TÓPICOS METEOROLÓGICOS Y OCEANOGRÁFICOS
5
Prediction of MJ rainfall season using CCA models ERIC J. ALFARO1,2,3, HUGO G. HIDALGO1,2, NATALIE P. MORA1 Abstract The prediction of the May-June (MJ) precipitation as the first peak of the rainy season is important in the Central American isthmus because wetter (drier) MJ seasons tend to be associated with early (late) onsets of the rainy season on the Pacific slope. Having a late start of the rains, followed by a drier season in MJ in conjunction with a deep Mid-Summer Drought (MSD), would affect significantly key socioeconomic sectors in the isthmus like hydropower generation, water supply for human consumption (as main cities in the isthmus are located on the Pacific slope) and agriculture. Using 162 gauge stations, we built skillful Canonical Correlation Analysis (CCA) prediction models for MJ season as the first peak of the rainy season, using as predictands monthly rainfall accumulations and Standardized Precipitation Index (SPI) values over Central America. Sea Surface Temperature anomalies (SSTA) were used as predictors handling a domain bounded by 63° N-10° S and 152° E-15° W, along with the Palmer Drought Severity Index (PDSI) values covering the isthmus. Leading times from December to April were explored in the predictor fields. CCA models, using February´s SSTA and April´s PDSI showed significant skill values for the prediction of MJ accumulations and the SPI over an important portion of Central America. Models´ loadings showed that warmer (cooler) Eastern equatorial SSTAs in the Pacific along with cooler (warmer) SSTAs in the Tropical North Atlantic (TNA) during February, tend to be related with drier (wetter) conditions in almost all the isthmus during the next MJ season. It is suggested that Sea Surface Temperature (SST) mode could modulate MJ precipitation in Central America influencing the position of the Intertropical Convergence Zone (ITCZ) and the strength of the trade winds. Additionally, it was observed that drier (wetter) soil moisture (PDSI) in April tends to be related with drier (wetter) precipitation conditions in almost all the isthmus during next MJ season. KEYWORDS: SEASONAL CLIMATE PREDICTION, CENTRAL AMERICA, STANDARDIZED PRECIPITATION INDEX, STATISTICAL MODELS, PALMER DROUGHT SEVERITY INDEX
Resumen Predecir la precipitación durante mayo-junio (MJ), como primer pico de la estación lluviosa en el istmo de América Central, es muy importante ya que se ha observado que condiciones más o menos húmedas durante MJ tienden a estar precedidas por inicios tempranos o tardíos de la época lluviosa. Un inicio tardío de las lluvias, por ejemplo, seguido de condiciones más secas que lo normal durante MJ y por un periodo posterior de veranillo o canícula intensa, puede afectar significativamente sectores socioeconómicos clave en el istmo como la generación hidroeléctrica, el abastecimiento de agua potable o la agricultura. En este trabajo se usaron los datos de 162 estaciones pluviométricas para construir modelos predictivos para MJ como primer pico de la estación lluviosa, usando el Análisis de Correlación Canónica (ACC). Los aspectos a predecir durante MJ son los acumulados de lluvia y el Índice Normalizado de Precipitación (INP) en América Central. Se usaron dos campos como predictores. El primero fue las anomalías de la temperatura superficial del mar (TSM) observada en el dominio 63° N-10° S y 152° E-15° W. El segundo fue el Índice de Severidad de Sequía de Palmer (ISSP), cubriendo la totalidad del istmo. Se estudió el potencial predictivo de estos dos campos desde diciembre hasta abril. Los modelos del ACC, usando las anomalías de la TSM en febrero y el ISSP en abril, evidencian una buena habilidad predictiva de los acumulados y del INP durante MJ, en una región importante de América Central. Los resultados mostraron que condiciones más cálidas (frías) en las anomalías de 1
Center for Geophysical Research, University of Costa Rica.
2
School of Physics, University of Costa Rica.
3
Center for Research in Marine Sciences and Limnology, University of Costa Rica.
Emails:
[email protected],
[email protected],
[email protected].
6
Prediction of MJ rainfall season using CCA models
la TSM del Pacífico ecuatorial del este, junto con condiciones más frías (más cálidas) en el Atlántico Tropical Norte durante febrero, tienden a estar correlacionadas con periodos más secos (húmedos) durante el siguiente bimestre de MJ en prácticamente todo el istmo. Lo anterior sugiere que la TSM podría modular la lluvia durante MJ en América Central al influenciar la posición de la Zona de Convergencia Inter-Tropical y la magnitud de los vientos alisios. En forma adicional, se observó que condiciones más secas (húmedas) en la humedad del suelo (ISSP) durante abril, tendieron a estar relacionadas con periodos de lluvia más secos (húmedos) en casi todo el istmo durante el siguiente periodo de MJ. PALABRAS CLAVE: PREDICCIÓN CLIMÁTICA ESTACIONAL, AMÉRICA CENTRAL, ÍNDICE NORMALIZADO DE PRECIPITACIÓN, MODELOS ESTADÍSTICOS, ÍNDICE DE SEVERIDAD DE SEQUÍA DE PALMER.
winter and early spring climates of the northern Caribbean and north Central American regions (Zárate-Hernández, 2013).
