eravi miznvd x`y . xeciqd itl zyw idyefi`a oey`xd znevd `ed v m` legka ravi v .... xen`dn ."si > p nlogn mbe vi si. 2
Probabilistic Methods in Combinatorics: Homework Assignment Number 1 Noga Alon
Solutions will be collected in class on Wednesday, March 25, 2009. n−1
1. Suppose n > 4 and let H be an n-uniform hypergraph with at most 4 3n edges. Prove that there is a coloring of the vertices of H by 4 colors so that in every edge all 4 colors are represented. 2. Prove that there is an absolute constant c > 0 with the following property. Let A be an n by n matrix with pairwise distinct entries. Then there is a permutation of the rows of A so that no √ column in the permuted matrix contains an increasing sub-sequence of length at least c n. 3. (i) Prove that every set A of n nonzero integers contains two disjoint subsets B1 , B2 ⊂ A, so that |B1 | + |B2 | > 2n/3 and each set Bi is sum-free (that is, there are no b1 , b2 , b3 ∈ Bi so that b1 + b2 = b3 .) (ii) Prove that the same conclusion holds for any set A of n nonzero reals. 4. Let {(Ai , Bi ), 1 ≤ i ≤ h} be a family of pairs of subsets of the set of integers such that |Ai |+|Bi | = k for all i, Ai ∩ Bi = ∅ and (Ai ∩ Bj ) ∪ (Aj ∩ Bi ) 6= ∅ for all i 6= j. Prove that h ≤ 2k . 5. Let X be a collection of pairwise orthogonal unit vectors in Rn and suppose the projection of each of these vectors on the first k coordinates is of Euclidean norm at least ǫ. Show that p |X| ≤ k/ǫ2 , and this is tight for all n = 2r , and ǫ = k/2r < 1, with r ≥ 1 an integer.
1 libxz - dwixehpianewa zeizexazqd zehiy 317610087 l`kin bxaxtiw 2009 uxna 25
1 dl`y
e
m`
xe
= 0-e
mirav 4-a dreav `l
e
xe
m`
e
xicbp
= 1
zyw lkl .z"ae cig` ote`a erav z` lixbp znev lkl -y xexa .mirav drax`a dreav
E [xe ] = 4
n
n
3
2
6
4
n 1
+4
4
4
1 and every n-uniform hypergraph H with at most cn1/4 2n edges there is an ordering of the vertices of H such that there are no two edges A and B that intersect in a unique element, and all members of A − B precede all those of B − A, while the unique element in A ∩ B appears after all those of A − B and before all those of B − A. (ii) Apply (i) to conclude that for c, n and H as above, H is two-colorable. 2. (Every monotone property has a threshold). Let F be a family of graphs on n labeled vertices, and suppose F is monotone, that is, if F ∈ F and G contains all edges of F , then G ∈ F. Suppose ǫ > 0, 0 < p < 1 and suppose that the probability that the random graph G(n, p) ⌉}, the probability that G(n, q) ∈ F is at belongs to F is ǫ. Show that for q = min{1, p⌈ ln(1/ǫ) ǫ least 1 − ǫ. 3. Let v1 = (x1 , y1 ), . . . , vn = (xn , yn ) be n two dimensional vectors, where each xi and each yi is 2n/2 √ . Show that there are two disjoint nonempty sets a positive integer that does not exceed 100 n I, J ⊂ {1, 2, . . . , n} such that X X vi = vj . i∈I
j∈J
4. Call a family F of subsets of [n] = {1, 2, . . . , n} distinguishing if for every two distinct subsets A and B of [n] there is an F ∈ F so that |A ∩ F | = 6 |B ∩ F |. (i) Show that there exists such an F of size |F| ≤ (2 + o(1)) logn n . 3
(ii) Show that any such F is of size at least (2 − o(1)) logn n . 2
5. Show that there is a positive constant c such that the following holds. For any n vectors P a1 , a2 , . . . , an ∈ R2 satisfying ni=1 ||ai ||2 = 1 and ||ai || ≤ 1/10, where || · || denotes the usual Euclidean norm, if (ǫ1 , . . . , ǫn ) is a {−1, 1}-random vector obtained by choosing each ǫi randomly and independently with uniform distribution to be either −1 or 1, then P rob(||
n X
ǫi ai || ≤ 1/3) ≥ c.
i=1
6. The Haj´ os number of a graph G is the maximum number k such that there are k vertices in G with a path between each pair so that all the k2 paths are internally pairwise vertex disjoint (and no vertex is an internal vertex of a path and an endpoint of another). Is there a graph whose chromatic number exceeds twice its Haj´os number ?
