Potential Vanilloid 1 ion channel

45 downloads 0 Views 3MB Size Report
1. The conformational wave in capsaicin activation of Transient Receptor. 1 ..... /media/fan/Data/OneDrive/Academic/Academic_Computation/Rosetta_script/ ...


The conformational wave in capsaicin activation of Transient Receptor  Potential Vanilloid 1 ion channel 

3  4 

Fan Yang1,3# ¶, Xian Xiao2,3#, Bo Hyun Lee3#§, Simon Vu3, Wei Yang1, Vladimir YarovYarovoy3 and Jie Zheng3¶



1Department

of Biophysics and Kidney Disease Center, First Affiliated Hospital, Institute of Neuroscience, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang Province, China. 2Institute for Basic Medical Sciences, Westlake Institute for Advanced Study, Westlake University, Shilongshan Road No. 18, Xihu District, Hangzhou 310024, Zhejiang Province, China. 3Department of Physiology and Membrane Biology, University of California, Davis, California 95616, USA.

5  6  7  8  9  10  11  12  13 

#

14  15 

§

16  17 



18 

 

These authors contributed equally to this work.

Current address: University of Washington, Department of Physiology and Biophysics, Seattle WA 98195 Correspondence and requests for materials should be addressed to F.Y. (email: [email protected]) or to J.Z. (email: [email protected])

19 

1   

20  21  22  23  24  25  26  27 

Supplementary Figure 1. Functional confirmation of ANAP-incorporated TRPV1 channels. (a) Location of ANAP-incorporated sites. (b to e) In calcium imaging, 10 µM capsaicin was used to test the function of channels expressed in HEK293T cells. 3 mM ionomycin was perfused at the end of imaging as a positive control. In whole-cell recordings, 10 µM capsaicin and 3 mM 2-APB were perfused. Channels with ANAP incorporated at C579, T651 and Y654 site were activated by capsaicin in both calcium imaging and whole-cell recording. The scale bar: 100 μm.

28 

2   

29  30  31  32  33 

Supplementary Figure 2. Clusters of the top 10 open state models. (a) Top 10 models of capsaicin-induced open state channel. The selectivity filter was boxed in dashed line. (b to d) Cluster 1 to 3 were shown, respectively. (e) Distribution of pore radii in Cluster 1 to 3. (f) Predicted conductance of the models in different Clusters.

34 

3   

35  36  37  38  39  40 

Supplementary Figure 3. Comparison between our refined open state model and cryoEM structure models. (a and b) Side and top view of our refined open state model fitted into the cryo-EM density map (capsaicin-bound state, EMD ID: 5777). (c and d) Side of top view of our refined open state model (blue) aligned with the open state model before refinement (red).

41 

4   

42  43  44  45  46  47  48  49  50  51  52  53 

Supplementary Figure 4. Incorporation of ANAP into TRPV1 models. (a) A representative backbone dependent rotamer library of ANAP (phi and psi angle: -60° and -30°, respectively). Atoms in the backbone are colored in gray. (b) The full backbone dependent rotamer library. Phi and psi angle are binned from -180° to 180° with a 10° interval, respectively. (c and d) ANAP residue (red) was incorporated into TRPV1 models in the closed and open states, respectively. (e) SASA of ANAP at 651 site was significantly increased in the open state (*, p < 0.05; n = 4) (f) Correlation between shift in ANAP emission peak (y axis) and changes in SASA measured from cryo-EM structures (x axis) for the 651 site. When ANAP was incorporated at this site, it showed an increase in SASA similar to the increase in SASA measured for a Threonine residue in Fig. 3c. n = 5-to-7. All statistical data are given as mean ± s.e.m.

54 

5   

55  56  57  58  59  60  61  62  63  64  65 

Supplementary Figure 5. Φ-analysis for additional sites on TRPV1. (a and b) Representative single-channel recordings of multiple mutations at the T551 and M548 sites, respectively. (c) M548 site (red) locates within the capsaicin binding pocket. (d) Brønsted plot to determine the Φ value for the 548 site. (e and f) Location and Brønsted plot to determine the Φ value for the 643 site. (g and h) Location and Brønsted plot to determine the Φ value for the 647 site. (i and j) Location and Brønsted plot to determine the Φ value for the 648 site. (k and l) Location and Brønsted plot to determine the Φ value for the 649 site. (m and n) Location and Brønsted plot to determine the Φ value for the 682 site. (o and p) Location and Brønsted plot to determine the Φ value for the 685 site.