1. Introduction Amador, Alfaro, Lizano, and Magaña (2006); Amador et al. (2016a); and Taylor and Alfaro (2005), describe extensively the key drivers of the Ce t al A e i a li ai a ia ilit . Those o ks e plai that the ost do i a t s opi i lue e is the No th Atla i su t opi al high. Su side e asso iated ith the sp eadi g of the No th Atla i subtropical high to the North American landmass dominates during boreal winter, as do the strong easte l t ades fou d o its e uato a d la k. Coupled with a strong trade-winds inversion, a cold ocean and reduced atmospheric humidity, the egio is ge e all at its d iest o diio during the winter. With the onset of boreal spring, ho e e , the su t opi al high o es ofsho e a d trade wind intensity decreases, with downstream o e ge e. The a iaio i the st e gth of the trades is an important determinant of climate throughout the year for Central America. There is also a eak t ade- i ds i e sio ith alitude, the ocean warms and atmospheric moisture is abundant. The region is consequently at its etest i the o eal late sp i g-su e -ea l autumn half-year. Besides the subtropical high, othe sig ii a t s opi i lue es i lude: a) The seaso al ig aio of the I te t opi al Co e ge e )o e ITC) – ai l afe i g the Pa ii side of southe Ce t al A e i a (Hidalgo, Durán-Quesada, Amador, & Alfaro, 2015). b) The intrusions of polar fronts, originated at id-laitudes, hi h odif the o eal d
c) The est a d p opagai g t opi al disturbances (Amador, Alfaro, Rivera, & Calderón, 2010) – a summer seasonal feature associated with much rainfall, especially over the Caribbean region. I
addiio , the a pools of the A e i as o situte a i po ta t sou e of oistu e fo the North American Monsoon System (Wang & E ield, , . Alfaro (2002) calculated the mean dominant annual cycles in the Central American region using E pi i al O thogo al Fu io s EOFs a al sis fo dail ai gauge staio s dataset. This allo ed the dete i aio of so e i po ta t aspects of this cycle such as the start and end of the rainy season and the Mid-Summer Drought (MSD; Magaña, Amador, & Medina, 1999). So e laitudi al a iaio s e e fou d i these variables. The region is dominated by one mean annual cycle that captures 72% of the variance. This le i plies ai l a o i aio of s ste s a d pa a ete s that i ol es the laitudi al ig aio of the ITC), the seaso al a iaio of sola adiaio that i lue es late t heat lu , a d the lo le el i d a d its i te a io ith lo al orography. The second annual cycle in importance explains only 8% of the variance, and it dominates i staio s lo ated o e the Ca i ea Coast of Honduras, Costa Rica and Panama. In the intera ual s ale, the etest d iest ea s i the
TÓPICOS METEOROLÓGICOS Y OCEANOGRÁFICOS
region are dominated, in general, by warmer (colder) sea surface temperatures in the tropical Atla i o pa ed to the easte t opi al Pa ii . Regularly, in Central America, Regional Climate Outlook Forums (RCOFs) have taken place in an efo t to p edi t p e ipitaio a u ulaio s fo the following target seasons: May-June-July (MJJ), August-September-October (ASO) and DecemberJanuary-February-March (DJFM) (Donoso & Ramírez, 2001; Garcia-Solera & Ramirez, 2012). Currently, the RCOFs also include Outlooks for the Sta da dized P e ipitaio I de o SPI WMO, . Ou o je i e is to uild skillful Ca o i al Co elaio A al sis CCA p edi io odels fo the Ma -Ju e MJ seaso , the i st peak of the rainy season (Alfaro, 2002), using as predictands monthly rainfall accumulates and SPI values over Ce t al A e i a. The p edi io of the MJ as the i st peak of the ai seaso is i po ta t e ause ete d ie MJ seaso s te d to e asso iated with early (late) onsets of the rainy season. The early summer rainfall tends to be rather hete oge eous spaiall a oss the Ca i ea (Alfaro, 2002; Jurya & Malmgren, 2012). So, having a late start of the rains, like in 2015 A ado et al., , follo ed a sig ii a tl d ie tha o al seaso i MJ, i o ju io with a deep MSD in July and August (Alfaro, 2014; Hernandez & Fernandez, 2015; Solano, 2015; Maldonado, Rutgersson, Alfaro, Amador, & Cla e a , , a afe t sig ii a tl ke socioeconomic sectors in Central America. Some of these socioeconomic sectors are hydropower ge e aio , ate suppl fo hu a o su pio as ai iies i the isth us a e lo ated o the Pa ii slope a d ag i ultu e. P e iousl , Alfa o used a staisi al odel based on CCA to explore the predictability of the rainfall season in Central America, including MJJ. E pla ato a ia les e e seaso al Atla i a d Pa ii O ea Sea Su fa e Te pe atu e SST fo the region inside 112.5° E-7.5° W and 7.5° S-62.5°
7
N, during 1958-98. He found that for the early ai fall seaso , MJJ, posii e egai e t opi al Atla i SST a o alies e e asso iated ith posii e egai e ai fall a o alies o e a oad area located at the north of the studied region. The model results were cross-validated, showing sig ii a t skill alues o e a i po ta t po io of the studied region. Fallas-López a d Alfa o a used the staisi al te h i ue of o i ge ta le a al sis Alfa o, Sole , & E ield, to p odu e p edi i e schemes associated with rainfall in Central A e i a. As a i st step, a p i ipal o po e t analysis was used to produce indices, using daily eathe e o ds f o staio s. T o ai fall components associated with Central American Pa ii a d Ca i ea slopes e e o tai ed. Keepi g i i d that o e of the o k o je i es as to suppo t the RCOFs p o ess; the p edi i e schemes used by Fallas-López and Alfaro (2012a) i the ai fall p edi io s i luded the MJJ t i este . Dife e t li ate i di es e e used as predictors, which were associated with several li ate a ia ilit sou es that i lue e the li ate pate s i Ce t al A e i a. This as do e usi g a lead-i e of o e o t o i este s previous to the predicted season. Useful p edi i e s he es e e fou d FallasLópez a d Alfa o a fo p a i all all the elaio ships p e iousl e io ed. Noi e that most of the Central American climate variability could be explained by the El Niño – Southern Os illaio ENSO; e.g. i te -a ual a ia ilit a d the Atla i Mulide adal Os illaio i di es AMO; E ield, Mestas-Nuñez, & T i le, , ai l , e.g. ulide adal a ia ilit . Also, Fallas-López and Alfaro (2012b) elaborated a seaso al li ate p edi io s he e fo Ce t al America based on CCA, for the same seasons used by Fallas-López and Alfaro (2012a). SSTs from the oceans around the isthmus were used as
