bildgebende Verfahren in der Medizin” 2000

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 28

Radon Transformation II

p(Θ,s)-diagram projection pΘ(s) = series of numbers of all line integrals of f(x,y) at constant angle Θ and variable distance s to the coordinate origin

source: Dössel. “Bildgebende Verfahren in der Medizin” 2000

Seite 14 14

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 29

Radon Transformation: Example

inside outside

radius of area

source: Dössel. “Bildgebende Verfahren in der Medizin” 2000

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 30

Fourier-Slice-Theorem I

Seite 15 15

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 31

Fourier-Slice-Theorem II

- given is a function f(x,y) an its 2D Fourier transformation F(u,v) f(x,y)

2D-FT

F(u,v)

- given is also pΘ(s) defined as a projection of f(x,y) (i.e. a line of the Radon transformation with Θ = const.) and PΘ(w) its 1D Fourier transformation pΘ(s)

1D-FT

PΘ(w)

- then PΘ(w) describes the values of F(u,v) on a radial beam at angle Θ - how to get from the Radon transformation p(Θ,s) back to the function f(x,y) ? • evaluate from all projections pΘ(s) the 1D Fourier transformation PΘ(w) • take the values of the radial beam at Θ and put them into the function F(u,v) • find f(x,y) by doing the inverse 2D Fourier transformation

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 32

X-Ray Pencil Beam Through a Body

incoming X-ray intensity outgoing X-ray intensity X-ray absorption coefficient

Seite 16 16

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 33

CT Reconstruction Principle I - idea of backprojection: transform measured µ-values into “line thickness” for all projections and add up !

y

x

in the order of 1000 projections with 1000 channels are acquired per detector slice and rotation

y

courtesy: Kachelriess, Erlangen

x

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 34

CT Reconstruction Principle II

- wanted:

function µ(x,y) „X-ray absorption coefficient as a function of (x,y) in a body slice“

- measured:

all line integrals over µ(x,y) i.e. Radon transformation of the wanted function µ(x,y)

- generation of images: Fourier reconstruction • measurement of as many as possible projections with a large number of points (pΘ(s)) projections pΘ(s) are 1D Fourier transformed into (PΘ(w)) • transformed projections are recorded in a matrix F(u,v) problem: interpolation between known values on radial beams and required values on a cartesian grid (F(u,v) complex) • multiplication of F(u,v) with a filter function • inverse 2D Fourier transformation

Seite 17 17

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad

CT Sinogram I

absorption µ

10/30/2015 | Page 35

x

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 36

CT Sinogram II

sinogram = sum of all projections

- sinogram: = sum of all projections = “Radon transformation” of µ(x,y) - absorption strength = brightness

scanning distance x

Seite 18 18

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 37

CT: Back Projection

CT image

sinogram

reconstruction: back projection

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 38

CT: Filtering

sinogram

filtered sinogram

filtering

filter kernel

convolution kernel

unfiltered profile

= filtered profile

Seite 19 19

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad

CT: Filtered Back Projection

10/30/2015 | Page 39

CT image

filtered sinogram

reconstruction: filtered back projection

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 40

Unfiltered and Filtered Projections

measurement

unfiltered back projection of one measurement

unfiltered back projection of all measurements

measurement

filtered back projection of one measurement

filtered back projection of all measurements

source: Dössel. “Bildgebende Verfahren in der Medizin” 2000

Seite 20 20

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 41

CT: Projections and Filtered Projections

inverse Fourier transformation of

summing up all filtered projections source: Dössel. “Bildgebende Verfahren in der Medizin”, 2000

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 42

CT: Filtered Back Projection Principle

• filtering of all measured projections pΘ(s) with |w| gives ~ pΘ(s) • following all filtered projections ~ pΘ(s) with respect to Θ for the whole matrix and adding up all values of the filtered projections into the imaging matrix

source: Dössel. “Bildgebende Verfahren in der Medizin” 2000

Seite 21 21

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 43

Filter Functions I - filter limiting:

- filter functions cernel from:

even, ≠ 0 odd

a = detector distance

filter functions H(w) source: Dössel. “Bildgebende Verfahren in der Medizin” 2000

