Physics, Topology, Logic, and Computation: A Rosetta Stone
Recommend Documents
system manifold proposition data type ... Objects. ⢠String diagrams have 'strings' or 'wires': X ... Quantum mechanic
Jun 6, 2009 - We compose two morphisms by connecting the output of one black box to the input of the next. So, the composite of f: X â Y and g: Y â Z looks ...
Mar 2, 2009 - In physics, Feynman diagrams are used to reason about quantum ..... More precise definitions can be found in many sources, at least for k = 2, ...
Mar 2, 2009 - Definition 2 We say a morphism f: X → Y is an isomorphism if it has an ... Similarly, if we draw the identity morphism 1X: X → X as a piece of.
Mar 2, 2009 - Department of Mathematics, University of California ... Computer Science Department, University of Auckland and ... There are good reasons.
Mar 2, 2009 - correspondence' relating proofs to programs has been well-known at least since the ... quantum field theor
Mar 2, 2009 - theory, proof theory or computer science. 1 Introduction. Category theory is a very general formalism, but
Rosetta Stone. The discovery of the Rosetta Stone on July 15, 1799, and the translation work that followed, unlocked the
Each Rosetta Course level has several units, each of which focuses on a
language topic. ... listening to the language and want to focus on pronunciation.
TÜRKÇE. Niveau 3. Nivel 3. Level 3. Livello 3. Nível 3. 3 级. 단계 3. レベル 3 .....
18 Türkçe konuşan birine ihtiyacım var. .... Yedi aydır Türkçe öğreniyorum.
CCB-ITA-L1-2.0 - 55757. ISBN 978-1-58022-937-1. All information in this
document is subject to change without notice. This document is provided for ...
Sektion 3. 1) Er hat den Ball geworfen. 2) Sie werden vom Bett springen. 3) Sie
hat die Blumen gefangen. 4) Ich repariere das Telefon nicht. Arbeitsblatt 3.
eQTL mapping gathers gene expression data using mRNA micro- arrays and .... To test their predictions, the team disrupted several of the MEMN genes and ... XDx markets AlloMap, a molecular expression screening service for diagnosing ...
DEUTSCH. 3 级. NÃvel 3. Niveau 3. Nivel 3. Livello 3. ë¨ê³ 3. Level 3. Stufe 3. ã¬ãã« 3 ...... Sie macht eine Ho
Der Vogel ist rot. Dieser Vogel sitzt auf einer Blume. Dieser Vogel sitzt an einem Baum. 06 Diese Vögel sind grün. Die
Each Rosetta Course level has several units, each of which focuses on a ..... 2.
Listen to the native speaker and watch the voice graph. 3. At the Record prompt,
...
ricerca pubblicata dagli esperti in comunicazione Allan e Barbara Pease. ... la
transizione da casa-famiglia al posto di lavoro sia meno traumatica possibile e si.
PORTUGUÊS. Level 1. Stufe 1. レベル 1. Nivel 1. Livello 1 ... PORTUGUESE. (
BRAZIL). PORTUGIESISCH ...... Muito prazer. Olá. Qual é o seu nome? Meu
nome ...
Berlitz Self-Teaching Record Course: Italian (BZ). LL Book ... Students will take 3
short tests for each unit. Each test ... Block 5: Units 1 and 2 (Level 3). Block 6: ...
T (540) 432-6166 ⢠(800) 788-0822 in the USA and Canada. F (540) 432- ..... 05 Der Computer ist auf dem Tisch. Das Rad
TÜRKÇE. Niveau 3. Nivel 3. Level 3. Livello 3. Nível 3. 3 级. 단계 3. レベル 3 .....
18 Türkçe konuşan birine ihtiyacım var. .... Yedi aydır Türkçe öğreniyorum.
There may be more than one possible answer. ... sleeping. Unit 1, Lesson 2, Test.
Section 1. Choose a word or phrase from each column to make a complete ...