8
Prediction of MJ rainfall season using CCA models
p edi to s. P e ipitaio a u ulaio s e e used as the p edi ta d ield, usi g eteo ologi al staio s lo ated i Mesoa e i a ith o thl records from 1971 to 2000. The sea surface temperature area used is 60° N - 60° S and 270° E - 0° W. In general, the SST associated with the previous quarter was used for every predicted seaso , i ludi g MJJ. So e of the ide iied odes i the a al sis displa spaial pate s associated with known climate variability sources as ENSO, AMO a d Pa ii De adal Os illaio (PDO; Mantua, Hare, Zhang, Wallace, & Francis, 1997), meaning that CCA is useful for seasonal p edi io i Ce t al A e i a. The p edi to pate s ould e e plai ed stud i g thei asso iaio ith dife e t li ate i di es. As explained by Maldonado, Alfaro, Fallas, and Al a ado , eei gs i Ce t al A e i a ith dife e t so ioe o o i stakeholde s takes pla e ate e e RCOFs to t a slate the p o a le li ate i pa ts f o p edi io s. F o the feed a k p o esses of these eei gs, it has e e ged that e t e e e e t p edi io s, like d oughts o loods, a e e essa fo dife e t sectors. As shown by their work of the ASO season, these p edi io s a e tailo ed usi g CCA, showing that extreme events in Central America a e i lue ed i te a ual a ia ilit elated to ENSO and decadal variability associated mainly ith AMO a d PDO. The p e iousl e io ed so ioe o o i se to s, egula l pa i ipate at RCOFs eei gs, i the alled Appli aio s Fo a. Therefore, providing them with an Outlook based on the SPI can help in the managing and planning a i iies fo the up o i g seaso .
i e o e age, a o o i e se ies le gth is dete i ed a o di g to the staio s’ data a aila ilit . The efo e, the sele ted i e se ies length covers from January 1979 to December ea s . Gaps i the i e se ies e e illed usi g the ethodolog des i ed Alfa o and Soley (2009), which combines autoregressive models and EOFs methods. F o the gauge staio s data, e al ulated the o thl ai fall a u ulaio s a d the SPI. According to the World Meteorological O ga izaio WMO, , the SPI is ased o the p o a ilit of p e ipitaio o a i e s ale. The p o a ilit of the o se ed p e ipitaio is the transformed into an index. The SPI was designed to ua if the p e ipitaio dei it fo uliple i e s ales. These i e s ales ele t the i pa t of d ought o the a aila ilit of the dife e t ate esou es. Soil oistu e o diio s espo d to p e ipitaio a o alies o a elai el sho t s ale. G ou d ate , st ea lo a d ese oi sto age ele t the lo ge -te p e ipitaio a o alies WMO, . The SPI al ulaio at a lo aio is ased o its lo g-te p e ipitaio e o d o e
2. Methodology A dataset of gauge staio s ith o thl o se aio s of p e ipitaio p o ided the meteorological services of Central America e e used. Thei lo aio is sho i igu e . Si e ea h eteo ologi al staio has disi t
Figu e . Lo aio of the ai gauge staio s used (red dots).
TÓPICOS METEOROLÓGICOS Y OCEANOGRÁFICOS
a desi ed pe iod of i e. This lo g-te e o d is ited i to a p o a ilit dist i uio , hi h is the t a sfo ed i to a o al dist i uio , so that the ea SPI fo the lo aio a d desi ed pe iod is ze o. Posii e SPI alues i di ate p e ipitaio totals g eate tha the edia p e ipitaio , a d egai e alues i di ate totals less tha the edia p e ipitaio . Be ause the SPI is o alized, ete a d d ie li ates a e represented in the same way; thus, wet periods can also be monitored using the SPI (WMO, 2012). As stated by Maldonado et al. (2016), the extended reconstructed sea surface temperatures were used (ERSSTv3b; Xue, Smith, & Reynolds, 2003; Smith, Reynolds, Peterson, & Lawrimore, 2007). The SST a o alies a e o st u ted usi g a o i aio of observed data along with models and historical sampling grids. This global database has a ho izo tal esoluio of . ° . °. The do ai bounded by 63° N - 10° S and 152° E - 15° W is taken into account in order to capture the signal of the most important climate variability modes of the Central American isthmus, such as ENSO, PDO, AMO, the No th Atla i Os illaio NAO; Hu ell & Dese , , a d the T opi al No th Atla i TNA; E ield, Mestas, Ma e , & Cid-Se a o, 1999). These modes have shown to be relevant in terms of rainfall variability during the MJ season (Fallas-López & Alfaro, 2012a, 2012b). As a predictor, we used also the monthly Palmer Drought Severity Index (PDSI), calculated according to Dai, Trenberth, and Qian (2004). To build the PDSI, Dai et al. (2004) used the Climate Research Unit (CRU) surface air temperature data a d the p e ipitaio data e e a ui ed f o the Naio al Ce te s fo E i o e tal P edi io NCEP Cli ate P edi io Ce te , a d e e eated g iddi g data usi g the opi al i te polaio s he e. Fo ield ate -holdi g capacity (awc), they used a soil texture–based water-holding-capacity map (Webb, Rosenzweig, & Levine, 1993). This global database has a ho izo tal esoluio of . ° . °. F o this PDSI
9
database, we selected the grid points covering the Central American isthmus. The PDSI and SST anomalies are used as predictors i the CCA odels. CCA is used as a p edi i e tool i a lassi s he e, i.e. p edi to ields lead to the predictand ones. Consequently, following Maldonado et al. (2013, , CCA is e plo ed to i d the elaio ship between SSTs monthly anomalies (SSTA) and PDSI o alized ields ield X ith the MJ seaso al ai fall a u ulaio s a d SPI ields of ea h gauge staio used i this stud as p edi ta ds ea h i de ould e the ield Y, fo the o espo di g odel . I