2 libxz - dwixehpianewa zeizexazqd zehiy 317610087 l`kin bxaxtiw 2009 lixt`a 22
zeillk zexrd
jXi j 6 i
.Pr [
.
;
(
= 1 2)]
>
3 :miiw 2 2
1
t t t 2t s 6 bt=2c miiw s lkl ok enk . bt=2c 6 pt+1
,
2 zepeye 0 zlgez ilra X1 ; X2 n"n bef xear :1 Berge htyn m
t > 3 xeare 22pm 6 2
m 22m m 6 p2m
2
miiw :ifkxn inepia mcwn zkxrd
` 1 dl`y
A \ B = fxg-y jk B -e A zezyw bef lkl .miznvd ly ixwn xeciq idz :ik xexa ."B A-a miznvd lkl mcewy x-l ( itl) mincew A B -a miznvd lk" :rxe`nl XA;B
xehwicpi` dpzyn zeidl
XA;B = 1] =
Pr [
n (2n
[(
z` xicbp
2
1)!]
1)!
=
2
n
1
k-n
nn [(
1
2
1)!]
(2
2)!
=
2
n
1
nn 2
1
2
1
6 n
1
2(
1
1)
p n 2
1 2
n
2 2
n
3 2
6 pn 2
P
H -a zezyw k := cn1=4 2n -n xzei `l yi m` .X = XA;B xicbp k 23p 2n < c2 23 = 1 :zlgezd zeix`piln if` 3=2 xeciq xnelk ,X < 1 exear ,xeciq miiw okle c = 2 xear ,E [X ] 6 2 2 n ,
A; B
dl`k (mixecq) zebef 2
2
xzei `l okle
.yexck
a 1 dl`y
xeciqd itl zyw idyefi`a oey`xd znevd `ed v m` legka ravi v znev .l"pk xeciq idz A ly oexg`d xai`d hxta .legka dreav A ik xexa .zipeb-cg A gipp .mec`a .dxizqa ,XA;B = 1 f` la` .B ly
eravi miznvd x`y .
oey`xd xai`d `edy oeeikn legka reav
2 dl`y
:=
dyrpy ieqipd lr xefgp . miieqipd
l
ln(1
=)
lky zexazqdd .minrt
m xear
(F -l
q
=
p ik gipp okl
.1 zexaqzda
jiiy sxbd m`d dwicae
p
G(n; q) = Kn 2 F
zexazqda zezyw dxiga
q = 1 m` l"x) G(n; p)-a f`
p divwpetd ik al miyp .(1 6 exp ( ) 6 exp ln(1=) = lr dler dpi` elyki 0 zexazqdd xnelk ,1 (1 p) 6 p = q ik milawn .f (0) = 0 ,ok enk .[0; 1] rhwa dler dpi` f okle f 6 0 zniiwn dphw dpi`y zexazqda F -l jiiy epx`izy ieqipdn lawznd sxbd .q lr dler dpi` miieqipdn cg`a xgaiz zywy .1 -n dphw dpi`y zexazqda F -l jiiy ,dphw `l zyw zxigal zexazqdd eay ,G(n; q) okle ,1 -n
f (p) = 1
(1
p)
)
3 dl`y xexa .
Berge
V
=
itl
X = P v ok enk ;Y = P y -e X = P x onqp .z"ae cig` ote`a ; : : : ; 2 f0; 1g xgap 1 n i i i i i i i i i Y P 2 P P 1 1 2n 1 2n :dnec ote`a .V ar [X ] = .V ar [Y ] 6 i xi 6 41002 :oke E [Y ] = 2 i yi ,E [X ] = 2p i xi -y 41002 4 :( = 100 2 xear) h Pr
jX E X j; jY E Y j 6 [
]
[
]
2
(
n
=
1) 2
i
>
1
4
3 10
4
Berge, P.O (1937), A note on a form of Tchebyche's theorem for two variables. Biometrika 29:405-4061
1
2 1
1 1 4103 4 -y o`kn lawzny jxr miiw okle ,mikxr 2 -n zegt milawn minekq 2 4 0 > 1-n xzei i"r P P 0 0 0 0 0 xexa .J = J K -e I = I K ,K = I \ J xicbp . 2 0 v = 2 0 v -y jk I 6= J [n] zeniiw xnelk .minekq 3 4 10
n
n
i
j
0 did ynn miiaeig mixehwe ly mekq zxg`] I; J 6= ; ,I \ J = ; ik X X X X X X v = v v = v v = v i
I
j
J
:oke [
2
i
i
i
20
I
i
2
I
i
i
K
j
20
j
J
j
2
j
K
j
2
j
J
(zeillk zexrd) 4 dl`y
A (A)-a onqp .A ly A zecenrdn zakxeny dvixhnd z` A
log2 liaya lg onqp
.
