Presentation (PDF) - University of Waterloo

57 downloads 221 Views 734KB Size Report
6. Controlled Radical Polymerization (CRP). • Reversible Addition-Fragmentation Transfer (RAFT) ... K d. + TEMPO. S. S. C z. R m. S. C. S z. R. R. R. +. + n m. K exch n. IPR 2007 .... ht A verage Molecular W eight (gr/mol). TEMPO/BPO=0.9. TEMPO/BPO=1.1 .... Georges, M.K., Veregin, R.P.N., Kazmaier, P.M., and Hamer, G.K..
20

07

Investigating Nitroxide-Mediated Radical Polymerization of Styrene over a Range of Reaction Conditions

IP

R

A. Nabifar N. T. McManus A. Penlidis Institute for Polymer Research (IPR) Department of Chemical Engineering University of Waterloo 1

07

Controlled Radical Polymerization (CRP)

20

• (Co) polymers with precisely controlled architectures

R

• Living Ionic Polymerization (good control but stringent conditions; relatively small number of monomers)

IP

• Regular radical polymerization ( versatile reaction conditions but poor control over some polymer characteristics)

2

20

Regular Radical Polymerization

07

Controlled Radical Polymerization (CRP)

Living Ionic Polymerization

IP

R

Controlled Radical Polymerization

3

Controlled Radical Polymerization (CRP)

IP

R

20

07

• Examples of molecular structures attained

4

Controlled Radical Polymerization (CRP)

07

• Applications

20

– Acrylic block copolymers as stabilizers in coating, ink applications

IP

R

– Additives suitable for use as components of lubricating oils – ABC – type block copolymers

5

Controlled Radical Polymerization (CRP)

07

• Nitroxide- Mediated Radical Polymerization (NMRP) Ka

R

R + TEMPO

TEMPO

20

Kd

• Atom Transfer Radical Polymerization (ATRP) Ka

R

Br + CuBr (L)

R

+ CuBr2 (L)

Kd

IP

R

• Reversible Addition-Fragmentation Transfer (RAFT) R +S m

K exch

C z

S

R

n

R

m

S

C

S+ R

n

z 6

Controlled Radical Polymerization (CRP) K deact

+ X

R

K act

(Dormant)

20

(Active)

X

07

R

R

• Exchange equilibrium favours dormant species

IP

• Concentration of radicals is low; bimolecular termination “almost” negligible • Radicals grow at the same average rate; low polydispersity product 7

Controlled Radical Polymerization (CRP)

07

• Prerequisites

20

– Small contribution of chain – breaking reactions (termination and transfer reactions)

R

– Fast initiation compared to propagation

IP

– Fast exchange between active and dormant species (provides uniformity in chain length)

8

07

Mn

termination

IP

slow initiation

20

living state

R

ln([M]0 /[M])

Controlled Radical Polymerization (CRP)

FRP

LRP

time

conversion

• Deviation from linearity can result from slow initiation or loss of radicals by termination 9

07

Nitroxide-Mediated Radical Polymerization (NMRP)

20

• Addition of a stable nitroxide radical, able to trap the propagating radical in a thermally unstable species

IP

R

• The most common nitroxide used as trapping agent is TEMPO (2, 2, 6, 6–tetramethyl-1-piperidinyloxy)

10

• NMRP of Styrene with BPO and TEMPO O

O

O

O

O

20

Benzoyl Peroxide O

ki

Initiation

IP

R

+

O

07

2

O

Benzoyloxy radical O

O

C

STY

• Initiator efficiency factor (f) • (Thermal) Self initiation of Styrene 11

• NMRP of Styrene with BPO and TEMPO O

+

n

Propagation

O

07

C

C n

20

O

O

kp

R

O O

+

O

O

N

IP

C

k deact

n

TEMPO

N

k act

O

O x

• K = kdeact/ kact 12

Side Reactions

07

• Reaction between TEMPO and BPO +

N O

O

O

O

O

C

O

O

O O

O

IP

R

C

20

N

• Nitroxide decomposition

13

Uncertain Aspects (?)