othe o ds, e looked fo a staisi al elaio ship et ee the la ge a d the egio al scale features of the SSTA or PDSI, and the ha a te isi s of the ai fall a u ulaio s o SPI i ea h of the staio s lo al s ale . E pe i e ts usi g the ju io of SSTA a d PDSI were conducted, but they did not provide any addiio al i fo aio o pa ed to usi g the p edi to ields sepa atel . We also o du ted e pe i e ts splii g the p e ipitaio data i a odel ali aio pe iod depe ded pe iod a d i a othe o e to e if the p edi io s (independent period), but in this case the results also did not show improvement, mainly because the e o ds a e elai el sho t e o ds fo the odels ali aio s. The above CCA methodology is based on Maldonado et al. (2013, 2016) and is implemented a d su a ized as follo s: the ields SSTA o PDSI as p edi to s, a d a u ulaio s o SPI ields as p edi ta ds a e i st edu ed ea s of EOFs analysis to ensure stability of the CCA parameters. A maximum of 10 EOFs and CCA modes in the ilte i g stage a e allo ed. This th eshold is suggested he e to a oid o e -pa a ete izaio . The opi al o i aio of EOFs a d CCA odes are calculated by means of the goodness index
10
Prediction of MJ rainfall season using CCA models
ea Ke dall τ . Noi e that a set of EOFs ill p odu e u i ue CCA odes fo that spe ii set. O e the est o i aio of EOFs is dete i ed, that set of EOF is capturing the maximum a ia ilit i ea h ield X a d Y , sepa atel , fo ea h spe ii CCA odel MJ a u ulaio s a d SPI). The minimum number of EOFs between both ields, ho e e , i st dete i es the a i u possible number of CCA modes. Then, with the goodness skill, the maximum number of CCA odes is fou d fo the est it to a oid a o e pa a ete izaio i the odel Y1 = bT·X, where the elements of b are the ordinary least-squares eg essio oei ie ts o puted ith CCA, a d Y1 is the p edi ted alue of Y. The Ke dall τ is o puted usi g oss- alidaio odels ith a 5-month window from 1979–2008 for each staio i all the odels. This et i also allo s ide if i g the est o th to p edi t a of the MJ a u ulates a d SPI ields. It is o th e io i g that the esuli g odels ould not necessarily have 10 EOF and CCA modes. Mo thl SSTA o PDSI ields f o De e e to Ap il e e a al zed as pote ial p edi to s; thus, 4 months before the MJ season were studied fo a lassi p og osis s he e lead i e . Ea h experiment was conducted with and without the persistence observed in March-April (MA), prior to MJ accumulates and SPI. The CCA models were calculated using the Climate Predictability Tool o CPT, ela o ated the I te aio al Resea h I situte fo Cli ate a d So iet IRI; Maso & Tippet, , htp://i i. olu ia.edu/ou e pe ise/ li ate/tools/ pt/). The CPT tool was hose e ause it is u e tl i use fo ope ai e seaso al li ate p edi io i Ce t al A e i a. The pe fo a e of the CCA odel p edi io s was evaluated using the LEPS score (Wilks, 2011). One of the main concerns about the former p edi i e s he es Alfa o , a d Fallas and Alfaro (2012a, 2012b), is that they included the month of July in the predictand. Compared
with May and June as a season, the extra month (of July) is associated with reinforcement of the trade winds and of the Caribbean Low Level Jet o CLLJ A ado , i addiio to the MSD i the Easte T opi al Pa ii Magaña et al., ; Herrera, Magaña, & Caetano, 2015; Maldonado et al., 2016). For this reason, here we do not include Jul i the p edi i e s he es asso iated ith the i st peak of the ai seaso , ai tai i g just -MJ as the predictand target season. Another important dife e e is that Alfa o a d Fallas-López and Alfaro (2012a, 2012b) used the previous two or three monthly average, as the leading predictor, and what we propose here is to use the monthly alues sepa atel , to ete ide if the pote ial sources of variability. Nevertheless, results from Alfaro (2007) and Fallas-López and Alfaro (2012a, 2012b) showed that the use of CCA models in Central America could also help in the RCOF tasks, p o idi g a o je i e a al sis tool fo the p edi i e elaio ships fou d i the egio . The Niño 3.4 index (Trenberth, 1997) was obtained f o the Naio al O ea i a d At osphe i . p . ep. Ad i ist aio NOAA; htp:// oaa.go /data/i di es/sstoi.i di es) as well as the AMO index (htp:// .es l. oaa.go / psd/data/ o elaio /a o .us.lo g.data). The PDO index was provided by the University of Washi gto htp:// esea h.jisao. ashi gto . edu/pdo/PDO.latest . We also used ho izo tal wind data at 925 hPa, provided by the NCEP and the Naio al Ce te fo At osphe i Resea h (NCAR) reanalysis (Kalnay et al., 1996; Kistler et al., , hi h has a ho izo tal esoluio of 2.5° by 2.5°. The wind data is used to calculate the CLLJ index, as in Amador (2008), Amador et al. (2010), and Maldonado et al. (2016).
3. Results and Discussion The esults f o the dife e t odels adjusted pe fo a e a e su a ized i igu e . It presents the box plots of the MJ season LEPS
TÓPICOS METEOROLÓGICOS Y OCEANOGRÁFICOS
ross alidaio at the difere t staio s sho i Fig. . Fro this igure, so e poi ts ould e e ha ed ased o the o ser ed edia alues. I ge eral, o pared ith MJ a u ulaio s Figs. a, , eter ross alidaio results ere o tai ed for MJ SPI Figs. , d . The i lusio of the MA persiste e i pro ed the predi ta ilit of the odels Figs. , d s. Figs. a, . Models adjusted i Fig. d, sho ed that usi g PDSI as predi tor i reases predi ta ilit for shorter lead i es, ith April ha i g the highest edia alues. Beter predi io s ere a hie ed usi g SST as predi tor i oreal i ter, ith Fe ruar ha i g the highest edia alues. A de rease i the edia predi ta ilit i Mar h as o ser ed i all odels adjusted usi g SSTA as predi tor.