A -a
onqp
A [n] dveawe k n xcqn A dvixhn xear A ly zecenrd mekq z` (A) heyt e`)
:zelewy ze`ad zeprhd ik orhp .
A
jF \ Aj =6 jF \ B j zniiwnd F 2 F zniiw ,A 6= B [n] lkly jk k lceba F 2[ ] zniiw .(A) = 6 (B ) ,A =6 B [n] lkly jk 0=1 ly k n xcqn A dvixhn zniiw (*) (A) = ik ze`xl lw .A = 6 B [n] dpiidz .jtidle ,j 2 F m"m` A = 1 xicbp F = fF1 ; : : : ; F g xear ,ok`e .ipyd geqipd xear dl`yd z` ,ok m` ,xeztp .jF \ Aj = jF \ B j ,i lkl m"m` (A) = (B ) okle .jF \ Aj n
.
i
i
ij
i
k
i
i
` 4 dl`y
k) k n xcqn (1=2 zexazqdae z"a ote`a 0 zeidl xgap da xai` lk xnelk) zixwn 0=1 zvixhn A idz X P = 1 m`y xexa ."(A) = (B )" :rxe`nd ly X xehwicpi` dpzyn xicbp A; B [n] bef lkl .(jynda 0 0 .E [X ] := \ =; E [X ] lr dler dpi` miiwzn `l (*)-y zexazqddy o`kn .X 0 0 = 1-y jk zexf A ; B mb zeni rawii
-iw f`
A;B
A
A;B
A ;B
A;B
B
2
E [X
A;B
fp;qg X
min
] = 42
p
q
q `
p `
`=0
:ik xexa
3k 5
q = jB j-e p = jAj xy`k
:okle .
E [X ] =
2
n! 42 p ! q !( n p q)! 16 + 6 X
p
q
fp;qg X
min p
q
`=0
n
q `
p `
3k
X
=
5
n! 2 p!q!(n p q)!
p
q
:lawpe
n!
k
1
k+1
p+q p
k
t = p + q onqp
t n 2 2 st = s t ( n t )! s !( t s )! =0 =0 =1 =1 :f`e . = (n) = 2 + 1= lg lg n = 2 + o(1) xy`k k = lg3
X n
E [X ] =
X t
X n
t
s
t
X t
tk
s
t
n
2
4n 2k
A(n) 6
n
lg n 2
n lg2 n n
:ixdy
n
2 lg2 n 2
lgnn
6 n 2e lg2 n
n2
lg n
2
E [X ] 6
P lgn2 n
A(n) =
lgnn
t
s
t=3
6
t
2
4n 2k
= o(1)
2 (t + 1) ( 1) 2 = o(1) 2 + n lg2 n lg(2 lg ) = o(1)
b 2c t=
= o(1) ixdy
xgap
n
t
k
=
t
lgnn +lg n
=2
:o`kn
lgnn +2 lg(2n)
=2
n
e
n
t :miiw t > 3 lkl ik reci 6 p2+1 t
4n2 + X n 2 (t + 1) 2 + 6 4n2 + X n 2 6 k+1 2 t 2 t 2 (t + 1) (t + 1) k 2 1 =3 =3 n
tk
t
t
tk
k
k
t
2 6 42n +
n 2n lg X n
k
= 2
n
t=3
k 1 (2 lg lg n
2
lg2 n 2 + t n t
lg n)+n lg 3
t
k 1
2
t=
+ o(1) 6 2 .yexck
n X
k
n
lg2 n
lg lg n+
lg2 n n 2 6 n t t
21 lg n
( 2 1)
n lg
3
k21
=2
3 + o(1) = n
n lg 3 lg lg n +o( lg nlg n )
= o(1)
A dvixhn zniiw ziaeig zexazqda (lecb witqn n xear) okle 2
a 4 dl`y .z"ae cig` ote`a
i
i
1 2
okl . -e
i
Pr xen`dn ."si
2 f0; 1g xgap
1 ; : : : ; n
:= E [v ] = 12 s
si
= ([n])
vi
n xcqn zizexixy dvixhn A idz = (A)-e A = fj j = 1g xicbp
k
onqpe ,yexck
ik xexa .v
j
Cherno itl ,o`kn . 2 := V ar[v ] = 41 s -e
:
h vi
.s
mixhnxt mr zinepia bltzn
p
si
2 >
> pn log n mbe v
si
i
log s 6 2 exp
2s log s i
i
2 >
si
i