6   

66 

Supplementary Table 1. Assessments of model quality. TRPV1 (3J5P) TRPV1 (5IRZ) TRPV1 Open Model

75  76  77  78 

ERRAT Overall quality 86.213

VERIFY_3D Compatibility with sequence 67.47%

WHAT_CHECK PROVE 67  Pass Warning Error Outlier atoms 68 

77

26

6

7.2%

69  70 

63.375

35.79%

70

19

6

7.4%

71  72 

86.301

56.83%

74

26

5

6.0%

73  74 

TRPV1 structures determined from cryo-EM, as well as open model of TRPV1 we computed with the Rosetta suite (shaded in green), were assessed by four independent protein structure analysis and verification methods (Green: higher in number is better; Orange and Red: lower in number is better).

79 

7   

80 

Supplementary Table 2. Primers used in this study to generate point mutations. Name D647A D647E D647Q D647V E571A E571C E571D E571Q E571R E649A E649D E685A E685D E685Q F650A F650A F650I F650I F650L F650M F650M F650Y G684A G684S G684V I574A I643A I643L I643V I680A I680F I680G I680L I680S L648A

Primer-Forward GACACTGATCGAGTGTGGGAAGAATAACTC CACCATCGGCATGGGTGCCCTGGAGTTCAC CACCATCGGCATGGGTGTCCTGGAGTTCAC CTATCGGCCTGTGTGTGGCTTGCCCCCCTA TGCTGTCATGATTTGCAAGATGATCCTCAG TGCTGTCATGATTGACAAGATGATCCTCAG TGCTGTCATGATTCAGAAGATGATCCTCAG GTCATGATTAGGAAGATGATCCTCAGAGACC GTGACACTGATCTGCGATGGGAAGAATAA TGGGTGACCTGGAGGCCACCGAGAACTATGA TGGGTGACCTGGAGATCACCGAGAACTATGA TGGGTGACCTGGAGATGACCGAGAACTATGA TCGGCCTGTGGAATGTTTGCCCCCCTATA CACTGATCGAGGATTGCAAGAATAACTCAC GCTGTCTTCATCGCCCTGTTACTGGCCTATG TGCTCAACATGCTCGCTGCTCTCATGGG TGCTCAACATGCTCTTTGCTCTCATGGG TGCTCAACATGCTCGGTGCTCTCATGGG TGCTCAACATGCTCCTTGCTCTCATGGG TGCTCAACATGCTCAGTGCTCTCATGGG CTGATCGAGGATGGGTGCAATAACTCACTGC CTGGAGCTGTTCGAGTTCACCATCGGCATG GGACAGCTACAGTGAGATAGCTTTCTTTGTA CAG GCATGGGTGACGCGGAGTTCACCGAGAA GGCATGGGTGACTTCGAGTTCACCGAGAA TGGCCTATGTGATTGCCACCTACATCCTC CTACATCCTCCTGGCCAACATGCTCATTG CTACATCCTCCTGTGCAACATGCTCATTG CTACATCCTCCTGTTCAACATGCTCATTG CATGCTCATTGCTGCCATGGGCGAGACTG CATGCTCATTGCTTTCATGGGCGAGACTG CATGCTCATTGCTGGAATGGGCGAGACTG CATGCTCATTGCTAGCATGGGCGAGACTG TTCTCCCTGGCCTTCGGCTGGACCAACATG GTTTGTGGACAGCTACACTGAGATACTTTTC TTTG

Primer-Reverse GAGTTATTCTTCCCACACTCGATCAGTGTC GTGAACTCCAGGGCACCCATGCCGATGGTG GTGAACTCCAGGACACCCATGCCGATGGTG TAGGGGGGCAAGCCACACACAGGCCGATAG CTGAGGATCATCTTGCAAATCATGACAGCA CTGAGGATCATCTTGTCAATCATGACAGCA CTGAGGATCATCTTCTGAATCATGACAGCA GGTCTCTGAGGATCATCTTCCTAATCATGAC TTATTCTTCCCATCGCAGATCAGTGTCAC TCATAGTTCTCGGTGGCCTCCAGGTCACCCA TCATAGTTCTCGGTGATCTCCAGGTCACCCA TCATAGTTCTCGGTCATCTCCAGGTCACCCA TATAGGGGGGCAAACATTCCACAGGCCGA GTGAGTTATTCTTGCAATCCTCGATCAGTG CATAGGCCAGTAACAGGGCGATGAAGACAGC CCCATGAGAGCAGCGAGCATGTTGAGCA CCCATGAGAGCAAAGAGCATGTTGAGCA CCCATGAGAGCACCGAGCATGTTGAGCA CCCATGAGAGCAAGGAGCATGTTGAGCA CCCATGAGAGCACTGAGCATGTTGAGCA GCAGTGAGTTATTGCACCCATCCTCGATCAG CATGCCGATGGTGAACTCGAACAGCTCCAG CTGTACAAAGAAAGCTATCTCACTGTAGCTG TCC TTCTCGGTGAACTCCGCGTCACCCATGC TTCTCGGTGAACTCGAAGTCACCCATGCC GAGGATGTAGGTGGCAATCACATAGGCCA CAATGAGCATGTTGGCCAGGAGGATGTAG CAATGAGCATGTTGCACAGGAGGATGTAG CAATGAGCATGTTGAACAGGAGGATGTAG CAGTCTCGCCCATGGCAGCAATGAGCATG CAGTCTCGCCCATGAAAGCAATGAGCATG CAGTCTCGCCCATTCCAGCAATGAGCATG CAGTCTCGCCCATGCTAGCAATGAGCATG CATGTTGGTCCAGCCGAAGGCCAGGGAGAA CAAAGAAAAGTATCTCAGTGTAGCTGTCCAC AAAC 8 