11
Fig. sho s the spaial distri uio of LEPS s ores usi g SST i Fe ruar as the predi tor ield. Fig. a is for the MJ a u ulaio s, a d Fig. is for MJ SPI. The est o i aio of X, Y a d CCA odes for a u ulaio s a d SPI ere , , a d , , , respe i el . Both odels o sidered the persiste e o ser ed i MA a d ere opi ized for CCA ode. Correlaio s for the CCA leadi g odes are . a d . respe i el , ith a asso iated p- alue < . i oth ases. E ept for so e fe staio s lo ated ear the El Sal adorGuate ala order a d i Ni aragua Pa ii orth oast, posii e alues ere o ser ed a ross the isth us, sho i g good predi ta ilit skill for the adjusted odels.
Figure . Bo plots of the MJ seaso edia LEPS s ores for the difere t adjusted CCA odels, o pari g the use of SST a d PDSI ields as predi tors. Values are fro the ross alidaio at the difere t staio s prese ted i Fig. . Results i a a d do ot o sider the persiste e o ser ed i MA, as a d d do. Let pa els, a a d , are for MJ a u ulates a d the right pa els a d d , are for MJ SPI as predi ta d alues. The o plots represe t the aria ilit of the LEPS s ores for the staio s.
12
Prediction of MJ rainfall season using CCA models
Figu e . Spaial dist i uio of LEPS s o es usi g SST i Fe ua as p edi to ield fo MJ a a u ulates a d SPI. Both odels o side ed the pe siste e o se ed i MA. Models asso iated Ke dall´s τ as . a d . espe i el . oast, posii e alues e e o se ed a oss the isthmus, showing good predictability skill for the adjusted models. Figu e is the e ui ale t of igu e , ut fo LEPS s o es usi g PDSI i Ap il as p edi to ield. As fo igu e , oth odels o side ed the pe siste e o se ed i MA a d e e opi ized fo CCA ode. The est o i aio of X, Y a d CCA
modes for both, accumulates and SPI, were 2, 7, . Co elaio s fo the CCA leadi g odes a e . a d . , espe i el , ith a asso iated p- alue < . i oth ases. Posii e LEPS s o e e e also o se ed fo al ost all the staio s i Ce t al America. The loadi gs fo the i st CCA odes that opi ized the odels a e sho i igu e , usi g Fe ua
Figu e . Spaial dist i uio of LEPS s o es usi g PDSI i Ap il as p edi to ield fo MJ a a u ulaio s a d SPI. Both odels o side ed the pe siste e o se ed i MA. Models asso iated Ke dall´s τ as . a d . espe i el .
TÓPICOS METEOROLÓGICOS Y OCEANOGRÁFICOS
SSTA as p edi to a d MJ a u ulaio s a d SPI as p edi ta ds. Please ote that o elaio s et ee loadi g i e se ies a e egai e i Figs. 5a,c and 5b,d. It is observed that warmer (cooler) Easte e uato ial SSTAs i the Pa ii , alo g ith cooler (warmer) SSTAs in the TNA during February, te ds to e elated ith d ie ete o diio s in almost all the isthmus during next MJ. Warmer oole TNA o diio s a e asso iated ith weaker (stronger) trade-winds, and this favors does ot fa o the fo aio of deep o e i e mesoscale systems in the region (Alfaro, 2007, . Addiio all , this ode also sho s that SST loadi gs i the easte e uato ial Pa ii a e posii el o elated ith the phases of the No th Pa ii odes of a ia ilit , a o di g to Ha t a (2015). Hidalgo et al. (2015) explain that warmer oole o diio s i the e uato ial Pa ii dela and maintain the ITCZ in western-southern
13
easte - o the posiio s, ofsho e ea sho e of Central America, decreasing (increasing) the stability over the isthmus, and this does not fa o fa o s the fo aio of deep o e i e mesoscale systems in the region (Hidalgo et al., 2015). This response could be enhanced during the posii e egai e phases of the No th Pa ii SST odes of a ia ilit Ge shu o & Ba et, ; Muñoz, Wa g, & E ield, ; FallasLópez & Alfaro, 2012a; Hartmann, 2015). So, this ode ould odulate MJ p e ipitaio i Ce t al A e i a, i lue i g the posiio of the ITC) a d the strength of the trade winds. As i igu e , igu e sho s the loadi gs fo the i st CCA odes that opi ized the odels, usi g Ap il PDSI as p edi to a d MJ a u ulaio s a d SPI as p edi ta d. Noi e that o elaio s et ee loadi g i e se ies a e egai e i Figs.
Figu e . Loadi gs fo the i st CCA odes that opi ized the and c) and MJ b) accumulates and d) SPI.