i
6 2 exp ( 2 log s ) = 2s i
si
ps log s " (*) :rxe`nl xehwicpi` dpzyn zeidl X i
i
i
i
i
i
i
2
1 6 i 6 k lkl
xicbp
:lirl
2 (n log n) 1 = 2k(n log n) 1 6 log2 n = o(1) `l yi zeveawd xzi xear .(*) i`pzd z` miiwnd aikx likn (A) oxear A [n] zeveaw o(2 )-n xzei `l yi okl p p :o`kn ,2 6 (2 n log n) + o(2 ) :dl`yd ii`pz z` zniiwn A-e li`ed .aikx lkl mipey mikxr 2 n log n-n xzei n(1 o(1)) k> > (2 o(1)) lg n(1 n+ o(1)) = (2 o(1)) lgnn lg +lg lg 1+ 2 [ ] := E
EX
hX
Xi
i
=
X
X
[ ]6
E Xi
n
k
n
n
n
n
5 dl`y X
:mihpnen xtqn aygp .
E X2
[ ] =
2 3 X E4 xi xj i j 5
=
i;j
E X
4
X
=
X
[
xi xj E i j
]=
X
i;j
[
xi1 xi2 xi3 xi4 E i1 i2 i3 i4
]=
[
X
] =
x4i
i
:z` aygp .E
[X 2 + Y 2 ] = 1 hxtae ,Y [
xi1 xi2 yi3 yi4 E i1 i2 i3 i4
]=
i1 ;i2 ;i3 ;i4
X
=
Pn
=1 a = i
i
Pn
=1
i
i
i
xi yi
onqp
x2i
i
X
i1 ;i2 ;i3 ;i4
E X 2Y 2
Y
+ 42
X
x2i x2j
i exp ( 2 ) :miiw . = xicbp 2 jxe`a lelqn xear f`e = 18 xicbp lkl P Y Y Y Y Y (1 ) = 2 = (1 )j ( )j > (1 ) = (1 ) = 1
ixefgn P " :rxe`nd zeidl AP xicbp P lelqn lkl . ; : : : ; r P
i
N P
Nj P
ij
j
Q
j
Nj P
Q
2 ( )
xQ
j
N P
= 18
i
e
Q
8
xP
N
Q
18
aj
ai
P
ij
9 > j
h
18 8 e
P
j
i
ai
Nj P
ij
aj
ai
i
aj
ai e
ij
j
j
P
j
i
Nj P
j
ij
ai
xQ
2 j( ) P
j
j
ai
xP
;
AQ
i
ai
xP
AP
AP
P
ij
e
AP ; AQ
2
j
i
i
> 18
16
i
e
=
r
i
= Pr[ ] AP
.zraep dprhd (illkd gqepd) zilweld dnldn okle
4 dl`y ote`a da xag zeidl xgap znev lky jk miznv ly zixwn dveaw (ixlebx d-d sxbd `ed G xy`k) V e` Xv
= 0" :rxe`nd
Av
0 -e V -a v
ly mipkyd xtqn Xv eidi v
2
V
znev lkl .p
( ) \ ( ) = ; xy`k z"a
mr v xear miiwzn `l oexg`d oeieeyde li`ed .N u
N v
= (2 + 2ln )
d =d
Av -e Au
(
Pr [ ] 6 (1 ) + Pr( 3 ) 6 (1 ) + ( 2 27)2+2 ln 6 + .0 6 6 + 6 ln =: -y jk 0 dveaw zniiw zilweld dnld itl okle p
< Xv
d
X >
d
pd
k
p
V
1
d
e =
d
e
pd
zexazqdae z"a
3 1) 2 xzeid lkl 1 2 Pr[ ] 2 1 :miiw
zerxe`nd ik xexa ."Xv >
.u miznv d d Av
0 V [G] idz
e
pd
< d
2 Mi > Q2i=1 i
2k = 4
Mi xicbp ,1 6 6 2 i
2k
kX1 2k i=0
k
1 i
=
k
znev lkl .1; : : : ; 2k :miznvd z` onqp
1 2
:K leitman itl .(zecxei) zeipehepen
Mi zepekzdy al miyp 6 dl`y
(V [G]; N mb ik xexa
E)
m"m` E
2 C -e (yxete) xiyw ( [ ] ) m"m` 2 A-y jk A C 2N dpiidz . = [ ] idz .ok jAj = 2jN j -y oezp .zcxei zipehepen C -e dler zipehepen A ik xexa .(yxete) xiyw jN j . 6 2 okle 22jN j = 2jN j jA \ Cj 6 jAjjCj = 22jN j 2 : itl .jCj = 2 V G ;E