Physics, Topology, Logic, and Computation: A Rosetta Stone
system manifold proposition data type ... Computation: parallel programming ... Syntax [Programming language]. Semantics
Physics, Topology, Logic, and Computation: A Rosetta Stone John C. Baez UC Riverside Mike Stay Google, U. of Auckland
1
The Rosetta Stone (pocket version) Category Theory Physics Topology Logic Computation object system manifold proposition data type morphism process cobordism proof program
2
Objects • String diagrams have ‘strings’ or ‘wires’: X • Quantum mechanics has Hilbert spaces: • Topology has manifolds:
X ! Cn
X
• Linear logic has propositions: X = “I have an item of type X.” • Computation has datatypes: interface X; • SET has sets: X 3
Morphisms • String diagrams have vertices: X f Y
• Quantum mechanics has linear transformations: f :X→Y
!
f : Cn → Cm
(An m × n matrix with complex entries)
4
Morphisms X
• Topology has cobordisms:
Y • Linear logic has constructive proofs: X#Y • Computation has programs: Y f(X); • SET has functions: f : X → Y
5
Morphisms compose associatively • String diagrams: X f Y g Z
Morphisms compose associatively • Linear logic: Y # Z X # Y (◦) X#Z • Computation: Y f(X x); Z g(Y y); ... z = g(f(x)); • SET: (g ◦ f ) : X → Z
7
Identity morphisms • String diagrams:
X
• Quantum mechanics: identity matrix
!
1 0 0 1
"
• Topology: • Linear logic:
X#X
(i)
• Computation: X id(X x) { return x; } • SET: 1X : X → X 8
Monoidal categories • String diagrams: X%
X
f%
f Y
Y%
X%
X f ⊗ f%
= Y
X ⊗ X% =
Y%
f ⊗ f%
Y ⊗ Y%
• Quantum mechanics: tensor product ! " ! " ae a f ag be ah a j ak bh a b e f g ⊗ = h j k c d ce c f cg de ch c j ck dh 9
bf bj df dj
bg bk dg dk
Monoidal categories • Topology: % # Y% X # Y X • Linear logic: AND (⊗) % % X⊗X #Y ⊗Y • Computation: parallel programming
Pair pair; • SET: f × f % : X × X % → Y × Y %
10
Monoidal unit • String diagram: • Quantum mechanics: I = C, the phase of a photon • Topology: • Linear logic: I, trivial proposition • Computation: I = void or I = unit type • SET: one-element set I
11
Braided monoidal categories • String diagrams: X
Y
• Quantum mechanics: swap the particles. Bosons commute, fermions anticommute; quantized magnetic flux tubes in thin films, or “anyons”, can have arbitrary phase multiplier.
12
Braided monoidal categories • Topology: • Linear logic: W # X ⊗ Y (b) W #Y⊗X • Computation: pair.swap(); • SET: b('x, y() = 'y, x(
13
Braided monoidal closed categories • String diagrams: Y Y
X f
X
Z
•
f
)→
Z
Quantum mechanics: antiparticles 1X : X → X e−
pair : I → X ∗ ⊗ X
!
)→ e+
14
e−
Braided monoidal closed categories • Topology:
)→
• Linear logic: IMPLIES X ⊗ Y # Z Y#X!Z • Computation: Currying
(c)
z = f(x, y); or z = f(y)(x); • SET: f : X × Y → Z
! 15
f : Y → ZX
Model Theory f X
Y g
16
Model Theory s V
E t
Th(Graph)
17
Model Theory Th(Graph) SET object V set of vertices object E set of edges morphism s : E → V function that picks out the source of each edge morphism t : E → V function that picks out the target of each edge
18
Model Theory (in Java) interface ThGraph { // Internal interfaces interface V; interface E; // Methods V s(E); V t(E); } A functor is a structure-preserving map. In Java terms, a functor picks out a class that implements the interface.
19
Model Theory (Classical) Syntax [Programming language] data type method
20
Semantics [CE-SET] computably enumerable set of values partially recursive function
Model Theory (Quantum) Syntax [Programming language] Semantics [QM] data type Hilbert space of values method linear transformation
21
Model Theory (Quantum) Syntax [Topology] Semantics [QM] manifold Hilbert space of states cobordism linear transformation Topological Quantum Field Theory