odels, usi g Fe ua
SSTA as p edi to a
14
Prediction of MJ rainfall season using CCA models
Figu e . Loadi gs fo the i st CCA odes that opi ized the odels, usi g Ap il PDSI as p edi to i a a d , a d MJ a u ulaio s i a d SPI i d as p edi ta d. a, a d ,d. It is o se ed that d ie ete soil moisture in April tends to be related with d ie ete p e ipitaio o diio s i al ost all the isthmus during next MJ, except for those staio s lo ated at the Costa Ri a Ca i ea coast which have the opposite behavior. It is i te esi g to ote that Hidalgo, Alfa o, a d Quesada-Montano (2016) also found the opposite behavior of the Caribbean Coast of Costa Rica o pa ed to the Pa ii slope he o elai g the strength of the trade-winds represented in the CLLJ I de A ado , a d p e ipitaio in Central America. Very close to the Caribbean slope of Costa Rica there is a high mountain
a ge, al ost pe pe di ula to the di e io of the easterly trade-winds. As the warm and humid winds encounter the mountain, orographic p e ipitaio is fa o ed the efo e the e is a posii e o elaio et ee the st e gth of the i d a d p e ipitaio i the Ca i ea slope . This efe t o l o u s i Costa Ri a oast, as the others countries in Central America do not have high mountain ranges as close to the Caribbean Coast as Costa Rica. Conversely, the opposite efe t o u s i the Pa ii slope of Ce t al A e i a, as the o elaio et ee p e ipitaio and the CLLJ reverses (stronger easterly winds f o the Ca i ea esult i d ie o diio s i
15
TÓPICOS METEOROLÓGICOS Y OCEANOGRÁFICOS
Table 1. Pearson correlation between the SST and PDSI CCA mode 1 time series from Figs. 5a,c and 6a,c and some climate variability indices during February and April. Index SST-Fe , a u ulaio s
odel
SST-Feb, SPI model PDSI-Ap , a u ulaio s PDSI-Apr, SPI model
odel
Niño 3.4
AMO
PDO
Niño 3.4 - AMO
Niño 3.4 + PDO
CLLJ
0.57***
-0.28
0.08
0.63***
0.38**
-0.20
-0.60***
0.36**
-0.15
-0.72***
-0.45**
0.25
0.53***
-0.16
0.15
0.54***
0.40**
-0.32*
-0.54***
0.17
-0.15
-0.54***
-0.40**
0.32
The dife e es et ee Niño . a d AMO a e al ulated usi g thei espe i e o alized i de as ell as the su of Niño . a d PDO. The sig ii a e le els a e gi e a p- alue . – . *, . - . (**) and < 0.01 (***).
the Pa ii slope . I this ase, the e ha is is elated to the liti g of the t ades at the CLLJ e it, a d su se ue t su side e i the Pa ii slope that supp esses o e io . This e ha is is explained in detail by Hidalgo et al. (2015). Ta le sho s the Pea so o elaio alues et ee the SST a d PDSI CCA ode i e series, from Figs. 5a,c and 6a,c and some climate variability indices during February and April. Noi e that i di iduall , the est o elaio s were obtained between the leading CCA modes a d Niño . ; ho e e , all the o elaio s improved when SSTA were compared with the o diio i the Atla i usi g the o alized dife e e et ee Niño . a d AMO. Co elaio s suggest that posii e egai e Niño . SSTAs, alo g ith egai e posii e SSTAs i the AMO during February and April, tends to be elated ith d ie ete o diio s i al ost all the isthmus during the next MJ. It is observed that o elaio sig s te d to e the sa e du i g Fe ua a d Ap il, suggesi g it´s pe siste e i the CCA models. Our models also suggest that Ap il´s soil oistu e o diio s i Ce t al A e i a ould e o diio ed the p e ious SSTA of the surrounding oceans during February, and by i teg ai g the o se ed ai a o alies f o Fe ua to Ap il that odulate the p e ipitaio o diio s du i g MJ alo g the isth us.
4. Conclusions Our methodology suggests that MJ rainfall p edi io s a e tailo ed usi g e si ple CCA models (1 CCA mode in the two cases presented he e , sho i g that ete o d ie e e ts i Ce t al A e i a a e i lue ed i te a ual variability related mainly to ENSO and TNA, a d the p e ious soil oistu e o diio s. CCA models, using February SST and April PDSI, sho ed sig ii a t skill alues fo the p edi io of MJ a u ulaio s a d SPI o e a i po ta t po io of Ce t al A e i a. It ea s that se e al so ioe o o i se to s, hi h pa i ipate egula l at RCOFs eei gs i the alled Ce t al A e i a Appli aio s Fo u s, a use this i fo aio fo a age e t a d pla i g a i iies fo the upcoming MJ season. I ge e al, ete oss alidaio esults e e obtained for MJ SPI when they were compared with MJ accumulates. The inclusion of the MA persistence improved the predictability of the models. Predictability using PDSI as p edi to i eased fo sho te lead i es, ith April having the highest median values, while ete p edi io s e e a hie ed usi g SSTA as predictor in boreal winter, with February having the highest median values. In other words, the li ai p edi ta ilit p ese t i SSTA is lo ge tha the li ai p edi ta ilit p ese ted i the
16
Prediction of MJ rainfall season using CCA models
soils. It should e e io ed he e that e a e ot suggesi g that the soil oistu e, at a e tai lead-i e, a p odu e a p e ipitaio feed a k i to the futu e at osphe i o diio s as e a ot ide if the o t i uio of this efe t using the data). Instead, we assumed that the p edi i e sig al i the soils is ai l a ele io of the eteo ologi al p e ipitaio pe siste e a d/o li ai p edi ta ilit f o othe sou es, including the oceans. Warmer (cooler) Eastern equatorial SSTAs in the Pa ii , alo g ith oole a e SSTAs in the TNA during February, tend to be related ith d ie ete o diio s i al ost all the isthmus during next MJ. It is suggested that SST ode ould odulate MJ p e ipitaio i Ce t al A e i a, i lue i g the posiio of the ITC) a d the st e gth of the t ade- i ds. Addiio all , it is o se ed that d ie ete soil oistu e i Ap il, te ds to e elated ith d ie ete p e ipitaio o diio s i al ost all the isth us du i g e t MJ. Therefore, it is suggested that April soil oistu e o diio s i Ce t al A e i a ould e o diio ed p e ious SSTA of the su ou di g o ea s i Fe ua a d i teg ai g the o se ed rainy anomalies from February to April that can odulate the o se ed p e ipitaio o diio s during MJ along the isthmus. Alfa o et al. also e io ed that s ie ii a d a ade i o u iies ha e dis ussed e tai problems that arise during the development of the forums and how the research results can be ete used to i p o e the fo u s’ p odu ts. O e of the ide iied p o le s a isi g du i g the RCOFs is that, because there is not a standardized methodology for producing the forecast, the o t i uio s f o dife e t ou t ies a esult i a disjoi ted egio al fo e ast that so ei es is ph si all i o siste t a oss polii al o de s. Mo eo e , it appea s that the staisi s ehi d the tools used in the forums are not familiar to so e of the pa i ipa ts, esuli g i the p o le that the aio al li ate fo e asts so ei es a e
ased o l o su je i e e aluaio s. This o k showed that CCA usage in Central America could also help i the RCOF tasks, p o idi g o je i e a al sis i thei ope aio al o k fo the p edi i e elaio ships fou d i the egio .