jN j Q-e .jA \ Cj = 2
E
;
N
E G
P
Q
P
Q
P
2
K leitman
P
Probabilistic Methods in Combinatorics: Homework Assignment Number 4 Noga Alon
Solutions will be collected in class on Wednesday, June 3, 2009. 1. Let G1 , G2 , . . . , Gm be m graphs on the same set of vertices [n] = {1, 2, . . . , n}, and suppose that the chromatic number of each graph Gi is exactly k. Show that there is a partition of the set of vertices [n] into two disjoint sets A1 , A2 so that for every i, 1 ≤ i ≤ m, and for every j, 1 ≤ j ≤ 2, √ p the chromatic number of the induced subgraph of Gi on Aj is at least k/2 − 2 ln(2m) k. Hint: use an appropriate martingale to show that this holds with positive probability for a random partition. 2. Prove that there exists a positive constant δ > 0 and an integer n0 = n0 (δ) so that for all n > n0 and every collection S1 , S2 , . . . , Sm , where m ≤ 2δn , of subsets of [2n] = {1, 2, . . . , 2n}, satisfying |Si | = n for all i, there is a function f : [2n] 7→ [n] = {1, 2, . . . , n} so that for every i, 1 ≤ i ≤ m, 0.63n ≤ |f (Si )| ≤ 0.64n. Hint: 0.63 < 1 −
1 e
< 0.64.
3. Show that for any ǫ > 0 there is a C = C(ǫ) such that every set S of at least ǫ3n vectors in Z3n contains three vectors so that the Hamming distance between any pair of them is at least √ n − C n. Hint: use an appropriate martingale to show that more than 2/3 of the vectors are within √ distance C n/2 of S. 4. Using Janson’s Inequality, find a threshold function for the property: G(n, p) contains at least n/10 pairwise vertex disjoint copies of K5 . 5. (i) Is it true that for every ǫ > 0 there is a finite constant C = C(ǫ) such that every set X of n points in the plane contains a subset Y of size at most C with the following property: any convex set K which is the intersection of 10 half-planes and contains at least ǫn points of X, contains at least one point of Y ? Prove, or give a counterexample. (ii) Is it true that for every ǫ > 0 there is a finite constant C = C(ǫ) such that every set X of n points in the plane contains a subset Y of size at most C with the following property: any convex set K which contains at least ǫn points of X, contains at least one point of Y ? Prove, or give a counterexample.