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 44

Filter Functions II

source: Dössel. “Bildgebende Verfahren in der Medizin” 2000

Seite 22 22

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 45

CT: Iterative Reconstruction

pencil beam j

- unknown: 512x512 = 262 144 pixel

- measured: 1000 projections with 800 detectors = 800 000 equations

part of area wij

→ can be algebraic solved !

source: Dössel. “Bildgebende Verfahren in der Medizin” 2000

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 46

CT: Iterative Reconstruction Solution • processing of 1. projection data value is distributed in equal shares to involved projection pixels • processing of 2. projection difference between “forward calculated data values” and really measured values is used for correction in equal shares to involved projection pixels • processing of all other projections in the same way about 1h calculation time for 512 x 512 ! source: Dössel. “Bildgebende Verfahren in der Medizin” 2000

Seite 23 23

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 47

CT Scanner Generations 1-2

II.

I. CT scanner 1. generation pencil beam (1970)

CT scanner 2. generation partly fan beam (1975) 30 detectors, fan: 10°

source: Kalender. Computertomographie, Publicis MCD Verlag 2000

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 48

CT Scanner Generation 1: EMI-Scanner

Seite 24 24

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 49

CT Scanner Generation 2 multi-detector-translational-rotating system

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 50

CT Scanner Generation 3 CT scanner 3. generation fan beam (1976) 500 – 800 detectors fan: 40° - 60° (whole body) 1000 projections / sec but cable problems: 360° forward rotation stop 360° backward rotation stop …

rotating detector arch

III. rotation without translation

souirce: Kalender. Computertomographie, Publicis MCD Verlag 2000

Seite 25 25

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 51

CT 3. Generation: Collimation fan beam scanner

trajectory of X-ray tube

collimator lamellae

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 52

CT Scanner Generation 3: Principle tube 0°

tube beam at tube 180°

rotation

beam at tube 0°

detectors

III.

tube 180° beam at tube 180° and 0°

„jumping focus“

source: Dössel. “Bildgebende Verfahren in der Medizin” 2000

Seite 26 26

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 53

CT Scanner Generation 3: Jumping Focus

C cathode B

C

anode

cooling oil

straton tube courtesy: Kachelriess, Erlangen

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 54

III.

CT Scanner Generation 3-4

fancy beam unit

IV.

ring detector unit

rotation axis collimator lamellae

Xe-chamber

electrodes rotating detector arch (Xe high-pressure chamber)

fix detector arch (scintillators)

Seite 27 27

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 55

CT Scanner Generation 4

fix detector ring

CT scanner 4. generation fan beam up to 5000 detectors problem: no collimation possible very high scatter radiation very expensive

IV.

souirce: Kalender. Computertomographie, Publicis MCD Verlag 2000

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 56

CT Scanner Generation 3-4

“Mayo – Monster”

Seite 28 28

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 57

Typical CT Examination Room

souirce: Kalender. Computertomographie, Publicis MCD Verlag 2000

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 58

Contact Ring Technique

X-ray tube

detector detector electronic

high voltage

projection data

schematic illustration of the contact ring technique for electric energy supply of the X-ray components and for signal transfer from the detectors to computer souirce: Kalender. Computertomographie, Publicis MCD Verlag 2000

Seite 29 29

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 59

Contact Ring Mounting and Testing

souirce: Kalender. Computertomographie, Publicis MCD Verlag 2000

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 60

CT Components Geometry

X-ray tube form filter fix aperture adjustable aperture

gantry opening

field-of-view

rotation center

scatter radiation collimator

adjustable aperture

detector array

fix aperture

souirce: Kalender. Computertomographie, Publicis MCD Verlag 2000

Seite 30 30

RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computer Assisted Clinical Medicine Prof. Dr. Lothar Schad 10/30/2015 | Page 61

Subsecond CT

1 sec. rotation time

0.5 sec. rotation time

- mechanic forces: acceleration ~ 10-20 g, X-ray tube ~ 200 kg → 20-40 000 N ! - mechanic stability: 0.1 mm !

Seite 31 31