Pi - Unleashed

7 downloads 144 Views 101KB Size Report
Jorg Arndt Christoph Haenel. Pi - Unleashed. Translated from the German by Catriona and David Lischka. With CD-ROM. Springer ...
Jorg Arndt Christoph Haenel

Pi - Unleashed Translated from the German by Catriona and David Lischka

With CD-ROM

Springer

Contents

1. The State of Pi Art

1

2. How Random is TT? 2.1 Probabilities 2.2 Is 7T normal? 2.3 So is TT not normal? 2.4 The 163 phenomenon 2.5 Other statistical results 2.6 The Intuitionists and TT 2.7 Representation of continued fractions

21 21 21 24 25 28 30 32

3. Shortcuts to TT 3.1 Obscurer approaches to TT 3.2 Small is beautiful 3.3 Squeezing TT through a sieve 3.4 TT and chance (Monte Carlo methods) 3.5 Memorabilia 3.6 Bit for bit 3.7 Refinements 3.8 The TT room in Paris

35 35 37 38 39 44 47 49 50

4. Approximations for TT and Continued Fractions 4.1 Rational approximations 4.2 Other approximations 4.3 Youthful approximations 4.4 On continued fractions

51 51 55 63 64

5. Arcus Tangens 5.1 John Machin's arctan formula 5.2 Other arctan formulae

69 69 72

X

6.

Contents

Spigot Algorithms 6.1 The spigot algorithm in detail 6.2 Sequence of operations 6.3 A faster variant 6.4 Spigot algorithm for e

7. Gauss and TT 7.1 The TT AGM formula 7.2 The Gauss AGM algorithm 7.3 Schonhage variant 7.4 History of a formula

77 78 80 82 84 87 87 90 92 94

8. Ramanujan and TT 8.1 Ramanujan's series 8.2 Ramanujan's unusual biography 8.3 Impulses

103 103 105 110

9.

113

The Borweins and TT

10. The B B P Algorithm 10.1 Binary modulo exponentiation 10.2 A C program on the BBP series 10.3 Refinements

117 120 123 126

11. Arithmetic 11.1 Multiplication 11.2 Karatsuba multiplication 11.3 FFT multiplication 11.4 Division 11.5 Square root 11.6 nth root 11.7 Series calculation

131 131 132 135 145 146 149 150

12. Miscellaneous 12.1 A TT quiz 12.2 Let numbers speak 12.3 A proof that TT = 2 12.4 The big change 12.5 Almost but not quite 12.6 Why always more?

153 153 154 155 155 156 158

Contents 12.7 TT and hyperspheres 12.8 Viete x Wallis = Osier 12.9 Squaring the circle with holes 12.10An (in)finite funnel

XI 158 160 162 164

13. The History of TT 13.1 Antiquity 13.2 Polygons 13.3 Infinite expressions 13.4 High-performance algorithms 13.5 The hunt for single TT digits Table: History of TT in the pre-computer era Table: History of TT in the computer era Table: History of digit extraction records

165 167 170 185 198 203 205 206 207

14. Historical Notes 14.1 The earliest squaring the circle in history? 14.2 A TT law 14.3 The Bieberbach story

209 209 211 213

15. The Future: TT Calculations on the Internet 15.1 The binsplit algorithm 15.2 The TT project on the Internet

215 215 219

16. 7T Formula Collection

223

17. Tables 17.1 Selected constants to 100 places (base 10) 17.2 Digits 0 to 2,500 of TT (base 10) 17.3 Digits 2,501 to 5,000 of TT (base 10) 17.4 Digits 0 to 2,500 of TT (base 16) 17.5 Digits 2,501 to 5,000 of TT (base 16) 17.6 Continued fraction elements 0 to 1,000 of TT 17.7 Continued fraction elements 1,001 to 2,000 of vr

239 239 240 241 242 243 244 245

A. Documentation for the hfloat Library A.I What hfloat is (good for) A.2 Compiling the library A.3 Functions of the hfloat library A.4 Using hfloats in your own code

247 247 248 248 250

XII

Contents

A.5 Computations with extreme precision A.6 Precision and radix A.7 Compiling & running the 7r-example-code A.8 Structure of hfloat A.9 Organisation of the files A. 10 Distribution policy k, no warranty

250 251 253 253 254 255

Bibliography

257

Index

265