6. Controlled Radical Polymerization (CRP). • Reversible Addition-Fragmentation
Transfer (RAFT) ... K d. + TEMPO. S. S. C z. R m. S. C. S z. R. R. R. +. + n m. K
exch n. IPR 2007 .... ht A verage Molecular W eight (gr/mol). TEMPO/BPO=0.9.
TEMPO/BPO=1.1 .... Georges, M.K., Veregin, R.P.N., Kazmaier, P.M., and Hamer,
G.K..
20
07
Investigating Nitroxide-Mediated Radical Polymerization of Styrene over a Range of Reaction Conditions
IP
R
A. Nabifar N. T. McManus A. Penlidis Institute for Polymer Research (IPR) Department of Chemical Engineering University of Waterloo 1
07
Controlled Radical Polymerization (CRP)
20
• (Co) polymers with precisely controlled architectures
R
• Living Ionic Polymerization (good control but stringent conditions; relatively small number of monomers)
IP
• Regular radical polymerization ( versatile reaction conditions but poor control over some polymer characteristics)
2
20
Regular Radical Polymerization
07
Controlled Radical Polymerization (CRP)
Living Ionic Polymerization
IP
R
Controlled Radical Polymerization
3
Controlled Radical Polymerization (CRP)
IP
R
20
07
• Examples of molecular structures attained
4
Controlled Radical Polymerization (CRP)
07
• Applications
20
– Acrylic block copolymers as stabilizers in coating, ink applications
IP
R
– Additives suitable for use as components of lubricating oils – ABC – type block copolymers
5
Controlled Radical Polymerization (CRP)
07
• Nitroxide- Mediated Radical Polymerization (NMRP) Ka
R
R + TEMPO
TEMPO
20
Kd
• Atom Transfer Radical Polymerization (ATRP) Ka
R
Br + CuBr (L)
R
+ CuBr2 (L)
Kd
IP
R
• Reversible Addition-Fragmentation Transfer (RAFT) R +S m
K exch
C z
S
R
n
R
m
S
C
S+ R
n
z 6
Controlled Radical Polymerization (CRP) K deact
+ X
R
K act
(Dormant)
20
(Active)
X
07
R
R
• Exchange equilibrium favours dormant species
IP
• Concentration of radicals is low; bimolecular termination “almost” negligible • Radicals grow at the same average rate; low polydispersity product 7
Controlled Radical Polymerization (CRP)
07
• Prerequisites
20
– Small contribution of chain – breaking reactions (termination and transfer reactions)
R
– Fast initiation compared to propagation
IP
– Fast exchange between active and dormant species (provides uniformity in chain length)
8
07
Mn
termination
IP
slow initiation
20
living state
R
ln([M]0 /[M])
Controlled Radical Polymerization (CRP)
FRP
LRP
time
conversion
• Deviation from linearity can result from slow initiation or loss of radicals by termination 9
07
Nitroxide-Mediated Radical Polymerization (NMRP)
20
• Addition of a stable nitroxide radical, able to trap the propagating radical in a thermally unstable species
IP
R
• The most common nitroxide used as trapping agent is TEMPO (2, 2, 6, 6–tetramethyl-1-piperidinyloxy)
10
• NMRP of Styrene with BPO and TEMPO O
O
O
O
O
20
Benzoyl Peroxide O
ki
Initiation
IP
R
+
O
07
2
O
Benzoyloxy radical O
O
C
STY
• Initiator efficiency factor (f) • (Thermal) Self initiation of Styrene 11
• NMRP of Styrene with BPO and TEMPO O
+
n
Propagation
O
07
C
C n
20
O
O
kp
R
O O
+
O
O
N
IP
C
k deact
n
TEMPO
N
k act
O
O x
• K = kdeact/ kact 12
Side Reactions
07
• Reaction between TEMPO and BPO +
N O
O
O
O
O
C
O
O
O O
O
IP
R
C
20
N
• Nitroxide decomposition
13
Uncertain Aspects (?)