 

L648A L648F L648F L648G L648G L648I L648V L676C L676F L676G L682A L682F L682G L682S M548A M548F M548L M548Q M645I M645L M645V M683F M683L M683T T551A T551S T551V T642A T642G T642L T642M T642N T642S T651L T651Q T651S

GTTTGTGGACAGCTACTATGAGATACTTTTC CAAGTGTCGGGGACCTGCCTGCAGGCCAG GTAACTCTTACAACCCACTGTATTCCACATG GCCATGGGCTGGGCCAACATGCTCTACTAC GCCATGGGCTGGTCCAACATGCTCTACTAC GCCATGGGCTGGGTCAACATGCTCTACTAC CAGCCTGTATTCCCCATGTCTGGAGCTGTTC GTTTGTGGACAGCTGCAGTGAGATACTTTTC GTTTGTGGACAGCTTCAGTGAGATACTTTTC CATGGGTGACCTGGCGTTCACCGAGAACTA CATGGGTGACCTGGACTTCACCGAGAACTA GTGACCTGGAGTTCTCCGAGAACTATGACTT CA GTGACCTGGAGTTCCAGGAGAACTATGACTT CA GTGACCTGGAGTTCTTGGAGAACTATGACTT CA GCATGGGTGACGGGGAGTTCACCGAGAA GGCATGGGTGACTTCGAGTTCACCGAGAA GGCATGGGTGACGTCGAGTTCACCGAGAA GGCATGGGTGACATCGAGTTCACCGAGAA TGGGTGACCTGGAGGCCACCGAGAACTATGA TGGGTGACCTGGAGATCACCGAGAACTATGA TGGGTGACCTGGAGATGACCGAGAACTATGA TGGGTGACCTGGAGTACACCGAGAACTATGA TGGGTGACCTGGAGCTGACCGAGAACTATGA CATCGGCATGGGTGAGCTGGAGTTCACCGA GTTCACCATCGGCATCGGTGACCTGGAGTTC A CTCATTGCTCTCTTCGGCGAGACTGTCAA CTCATTGCTCTCCTGGGCGAGACTGTCAA CATTGCTCTCATGGCCGAGACTGTCAACAA CATTGCTCTCATGGTCGAGACTGTCAACAA CATTGCTCTCATGAGCGAGACTGTCAACAA TTGCTCTCATGGGCGACACTGTCAACAAGA TTGCTCTCATGGGCCAGACTGTCAACAAGA TTGCTCTCATGGGCGCGACTGTCAACAAGA CTCTCATGGGCGAGTCTGTCAACAAGATTG CTCTCATGGGCGAGCTTGTCAACAAGATTG CTCTCATGGGCGAGAATGTCAACAAGATTG