07

• Initiator efficiency factor (f)

IP

R

• Side reactions

20

• Uncertain kinetic constants

14

Objectives

R

20

– Conversion (rate) – Molecular weights – Polydispersity

07

• Clarify the effect of polymerization conditions (TEMPO/ BPO ratio and temperature )

IP

• Generate a source of reliable experimental data – Validation of mathematical models – Parameter estimation – Identification of optimal polymerization conditions 15

Summary of Runs [BPO] 0 M

[TEMPO] / [BPO]

120

0.036

0.9

0.036

1.1

0.036

1.2 1.5 -

0.036

0.9

R

Nil

IP

130

+ Replicate

20

0.036

Remarks

07

Temperature (°C)

Styrene with unimolecular initiator

0.036

1.1

+ Replicate

0.036

1.3

+ Replicate

Nil

-

Thermal (self) initiation of styrene + Replicate

Nil

-

Styrene with TEMPO only 16

Effect of TEMPO/BPO Ratio 1 0.9

07

0.8

20

0.6 0.5 0.4

R

TEMPO/BPO=0.9

0.3 0.2

TEMPO/BPO = 1.1 TEMPO/BPO=1.1,Independent replicate

IP

Conversion, X

0.7

0.1

TEMPO/BPO = 1.2 TEMPO/BPO = 1.5

0 0

10

20

30

40

50

60

70

80

Time, t (hr)

STY polymerization at 120 °C, [BPO] 0 = 0.036 M

17

07

35,000 30,000

20

25,000 20,000

R

15,000 10,000

TEMPO/BPO=0.9 TEMPO/BPO=1.1

IP

Weight Average Molecular Weight (gr/mol)

40,000

5,000 0 0

0.2

TEMPO/BPO=1.2 TEMPO/BPO=1.5

0.4

0.6

0.8

1

Conversion, X

STY polymerization at 120º C, [BPO] 0 = 0.036 M 18

9 TEMPO/BPO=0.9

8

TEMPO/BPO=1.1 TEMPO/BPO=1.2

07

7

20

6 5 4

R

3 2

IP

Polydispersity, PDI

TEMPO/BPO=1.5

1 0 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Conversion,X

STY polymerization at 120º C, [BPO] 0 = 0.036 M

19

Observations

20

07

• The larger the TEMPO/ BPO ratio (the more TEMPO in the recipe), the slower the polymerization

R

• Higher values of average molecular weights, Mn and Mw, are obtained as TEMPO/BPO ratio decreases

IP

• Low PDI values, below 1.2 • Similar trends with experimental data at 130°C (not shown) 20

Effect of Temperature 1

07

0.9 0.8

20

0.6 0.5

R

0.4 0.3 0.2

130 120

IP

Conversion, X

0.7

0.1 0 0

10

20

30

40

50

60

70

80

Time, t (hr)

STY polymerization at TEMPO / BPO = 0.9

21

35,000 30,000

07

25,000 20,000

20

15,000 10,000 5,000 0

1.8

IP

1.6 PDI

T = 130 T = 120 T = 120 ,Independent replicate

R

Weight Average Molecular Weight (gr/mol)

40,000

1.4 1.2 1 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Conversion, X

STY polymerization at TEMPO / BPO = 0.9 22

Mathematical Modeling

07

• Kinetic model based on a detailed reaction mechanism

20

• Molar balances; population balances; set of ordinary differential equations

IP

R

• General trends OK

• Satisfactory prediction of experimental data but more work needs to be done ( fine-tuning of key but uncertain parameters) 23

Concluding Remarks 1.5

1.3

20

PDI

07

• “Optimal” ratio to achieve lowest polydispersity seems to be around [TEMPO]/ [BPO] = 1.2

1.4

1.2

1.1

1 0.9

1.1 1.2 TEMPO/BPO Ratio

1.5

IP

R

• There is no pronounced temperature effect at studied conditions • Model trends and preliminary predictions satisfactory for typical polymerization variables (on going work)

24

Future Steps • Experimental :

07

– Comparison with unimolecular initiator

R

• Modeling :