4 libxz - dwixehpianewa zeizexazqd zehiy 317610087 l`kin bxaxtiw 2009 i`na 22
1 dl`y S
`id
mb ik xexa .(dcig` zebltzdae z"a ote`a da xag zeidl xgap xai` lky) zixwn dveaw-zz miiw
E [(Gi [S ])] = E [(Gi [S ])]
(Gi [S ]) + (Gi [S ]) > (Gi ) = k-e
oke
S
[n] idz
li`ed .zixwn dveaw-zz
= E [(Gi [S ])] > k=2 xear
fv j ci (v) 6 j g onqp .fgg zeivwpet zveawe Gi [S ] mitxbd oia zedfl ozip .Gi zriav ci : [n] ! [k] idz :Azuma q"r okle Lipschitz i`pz z` zniiwn L ik ze`xl lw .L = -e 0 6 j 6 k h h p p pi pi ln(2m) 2 ln(2m) k 6 Pr (Gi [S ]) < 2 ln(2m) k < e = 1= 2 m Pr (Gi [S ]) < k=2
Bj
=
6 i 6 m xear Gi [S ]; Gi [S ] mitxbdn cg` zegtly zexazqdd o`kn
okle ,1-n (ynn) dphw yexcd z` miiwi `l 1
.A2 =
S -e A1
=
S
xicbdl xzep .yexck
S
zniiw
2 dl`y
4 6 0:64-y jk xgap 0 6 j 6 2n xear Bj = [j ] onqp .Si -a opeazp .zeivwpet n jezn ixwn ote`a f : [2n] ! [n] divwpet xgap 1 n okle Lipschitz i`pz z` zniiwn Li ik ze`xl lw .i = E [jf (Si )j] = n 1 1 ik xexa .Li (f ) = jf (Si )j-e n .jynda xgai
n0 .e
2
= 2 -y jk
xicbpe 0:63
61
1=e
2n
h Pr oekp ipyd oeieey-i`d)
0:63
jLi (f )
61
1=e
i j 6
jLi (f )
i j >
6
p
p
2 4n ln(4e n )
4 = lim
i n
p
p
4
.n0 = maxi
2 ln(4m)
2n
2 4n ln(e4 n )
i
:Azuma q"r
< 1=m
6 4 n :1 6 i 6 m lkly jk f zniiwy o`kn zrk .(milecb witqn mi-n xear
6 lim Lin(f ) 6 lim ni + 4 = 1
1=e + 4
6 0:64
fn0i g xicbp .0:63 6 Li (f ) 6 0:64 ,n > n0i lkly jk n0i miiw xnelk 3 dl`y
S -a
xehweel
g -n
:mipeieey-i`d
Hamming wgxn `ed L(g ) ,Zn3 -a xehwe zbviin g miniiw Azuma q"r okle Lipschitz i`pz z` zniiwn L ik
:
ixrfn
Pr
p
L(g ) > + n < e
2 =2
Pr
L(g ) <
B
! A ,B = [n] ,A = [3] xicbp 6 i 6 n xear Bi = [i]-e
ze`xl lw .0
p
n n
:mialwne
lim (n dveaw
V1
+ =2) 6 lim
C 00 n
!0
Cn5
1 + C 00 n C
4
2=5 1+C 00 1=10 hxtae p n 2=5 la`
C
= lim((C 00 1
) )= 1
C 00 n
V (G) iaihwecpi` ote`a zeveaw ly dxcq xicbp .K5 z` dlikn n=2 lceba dveaw lk hrnk ,xnelk G[S2 ] ' K5 -y jk S2 V2 -e V2 V (G) V1 .G[S1 ] ' K5 -y jk S1 V1 -e n=2 lceba idylk .yexck ,k > n=10 ,jSi j = 5-e li`ed .jV (G) S1 [ [ Sk j > n=2
cer lk d`ld jke
` 5 dl`y mixeyin-ivgd lk ly
V C -d
cnin ik dcaera aygzdae ,Spencer -e
Alon
ly mxtq jezn 14.4.3 dpwqn itl .oekp
10 ly jezig opidy (zexenwd) zeveawd lk ly V C -d cnin ik lawp ,3 `ed xeyina zecewp lrn ( ) divwpet zniiw ,14.4.5 htynn okl .iteq hxtae ,2 3 10 log(3 10) lr dler epi` xeyina zecewp
lrn mixeyin-ivg
X
lky jk
C
jY j 6 C mr Y
.
zyx- dlikn
a 5 dl`y ipt lr zecewp
n
> 2C ly dveaw zeidl X z` xgap
.edylk
C
.X -n zecewp
jX
Y
j>n
C
= C ()-e = 1=2 idi .oky dlilya gipp .oekp `l
idi .jY j 6 C -y calae idylk Y X idz .lbrn > n=2 = n likne Y -n dcewp s` likn `l K ,ok enk .xenw K ik xexa .X Y -n
zecewpd md eicewcwy (eil` zkiiy dneqgd d`tdy jk) rlevn
2
K