GAAAAGTATCTCATAGTAGCTGTCCACAAAC CTGGCCTGCAGGCAGGTCCCCGACACTTG CATGTGGAATACAGTGGGTTGTAAGAGTTAC GTAGTAGAGCATGTTGGCCCAGCCCATGGC GTAGTAGAGCATGTTGGACCAGCCCATGGC GTAGTAGAGCATGTTGACCCAGCCCATGGC GAACAGCTCCAGACATGGGGAATACAGGCTG GAAAAGTATCTCACTGCAGCTGTCCACAAAC GAAAAGTATCTCACTGAAGCTGTCCACAAAC TAGTTCTCGGTGAACGCCAGGTCACCCATG TAGTTCTCGGTGAAGTCCAGGTCACCCATG TGAAGTCATAGTTCTCGGAGAACTCCAGGTC AC TGAAGTCATAGTTCTCCTGGAACTCCAGGTC AC TGAAGTCATAGTTCTCCAAGAACTCCAGGTC AC TTCTCGGTGAACTCCCCGTCACCCATGC TTCTCGGTGAACTCGAAGTCACCCATGCC TTCTCGGTGAACTCGACGTCACCCATGCC TTCTCGGTGAACTCGATGTCACCCATGCC TCATAGTTCTCGGTGGCCTCCAGGTCACCCA TCATAGTTCTCGGTGATCTCCAGGTCACCCA TCATAGTTCTCGGTCATCTCCAGGTCACCCA TCATAGTTCTCGGTGTACTCCAGGTCACCCA TCATAGTTCTCGGTCAGCTCCAGGTCACCCA TCGGTGAACTCCAGCTCACCCATGCCGATG TGAACTCCAGGTCACCGATGCCGATGGTGAA C TTGACAGTCTCGCCGAAGAGAGCAATGAG TTGACAGTCTCGCCCAGGAGAGCAATGAG TTGTTGACAGTCTCGGCCATGAGAGCAATG TTGTTGACAGTCTCGACCATGAGAGCAATG TTGTTGACAGTCTCGCTCATGAGAGCAATG TCTTGTTGACAGTGTCGCCCATGAGAGCAA TCTTGTTGACAGTCTGGCCCATGAGAGCAA TCTTGTTGACAGTCGCGCCCATGAGAGCAA CAATCTTGTTGACAGACTCGCCCATGAGAG CAATCTTGTTGACAAGCTCGCCCATGAGAG CAATCTTGTTGACATTCTCGCCCATGAGAG 9 

 

T686L T686N T686S C579_TAG T651_TAG Y654_TAG

CATGCTCTACTACACCGAAGGATTCCAGCAG A CATGCTCTACTACACCGACGGATTCCAGCAG A CATGCTCTACTACACCAACGGATTCCAGCAG A AGACGAACATAAACCGCTACAGGTCTCTGAG GATCATCTTC GCCTTGAAGTCATAGTTCTCCTAGAACTCCA GGTCACCCATGC GACAGCCTTGAAGTCCTAGTTCTCGGTGAAC TCC

TCTGCTGGAATCCTTCGGTGTAGTAGAGCAT G TCTGCTGGAATCCGTCGGTGTAGTAGAGCAT G TCTGCTGGAATCCGTTGGTGTAGTAGAGCAT G GAAGATGATCCTCAGAGACCTGTAGCGGTTT ATGTTCGTCT GCATGGGTGACCTGGAGTTCTAGGAGAACTA TGACTTCAAGGC GGAGTTCACCGAGAACTAGGACTTCAAGGCT GTC

81 

10   

82 

Supplementary Methods

83  84 

Commands in Rosetta to perform loop modeling:

85  86 

/home/fanyang/rosetta/main/source/bin/loopmodel.linuxgccrelease \

87 

-in:path:database /home/fanyang/rosetta2015.25/main/database \

88 

-score:weights membrane_highres_Menv_smooth.wts \

89 

-in:file:fullatom \

90 

-membrane:normal_cycles 100 \

91 

-membrane:normal_mag 15 \

92 

-membrane:center_search \

93 

-ignore_unrecognized_res \

94  95 

-symmetry:symmetry_definition /home/fanyang/projects/input_files/3J5R_2017/4D_ABCD_r_4D_after_ccd_relaxed_r.symm \

96 

-symmetry:initialize_rigid_body_dofs \

97 

-in:file:spanfile /home/fanyang/projects/input_files/3J5R_2017/3J5R_FL.span \

98  99 

-in:file:s /share/work/fanyang/work/3J5R_FL_KIC5-3J5R_2017_/top20_score_filtered/_1D/${SLURM_ARRAY_TASK_ID}.pdb \

100 

-loops:loop_file /home/fanyang/projects/input_files/3J5R_2017/3J5R_FL_SF.loop \

101 

-loops:remodel perturb_kic \

102 

-loops:refine refine_kic \

103 

-loops:relax no \

104 

-loops:strict_loops \

105 

-loops:build_attempts 20 \

106 

-relax:bb_move false \

107 

-max_inner_cycles 30 \

108 

-nstruct 51 \

109 

-out:prefix msymm-loop-kic- \

11   

110  111 

-out:file:silent /share/work/fanyang/work/3J5R_FL_KIC6-3J5R_2017_/${SLURM_ARRAY_TASK_ID}/msymm-relax-_3J5R_2017_${SLURM_ARRAY_TASK_ID}.silent \