07
• Initiator efficiency factor (f)
IP
R
• Side reactions
20
• Uncertain kinetic constants
14
Objectives
R
20
– Conversion (rate) – Molecular weights – Polydispersity
07
• Clarify the effect of polymerization conditions (TEMPO/ BPO ratio and temperature )
IP
• Generate a source of reliable experimental data – Validation of mathematical models – Parameter estimation – Identification of optimal polymerization conditions 15
Summary of Runs [BPO] 0 M
[TEMPO] / [BPO]
120
0.036
0.9
0.036
1.1
0.036
1.2 1.5 -
0.036
0.9
R
Nil
IP
130
+ Replicate
20
0.036
Remarks
07
Temperature (°C)
Styrene with unimolecular initiator
0.036
1.1
+ Replicate
0.036
1.3
+ Replicate
Nil
-
Thermal (self) initiation of styrene + Replicate
Nil
-
Styrene with TEMPO only 16
Effect of TEMPO/BPO Ratio 1 0.9
07
0.8
20
0.6 0.5 0.4
R
TEMPO/BPO=0.9
0.3 0.2
TEMPO/BPO = 1.1 TEMPO/BPO=1.1,Independent replicate
IP
Conversion, X
0.7
0.1
TEMPO/BPO = 1.2 TEMPO/BPO = 1.5
0 0
10
20
30
40
50
60
70
80
Time, t (hr)
STY polymerization at 120 °C, [BPO] 0 = 0.036 M
17
07
35,000 30,000
20
25,000 20,000
R
15,000 10,000
TEMPO/BPO=0.9 TEMPO/BPO=1.1
IP
Weight Average Molecular Weight (gr/mol)
40,000
5,000 0 0
0.2
TEMPO/BPO=1.2 TEMPO/BPO=1.5
0.4
0.6
0.8
1
Conversion, X
STY polymerization at 120º C, [BPO] 0 = 0.036 M 18
9 TEMPO/BPO=0.9
8
TEMPO/BPO=1.1 TEMPO/BPO=1.2
07
7
20
6 5 4
R
3 2
IP
Polydispersity, PDI
TEMPO/BPO=1.5
1 0 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Conversion,X
STY polymerization at 120º C, [BPO] 0 = 0.036 M
19
Observations
20
07
• The larger the TEMPO/ BPO ratio (the more TEMPO in the recipe), the slower the polymerization
R
• Higher values of average molecular weights, Mn and Mw, are obtained as TEMPO/BPO ratio decreases
IP
• Low PDI values, below 1.2 • Similar trends with experimental data at 130°C (not shown) 20
Effect of Temperature 1
07
0.9 0.8
20
0.6 0.5
R
0.4 0.3 0.2
130 120
IP
Conversion, X
0.7
0.1 0 0
10
20
30
40
50
60
70
80
Time, t (hr)
STY polymerization at TEMPO / BPO = 0.9
21
35,000 30,000
07
25,000 20,000
20
15,000 10,000 5,000 0
1.8
IP
1.6 PDI
T = 130 T = 120 T = 120 ,Independent replicate
R
Weight Average Molecular Weight (gr/mol)
40,000
1.4 1.2 1 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Conversion, X
STY polymerization at TEMPO / BPO = 0.9 22
Mathematical Modeling
07
• Kinetic model based on a detailed reaction mechanism
20
• Molar balances; population balances; set of ordinary differential equations
IP
R
• General trends OK
• Satisfactory prediction of experimental data but more work needs to be done ( fine-tuning of key but uncertain parameters) 23
Concluding Remarks 1.5
1.3
20
PDI
07
• “Optimal” ratio to achieve lowest polydispersity seems to be around [TEMPO]/ [BPO] = 1.2
1.4
1.2
1.1
1 0.9
1.1 1.2 TEMPO/BPO Ratio
1.5
IP
R
• There is no pronounced temperature effect at studied conditions • Model trends and preliminary predictions satisfactory for typical polymerization variables (on going work)
24
Future Steps • Experimental :
07
– Comparison with unimolecular initiator
R
• Modeling :
20
– Different initiator (tetrafunctional vs. monofunctional initiator)
IP
– More rigorous parameter estimation – Using Bayesian design to guide our experimentation for better understanding of the reaction mechanism
25
Acknowledgements
07
• NSERC CRO Grant
20
• OGSST – OMNOVA Solutions
• Canada Research Chair (CRC) program ( A. Penlidis)
IP
R
• CRO grant is a collaborative effort under an Inter American Materials Collaboration ( IAMC ) joint project with Prof. E. Vivaldo-Lima, M. Roa-Luna ( UNAM, Mexico ) and Prof. L. M.F. Lona, J.B. Ximenes ( Campinas, Brazil )
26
27
R
IP 20
07
References Handbook of Radical Polymerization. Matyjaszewski, K., and Davis, T.P., Eds. Wiley-Interscience: Hoboken, 2002.