5. Acknowledgments The autho s ould like to e og ize the pa ial support of the following projects during this research: V.I. 805-B6-143 (UCR, CONICIT-MICITT), 805-B4-227, 805-B3-600, 805-B0-065 and 805-A9. To the Ce t al A e i a Naio al Weathe and Hydrology Services that provided the rainfall data used in this work.
6. References Alfa o, E. J. . So e ha a te isi s of the a ual p e ipitaio le i Ce t al A e i a a d thei elaio ships ith its su ou di g tropical oceans. Tópicos Meteorológicos y O ea ográi os, 9, 88-103. Alfaro, E. J. (2007). Uso del análisis de correlación canónica para la predicción de la precipitación pluvial en Centroamérica. Revista Ingeniería Co peii idad, 9(2), 33-48. Alfaro, E. J. (2014). Caracterización del “veranillo” e dos ue as de la e ie te del Pa íi o de Costa Rica, América Central. Re ista de Biología Tropical, 62(4), 1-15. Alfaro, E. y Soley, J. (2009). Descripción de dos métodos de rellenado de datos ausentes en se ies de ie po eteo ológi as. Revista de Mate ái as: Teoría Apli a io es, 16(1), 59-74. Alfa o, E., Sole , J. & E ield, D. . Uso de u a Ta la de Co i ge ia para Apli a io es Cli ái as Use of a Co i ge Ta le for Cli ai Appli aio s . Guayaquil, Ecuador: ESPOL/ FUNDESPOL.
TÓPICOS METEOROLÓGICOS Y OCEANOGRÁFICOS
Amador, J. A. (2008). The I tra-A eri as Sea Lo le el Jet, o er ie a d future resear h. Annals of the New York Academy of S ie e, , . doi: . / annals.1446.012 Amador, J. A., Alfaro, E., Lizano, O. & Magaña, V. (2006). At ospheri for i g i the Easter Tropi al Pa ii : A re ie . Progress in Oceanography, 69, 101-142. Amador, J. A., Alfaro, E., Rivera, E. & Calderón, B. (2010). Cli ai features a d their relaio ship ith Tropi al C lo es o er the I tra-A eri as Seas. Hurricanes and Climate Cha ge, , . doi: . / - 481-9510-79. Amador, J. A., Durán-Quesada, A. M., Rivera, E. R., Mora, G., Sáenz, F., Calderón, B. & Mora, N. a . The easte ost t opi al Pa ii . Part II: Seasonal and intraseasonal modes of atmospheric variability. Re ista de Biología Tropical, 64(1), 23-57. Amador, J. A., Hidalgo, H. G., Alfaro, E. J., Durán, A. M., Calderón, B. & Vega, C. (2016b). Central America. [In State of the Climate 2015], Bullei of A eri a Meteorologi al So iet , 97(8), S178-S181. Dai, A., Trenberth, K. E. & Qian, T. (2004). A Global Dataset of Palmer Drought Severity Index fo – : Relaio ship ith Soil Moistu e a d Efe ts of Su fa e Wa i g. Jour al of H dro eteorolog , 5(6), 1117. doi: . /jh . Donoso, M. & Ramirez, P. (2001, October). Lai A eri a a d the Cari ea : Report o the Cli ate Outlook Foru s for Mesoa eri a. In Coping with the climate: A step Forward, Wo kshop Repo t: A uli-stakeholde review of Regional Climate Outlook Forums, Pretoria, South Africa. (pp. 16-20). E ield, D. B., Mestas-Nuñez, A. M., Ma e , D. A. & Cid-Serrano, L. (1999). ¿How ubiquitous is the dipole elaio ship i t opi al Atla i sea surface temperatures? Jour al of Geoph si al Resear h: O ea s, 104(C4), . doi: . / j
17
E ield, D. B., Mestas-Nuñez, A. M. & T i le, P. J. . The Atla i Mulide adal Os illaio a d its elaio to ai fall a d i e lo s i the o i e tal U.S. Geoph si al Resear h Leters, 28(10), 2077. doi: . / gl Fallas-López, B. y Alfaro, E. (2012a). Uso de he a ie tas estadísi as pa a la p edi ió estacional del campo de precipitación en América Central como apoyo a los Foros Cli ái os Regio ales. : A álisis de ta las de o i ge ia. Re ista de Cli atología, 12, 61-79. Fallas-López, B. y Alfaro, E. (2012b). Uso de he a ie tas estadísi as pa a la p edi ió estacional del campo de precipitación en América Central como apoyo a los Fo os Cli ái os Regio ales : A álisis de Correlación Canónica. Re ista de Climatología, 12, 93-105. García-Solera, I. & Ramirez, P. (2012). Central A eri a’s Seaso al Cli ate Outlook Foru . The Climate Services Partnership, 8 pp. http:// . li ate-se i es.o g/sites/ default/iles/CRRH_Case_Stud .pdf isited / / . Ge shu o , A. & Ba et, T. P. . I te de adal Modulaio of ENSO Tele o e io s. Bullei of the A eri a Meteorologi al So iet , 79(12), 2715-2725. doi: . / . . o; Ha t a , D. L. . Pa ii sea su fa e temperature and the winter of 2014. Geoph si al Resear h Leters, 42, 1894– . doi: . / GL . Hernández, K. & Fernández, W. (2015). Estudio de la evaporación para el cálculo del inicio y la conclusión de la época seca y lluviosa en Costa Rica. Tópicos Meteorológicos y O ea ográi os, 14, 18–26. Herrera, E., Magaña, V., & Caetano, E. (2015). Ai sea i te a io s a d d a i al p o esses associated with the midsummer drought. I ter aio al Jour al of Cli atolog , 35, – . doi: . /jo . .