112 

-out:file:silent_struct_type binary \

113 

-mute all

114  115 

12   

116 

Commands in Rosetta to perform SASA calculation and filtering:

117  118 

/home/fanyang/rosetta/main/source/bin/rosetta_scripts.linuxgccrelease \

119 

-database /home/fan/rosetta_2016.20/main/database

120 

-membrane:normal_cycles 100

121 

-membrane:normal_mag 15

122 

-membrane:center_search

123  124 

-in:file:spanfile /media/fan/Data/Rosetta/Project_3J5R_loopmodeling2017/inputs_fullLength/3J5R_FL.span

125 

-score:weights membrane_highres_Menv_smooth.wts

126  127  128 

-parser:protocol /media/fan/Data/OneDrive/Academic/Academic_Computation/Rosetta_script/xml_scripts_Fan /filter_sasa_FY_T651.xml

129  130  131 

-symmetry:symmetry_definition /media/fan/Data/Rosetta/Project_3J5R_loopmodeling2017/inputs_fullLength/4D_ABCD_r_4D_ 3J5R_FL_r.symm

132 

-symmetry:initialize_rigid_body_dofs

133 

-ignore_unrecognized_res

134 

-in:file:silent_struct_type binary

135  136  137 

-in:file:silent /media/fan/Data/Rosetta/Project_3J5R_loopmodeling2017/FL_after_KIC4/3J5R_FL_KIC33J5R_2017-_SILENT.out

138 

-nstruct 1

139  140  141 

-out:file:silent /media/fan/Data/Rosetta/Project_3J5R_loopmodeling2017/FL_after_KIC4/Filtered_T651_aft erKIC4.silent

142 

-out:file:silent_struct_type binary

143 

-overwrite

144  145  146  13   

147 

Rosetta scripts to perform SASA calculation and filtering:

148 



149 



150 



151 

152  153 



154 



155 



156 



157  158 



159 



160 



161  162  163 



164  165 



166 



167 



168 



169  170  171 



172  173  174 

14   

175 

Commands in Rosetta to perform global refinement and FSC calculation:

176 

-database /home/fan/rosetta/main/database

177  178 

-in::file::s /media/fan/Data1/Rosetta/Project_3J5R_loopmodeling2017/relax_cryoEM/3J5R.pdb

179  180  181 

-parser::protocol /media/fan/Data1/Rosetta/Project_3J5R_loopmodeling2017/relax_cryoEM/B_relax_density.x ml

182  183  184  185  186 

-parser::script_vars reso=4.2 map=/media/fan/Data1/Rosetta/Project_3J5R_loopmodeling2017/relax_cryoEM/EMD5777_CAP_3j5r.map testmap=/media/fan/Data1/Rosetta/Project_3J5R_loopmodeling2017/relax_cryoEM/EMD5777_CAP_3j5r.map

187 

-ignore_unrecognized_res

188 

-default_max_cycles 200

189 

-edensity::cryoem_scatterers

190 

-out::suffix cryoEM_Relax_

191  192  193 

-out:file:silent /media/fan/Data1/Rosetta/Project_3J5R_loopmodeling2017/relax_cryoEM/CAP_OpenModel_cry oEM_Relaxed.silent

194 

-out:file:silent_struct_type binary

195 

-nstruct 1

196 

-overwrite

197  198 

15   

199 

Rosetta scripts to perform global refinement and FSC calculation:

200 



201 



202 



203  204 



205 



206 

207  208 



209 



210 



211 



212  213 



214  215 



216 



217 



218 



219 



220 



221 



222  223 

16   

224 

Commands in Rosetta to incorporate ANAP into TRPV1 models

225  226 

-database /home/fan/rosetta/main/database

227 

-in:file:fullatom

228 

-ignore_unrecognized_res

229 

-s /home/fan/Rosetta/Project_ANAP_Parameterization/3J5P.pdb

230 

-backrub:ntrials 10

231 

-nstruct 1

232 

-mc_kt 0.6

233 

-resfile /home/fan/Rosetta/Project_ANAP_Parameterization/T651ANP_3J5P.resfile

234 

-overwrite

235  236  237 

T651ANP_3J5P.resfile:

238  239 

NATRO

240 

start

241 

651 A EMPTY NC ANP

242 

651 B EMPTY NC ANP

243 

651 C EMPTY NC ANP

244 

651 D EMPTY NC ANP 

17