•
Georges, M.K., Veregin, R.P.N., Kazmaier, P.M., and Hamer, G.K. (1993) Macromolecules, 26 (11): 2987-2988.
•
Greszta, D. and Matyjaszewski, K. (1996) Macromolecules, 29: 76617670.
•
MacLeod, P. J. , Veregin R.P.N., Odell, P.G., and Georges, M.K. (1997) Macromolecules, 30 :2207-2208.
•
Bonilla, J., Saldívar, E., Flores-Tlacuahuac, A., Vivaldo-Lima, E., Pfaendner, R., and Tiscareño-Lechuga, F. (2002) Polym. React. Eng. J., 10 (4): 227-263.
•
Goto, A. and Fukuda, T. (2004) Prog. Polym. Sci., 29: 329–385.
•
Roa- Luna, M., Nabifar, A., Diaz-Barber, M. P., McManus, N.T., VivaldoLima, E., Lona, L.M.F., and Penlidis, A. (2007) J. Macromol. Sci., A: Pure Appl. Chem., A44: 337-349.
IP
R
20
07
•
28
k decomp
N
CH2
CH
CH
07
O
CH + HO
N
n
20
n
CH2 CH
R
CH
IP
CH2
29
Experimental • Polymerization
20
07
– Ampoules (~ 4ml volume): degassed , torch-sealed, and then placed in liquid nitrogen until used – Isothermal oil bath
R
• Polymer Characterization
IP
– Monomer conversion • Gravimetry
– Molecular weight averages and polydispersity • Gel permeation chromatography (GPC) 30
Results 1 0.9 0.8
07
0.6 0.5 0.4
2.5
20
0.3 0.2 0.1
2
0 10
20
30 Time, t (hr)
40
50
60
R
0
Ln [M]0/[M]
Replicate
IP
Conversion, X
0.7
1.5
1
0.5
0 0
5
10
15
20
25
30
35
Time, t (hr)
STY polymerization at 120°C, TEMPO/BPO = 1.1
31
25,000
07
20,000 15,000 10,000 5,000 0
R
1.6
IP
1.4 PDI
Mn Mw
20
Average Molecular Weights (gr/mol)
30,000
1.2 1 0.0
0.1
0.2
0.3
0.4 0.5 0.6 Conversion, X
0.7
0.8
0.9
STY polymerization at 120°C, TEMPO/BPO = 1.1
1.0
32
Remarks
07
• As expected, polymerization proceeds faster at the higher temperature
R
20
– After about 80-85% conversion, rates are almost identical for both temperatures
IP
• A small reduction in molecular weight values as temperature increases • Experimental data also available for TEMPO/ BPO=1.1
33
Mathematical Modeling 1 0.9 0.8
07
0.6 0.5
35000
0.3 0.2
Experimental data
0.1
Predicted Profile
0 5
10
15
20 Time, t (hr)
25
30
35
40
R
0
Number Average Molecular Weight (g/mol)
20
0.4
IP
Conversion, X
0.7
30000
Experimental data
Predicted Profile
25000 20000 15000 10000 5000
0 0.0
0.2
0.4
0.6
0.8
1.0
Conversion, X
STY polymerization at T = 130 °C ,TEMPO/BPO = 1.1
34
6 Experimental data
5.5
Predicted Profile
07
5 4.5
20
3.5 3
R
2.5 2 1.5 1 0
IP
PDI
4
0.2
0.4 0.6 Conversion, X
0.8
1
STY polymerization at T = 130 °C ,TEMPO/BPO = 1.1 35