20

– Different initiator (tetrafunctional vs. monofunctional initiator)

IP

– More rigorous parameter estimation – Using Bayesian design to guide our experimentation for better understanding of the reaction mechanism

25

Acknowledgements

07

• NSERC CRO Grant

20

• OGSST – OMNOVA Solutions

• Canada Research Chair (CRC) program ( A. Penlidis)

IP

R

• CRO grant is a collaborative effort under an Inter American Materials Collaboration ( IAMC ) joint project with Prof. E. Vivaldo-Lima, M. Roa-Luna ( UNAM, Mexico ) and Prof. L. M.F. Lona, J.B. Ximenes ( Campinas, Brazil )

26

27

R

IP 20

07

References Handbook of Radical Polymerization. Matyjaszewski, K., and Davis, T.P., Eds. Wiley-Interscience: Hoboken, 2002.



Georges, M.K., Veregin, R.P.N., Kazmaier, P.M., and Hamer, G.K. (1993) Macromolecules, 26 (11): 2987-2988.



Greszta, D. and Matyjaszewski, K. (1996) Macromolecules, 29: 76617670.



MacLeod, P. J. , Veregin R.P.N., Odell, P.G., and Georges, M.K. (1997) Macromolecules, 30 :2207-2208.



Bonilla, J., Saldívar, E., Flores-Tlacuahuac, A., Vivaldo-Lima, E., Pfaendner, R., and Tiscareño-Lechuga, F. (2002) Polym. React. Eng. J., 10 (4): 227-263.



Goto, A. and Fukuda, T. (2004) Prog. Polym. Sci., 29: 329–385.



Roa- Luna, M., Nabifar, A., Diaz-Barber, M. P., McManus, N.T., VivaldoLima, E., Lona, L.M.F., and Penlidis, A. (2007) J. Macromol. Sci., A: Pure Appl. Chem., A44: 337-349.

IP

R

20

07



28

k decomp

N

CH2

CH

CH

07

O

CH + HO

N

n

20

n

CH2 CH

R

CH

IP

CH2

29

Experimental • Polymerization

20

07

– Ampoules (~ 4ml volume): degassed , torch-sealed, and then placed in liquid nitrogen until used – Isothermal oil bath

R

• Polymer Characterization

IP

– Monomer conversion • Gravimetry

– Molecular weight averages and polydispersity • Gel permeation chromatography (GPC) 30

Results 1 0.9 0.8

07

0.6 0.5 0.4

2.5

20

0.3 0.2 0.1

2

0 10

20

30 Time, t (hr)

40

50

60

R

0

Ln [M]0/[M]

Replicate

IP

Conversion, X

0.7

1.5

1

0.5

0 0

5

10

15

20

25

30

35

Time, t (hr)

STY polymerization at 120°C, TEMPO/BPO = 1.1

31

25,000

07

20,000 15,000 10,000 5,000 0

R

1.6

IP

1.4 PDI

Mn Mw

20

Average Molecular Weights (gr/mol)

30,000

1.2 1 0.0

0.1

0.2

0.3

0.4 0.5 0.6 Conversion, X

0.7

0.8

0.9

STY polymerization at 120°C, TEMPO/BPO = 1.1

1.0

32

Remarks

07

• As expected, polymerization proceeds faster at the higher temperature

R

20

– After about 80-85% conversion, rates are almost identical for both temperatures

IP

• A small reduction in molecular weight values as temperature increases • Experimental data also available for TEMPO/ BPO=1.1

33

Mathematical Modeling 1 0.9 0.8

07

0.6 0.5

35000

0.3 0.2

Experimental data

0.1

Predicted Profile

0 5

10

15

20 Time, t (hr)

25

30

35

40

R

0

Number Average Molecular Weight (g/mol)