18
Prediction of MJ rainfall season using CCA models
Hidalgo H.G., Alfaro, E.J. & Quesada-Montano, B. (2016). O ser ed li ate aria ilit i Ce tral A eri a usi g a high-resoluio eteorologi al dataset ith pote ial for li ate ha ge studies. Cli ai Cha ge. doi: . /s 1786-y Hidalgo, H. G., Durán-Quesada, A. M., Amador, J. A., & Alfaro, E. (2015). The Caribbean LowLevel Jet, the Inter-Tropical Convergence )o e a d p e ipitaio pate s i the Intra-Americas Sea: A proposed dynamical mechanism. Geograiska A aler, Series A, Ph si al Geograph , 97(1), 41-59. doi: . /geoa. Hu ell, J. W. & Dese , C. . No th Atla i climate variability: The role of the North Atla i Os illaio . Jour al of Mari e S ste s, , - . doi: . /j. jmarsys.2008.11.026 Jury, M. R. & Malmgren, B. A. (2012). Joint modes of climate variability across the inter-Americas. I ter aio al Jour al of Climatology, , – . doi: . / joc.2324 Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S. & Joseph, D. . The NCEP/NCAR -Yea Reanalysis Project. Bullei of A eri a Meteorologi al So iet , 77, 437-471. Kistler, R., Collins, W., Saha, S., White, G., Woollen, J., Kalnay, E., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., Van den Dool, H., Jenne, R. & Fiorino, M. (2001). The NCEP-NCAR 50-Year Reanalysis: Monthly Mea s CD-ROM a d Do u e taio . Bullei of A eri a Meteorologi al So iet , , – . doi: . / 0477(2001)0822.3.CO;2. Magaña, V. O., Amador, J. A. & Medina, S. (1999). The mid-summer drought over Mexico and Central America. Jour al of Cli ate, 12, 1577-1588. Maldonado, T., Alfaro, E., Fallas B., & Alvarado, L. . Seaso al p edi io of e t e e
p e ipitaio e e ts a d f e ue of ai days over Costa Rica, Central America, using Ca o i al Co elaio A al sis. Ad a es i Geosciences, 33(33), 41-52. Maldonado, T., Rutgersson, A., Alfaro, E., Amador, J. & Claremar, B. (2016). Interannual variability of the midsummer drought i Ce t al A e i a a d the o e io with sea surface temperatures. Ad a es in Geosciences, , - . doi: . / adgeo-42-35-2016. Mantua, N.J., Hare, S.R., Zhang, Y., Wallace, J.M. & F a is, R.C . A Pa ii de adal li ate os illaio ith i pa ts o sal o p odu io . Bullei of the A eri a Meteorologi al So iet , 78(6), 1069-1079. Maso , S. J. & Tippet, M. K. . Climate Predi ta ilit Tool ersio 5. . Columbia U i e sit A ade i Co o s. htp:// d .doi.o g/ . /D NS TQ . Muñoz, E., Wa g, C. & E ield, D. . The I t a-A e i as Sp i gi e Sea Su fa e Temperature Anomaly Dipole as Fingerprint of Re ote I lue es. Jour al of Cli ate, , - . doi: . / j li . Smith, T., Reynolds, R., Peterson, T. C. & Lawrimore, J. (2007). Improvements to NOAA’s Histo i al Me ged La d–O ea Surface Temperature Analysis (1880–2006). Jour al of Cli ate, 21, 2283 – 2296. Solano, E. (2015). A álisis del o porta ie to de los períodos a i ulares e Costa Ri a e algu as ue as del Pa íi o Norte del Valle Ce tral e tre los años . Tesis de Grado, Licenciatura, Escuela de Física, Universidad de Costa Rica, San José, Costa Rica. Taylor, M., & Alfaro, E. (2005). Cli ate of Ce tral A eri a a d the Cari ea . I : E lopedia of World Cli atolog (pp 183189), Springer, Netherlands. Trenberth, K. E. (1997). The Dei iio of El Niño. Bullei of the A eri a Meteorologi al So iet , 78(12), 2771-2777. doi: . / . . o;
TÓPICOS METEOROLÓGICOS Y OCEANOGRÁFICOS
19
Wa g, C. & E ield, D. B. . The t opi al western hemisphere warm pool. Geophysical Resear h Leters, 28(8), 1635-1638.
WMO (2012). Sta dardized Pre ipitaio I de User Guide (M. Svoboda, M. Hayes and D. Wood). (WMO-No. 1090), Geneva.
Wa g, C. & E ield, D. B. . A fu the stud of the tropical western hemisphere warm pool. Jour al of Cli ate, 16, 1476-1493.
Xue, Y., Smith, T. M. & Reynolds, R. W. (2003). Interdecadal Changes of 30-Yr SST Normals during 1871–2000. Jour al of Cli ate, , . doi: . / 0442-16.10.1601
Webb, R. S., Rosenzweig, C. E. & Levine, E. R. (1993). Spe if i g la d su fa e ha a te isi s i ge e al i ulaio odels: Soil p oile data set a d de i ed ate -holdi g apa iies. Global Biogeochemical Cycles, 7(1), 97-108. doi: . / g Wilks, D.S. (2011). Staisi al Methods i the At ospheri S ie es . Academic Press.
Zárate-Hernández, E. (2013). Climatología de masas invernales de aire frío que alcanzan Centroamérica y el Caribe y su relación o algu os í di es Á i os. Tópicos Meteorológi os O ea ográi os, 12(1), 35-55.