0.024 0.022 0.02
07
0.016
20
0.014 0.012 0.01
R
0.008 0.006 0.004 0.002
[I]
IP
Concentration, mol/L
0.018
[NOx*] [NOe]
0 1.E-10
1.E-09
1.E-08
1.E-07
1.E-06
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01 1.E+00 1.E+01 1.E+02
Time (hr)
Typical calculated profiles for concentration of initiator, nitroxyl stable radicals and alcoxyamine
36
Description
d I ⎯ k⎯ → 2 Rin •
Chemical initiation Nitroxyl ether decomposition
ka 2 ⎯⎯⎯ →
NOE ←⎯⎯ Rin • + NO x • kd 2 d im M + M ⎯ k⎯ →D
Thermal initiation
ki a M + D ⎯⎯ → D •+M •
07
Mayo dimerization
p Rin • + M ⎯⎯ → R1 •
First propagation (monomeric radicals)
p M • + M ⎯⎯ → R1 •
20
First propagation (primary radicals)
First propagation (dimeric radicals) Propagation
R
Dormant living exchange (monomeric alkoxyamine) Dormant living exchange (polymeric alkoxyamine)
IP
Kinetic Mechanism (Bonilla et al., 2002)
Step
Alkoxyamine decomposition Rate enhancement reaction Termination by combination Termination by disproportionation Transfer to monomer Transfer to dimer
k
k
p D • + M ⎯⎯ → R1 •
k
p Rr • + M ⎯ ⎯ → R r +1 •
k
ka ←⎯⎯
M • + NOx • ⎯⎯ → MNOx k da a ←⎯⎯ k
Rr • + NOx • ⎯⎯ → Rr NOx kda decomp MNOx ⎯⎯⎯ → M + HNOx
k
kh 3 D + NOx • ⎯⎯ → D • + HNOx ktc Rr • + Rs • ⎯⎯ → Pr + s
ktd Rr • + Rs • ⎯⎯ → Pr + Ps fM Rr • + M ⎯⎯→ Pr + M •
k
fD Rr • + D ⎯⎯→ Pr + D •
k
37
Description
d I ⎯ k⎯ → 2 Rin •
Chemical initiation Nitroxyl ether decomposition
ka 2 ⎯⎯⎯ →
NOE ←⎯⎯ Rin • + NO x • kd 2 d im M + M ⎯ k⎯ →D
Thermal initiation
ki a M + D ⎯⎯ → D •+M •
07
Mayo dimerization
p Rin • + M ⎯⎯ → R1 •
First propagation (monomeric radicals)
p M • + M ⎯⎯ → R1 •
20
First propagation (primary radicals)
First propagation (dimeric radicals) Propagation
R
Dormant living exchange (monomeric alkoxyamine) Dormant living exchange (polymeric alkoxyamine)
IP
Kinetic Mechanism (Bonilla et al., 2002)
Step
Alkoxyamine decomposition Rate enhancement reaction Termination by combination Termination by disproportionation Transfer to monomer Transfer to dimer
k
k
p D • + M ⎯⎯ → R1 •
k
p Rr • + M ⎯ ⎯ → R r +1 •
k
ka ←⎯⎯
M • + NOx • ⎯⎯ → MNOx k da a ←⎯⎯ k
Rr • + NOx • ⎯⎯ → Rr NOx kda decomp MNOx ⎯⎯⎯ → M + HNOx
k
kh 3 D + NOx • ⎯⎯ → D • + HNOx ktc Rr • + Rs • ⎯⎯ → Pr + s
ktd Rr • + Rs • ⎯⎯ → Pr + Ps fM Rr • + M ⎯⎯→ Pr + M •
k
fD Rr • + D ⎯⎯→ Pr + D •
k
38
IP
R
20
07
Thermal Self initiation of Styrene
39
40
R
IP 20
07