20

0.4

IP

Conversion, X

0.7

30000

Experimental data

Predicted Profile

25000 20000 15000 10000 5000

0 0.0

0.2

0.4

0.6

0.8

1.0

Conversion, X

STY polymerization at T = 130 °C ,TEMPO/BPO = 1.1

34

6 Experimental data

5.5

Predicted Profile

07

5 4.5

20

3.5 3

R

2.5 2 1.5 1 0

IP

PDI

4

0.2

0.4 0.6 Conversion, X

0.8

1

STY polymerization at T = 130 °C ,TEMPO/BPO = 1.1 35

0.024 0.022 0.02

07

0.016

20

0.014 0.012 0.01

R

0.008 0.006 0.004 0.002

[I]

IP

Concentration, mol/L

0.018

[NOx*] [NOe]

0 1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01 1.E+00 1.E+01 1.E+02

Time (hr)

Typical calculated profiles for concentration of initiator, nitroxyl stable radicals and alcoxyamine

36

Description

d I ⎯ k⎯ → 2 Rin •

Chemical initiation Nitroxyl ether decomposition

ka 2 ⎯⎯⎯ →

NOE ←⎯⎯ Rin • + NO x • kd 2 d im M + M ⎯ k⎯ →D

Thermal initiation

ki a M + D ⎯⎯ → D •+M •

07

Mayo dimerization

p Rin • + M ⎯⎯ → R1 •

First propagation (monomeric radicals)

p M • + M ⎯⎯ → R1 •

20

First propagation (primary radicals)

First propagation (dimeric radicals) Propagation

R

Dormant living exchange (monomeric alkoxyamine) Dormant living exchange (polymeric alkoxyamine)

IP

Kinetic Mechanism (Bonilla et al., 2002)

Step

Alkoxyamine decomposition Rate enhancement reaction Termination by combination Termination by disproportionation Transfer to monomer Transfer to dimer

k

k

p D • + M ⎯⎯ → R1 •

k

p Rr • + M ⎯ ⎯ → R r +1 •

k

ka ←⎯⎯

M • + NOx • ⎯⎯ → MNOx k da a ←⎯⎯ k

Rr • + NOx • ⎯⎯ → Rr NOx kda decomp MNOx ⎯⎯⎯ → M + HNOx

k

kh 3 D + NOx • ⎯⎯ → D • + HNOx ktc Rr • + Rs • ⎯⎯ → Pr + s

ktd Rr • + Rs • ⎯⎯ → Pr + Ps fM Rr • + M ⎯⎯→ Pr + M •

k

fD Rr • + D ⎯⎯→ Pr + D •

k

37

Description

d I ⎯ k⎯ → 2 Rin •

Chemical initiation Nitroxyl ether decomposition

ka 2 ⎯⎯⎯ →

NOE ←⎯⎯ Rin • + NO x • kd 2 d im M + M ⎯ k⎯ →D

Thermal initiation

ki a M + D ⎯⎯ → D •+M •

07

Mayo dimerization

p Rin • + M ⎯⎯ → R1 •

First propagation (monomeric radicals)

p M • + M ⎯⎯ → R1 •

20

First propagation (primary radicals)

First propagation (dimeric radicals) Propagation

R

Dormant living exchange (monomeric alkoxyamine) Dormant living exchange (polymeric alkoxyamine)

IP

Kinetic Mechanism (Bonilla et al., 2002)

Step

Alkoxyamine decomposition Rate enhancement reaction Termination by combination Termination by disproportionation Transfer to monomer Transfer to dimer

k

k

p D • + M ⎯⎯ → R1 •

k

p Rr • + M ⎯ ⎯ → R r +1 •

k

ka ←⎯⎯

M • + NOx • ⎯⎯ → MNOx k da a ←⎯⎯ k

Rr • + NOx • ⎯⎯ → Rr NOx kda decomp MNOx ⎯⎯⎯ → M + HNOx

k

kh 3 D + NOx • ⎯⎯ → D • + HNOx ktc Rr • + Rs • ⎯⎯ → Pr + s

ktd Rr • + Rs • ⎯⎯ → Pr + Ps fM Rr • + M ⎯⎯→ Pr + M •

k

fD Rr • + D ⎯⎯→ Pr + D •

k

38

IP

R

20

07

Thermal Self initiation of Styrene

39

40

R

IP 20

07