... Case Western Reserve University, University of Chicago, Drexel University, ... http://www.nvidia.com/content/cudazone/CUDABrowser/downloads/papers/.
a novel nearest neighbor-based voting data reduction algo- rithm for SVM ... The classification power of SVM can be attributed to its excellent ... ing up the solution of the quadratic programming problem. ... isolated points can be support vectors.
Available online at www.sciencedirect.com ... aUniversity of Technology Malaysia, Faculty of Computer Science and ... HSV color space has proven to be a good choice because it has all the colors in the channel. ... According to [4], direct tissue pro
In this work, we investigate the practical effectiveness of GPU-based approaches to ac- ... schemes like support vector machines or neural networks [7]. A crucial ...
Jan 23, 2017 - be delivered as prediction intervals (including the probability of the forecast being inside the interval) or complete conditional probability ...
offline handwritten Gurmukhi character recognition based on k-. NN classifier is presented in ... features for handwritten Hindi numerals. They have divided the.
We introduce a new nearest neighbor search al- gorithm. The algorithm builds a nearest neighbor graph in an offline phase and when queried with a new point ...
Keywords: Metabolomics, Missing value, Imputation, Truncated normal, High ...... was considered at 9%, 15% and 30% and within each missing MNAR is.
Nov 30, 2005 - Weighted Distances, Nearest Neighbor, Leaving-One-Out, Error Minimization, ... NN classification generally achieves good results when the ...
computer vision, image retrieval, data mining, etc. The prob- ... We build a k-nearest neigh- bor (k-NN) ... A k-NN graph is built from dataset points and when queried with a ... neighbors, a backtrack step from the leaf node is performed and the ...
Mar 26, 2009 - Evaluating Probability Threshold k-Nearest-Neighbor. Queries over Uncertain Data. Reynold Cheng. The University of Hong Kong.
Abstract. Given two sets of points P and Q, a group nearest neighbor. (GNN) query retrieves the point(s) of P with the smallest sum of distances to all points in Q.
In this paper, kernel and nearest neighbor estimators of ep(x) are ... these estimators with varying k in k-nearest neighbor method and with varying h in kernel.
nearest neighbor decision rule when applied to the uncertain scenario. ... UNN rule is effective and efficient in classifying uncertain data. ... simultaneously into account the distribution functions of all the distances ... distance metric on D (e.
Nov 30, 2011 - information retrieval applications, as l is a more intuitive measure for a user unfamiliar ..... to large databases in main memory in a standard desktop computer. .... C# , with the Mono framework (http://www.mono-project.org).
Fast GPU-based Locality Sensitive Hashing for K-Nearest. Neighbor Computation ... Dinesh Manocha. {panj, dm}@cs.unc.edu, Department of Computer Science, UNC Chapel Hill ...... potential performance to a certain degree, since it involves.
kNN is presented, which is derived from the traditional k-nearest neighbor (kNN) algorithm. In detail, for each new instance, its k nearest neighbors are firstly ...
spatial pyramid matching (SPM). This paper shows that edge-based im- age features in combination with SPM results in a fast similarity mea- sure that captures ...
Department of Computer Science. Box 111 ... We propose a fast pairwise nearest neighbor (PNN)- based O(N log N) ..... 1 The algorithm for the fast Otsu's method for thresholding. Virmajoki ...... and PhLic degree in computer science from the ...
data mining - e.g. detecting new financial transaction fraud patterns, where normal legitimate transactions ..... Let Ki = npi. 3: For each example, calculate the ...
Julian Lee. School of Computational ..... R01-2003-000-10999-0 (Julian Lee) from the Basic. Research ... [18] H. Carrillo and D. Lipman, SIAM J. Appl. Math. 48,.
Keywords: Fresh Fruit Bunch, Fruit Ripeness Identification; HSV; Nearest ... a histogram that shows a higher than normal frequency in bins near one end.
Probability Based Metrics for Nearest Neighbor. Classification and Case-Based Reasoning. Enrico Blanzieri and Francesco Riccie. Istituto per la Ricerca ...
"!# $!%& '() * + ,- + . . * &/0&1"& .- .' 2+3 4 5 6 789 : 3 ; 5 < 4 5: 30=> 4 : 306 < ? 6 7@5 6 6 5 A B C D E D F D GH I J+K LME N I J N L&O N E I P D E Q N LIR I N P G K G S E N LT B RUV B MO RW X Y Z [ ZB \ D GL ]K _ GT R^W ` a b c d e f g h e g i jk e j l0k e jnm-g e l l e h i o p b a e bk e j ^Dqy I rI E Ss N ty L u } C v G Iw Jt } N xL K LC RIC CyE EQ CI HJI ~0L C Hy I y G JGCE CI&D yz { G L I N DQ F P C D IEy D {IE G C GPIP|&E CL I } D N LJ K ELC N I C C&C{} G G LzPC |E CN D LI L DK KD J _)E E C N D CJ E I N z K CG _-JN GG D P|y I&H LF^HD I I J L { G J } I G LC P DV }E P-E K E D D y _I I C D E |C&L } D _E G PO y H G y J D&L C L I P 0{B P HF L JF D P E N L F S K L L ~J ~III J ID NI GP P {C E E {D CI J&{ LI Q |P E I D D E GJ E P-N&DH GJ G L H P-G C E I P { V HE D F C+D+H C I H J Lz YG N ZJ I| D Ly P L NDI E P N K F G {J I I G C] N I L J D ~ I S GIJ H E N J L I K0C I z PI LDD LF J P I G C] L I P K {H J G I} L I } ] E L K EK DF _L D } IL IC I|{ H |&E J E I N D L J K E K N _ ~ ND y L KL K DI {I H E K P G EE |&D CF I |C D E M+|E CL &D I CIG D zJ ED Ny IT H MG C D I W J ~ E G E JI H L+J G |} LI D} J E E K N+E D zE GI CJN K L CMC E Q N LE CD E GG HPD DE | L C L K C ~ ED P-y I&D y O Iy G C J I DP CL I P {D y L F D& E F D&P G L H S D L&E | E I ID JC&E ND y |I E P Q EP |E D E I I |&C+ED C y N I&K L { C CE E Q I N J LI DP E N G IP)} J I E CD ~I I Py QI JP I E LD IC JO E y C G J L DP L {&P {L C _ F |& H F D P G L D S E N+L+J E C I D J +E N P&~ D I y IH I J L E K |&F II P D EL K I N J G I |P N H I+L J E C I G D P&J E NG ~z0L P M{F +N K EE D { yI L D P y I D y L I |G |&D y E PI J&S|&|II DD JJ EE NN CC G P }MI $P N y H | I J L z GJ &J |&{ C&L D N L G C |I D HCL C J y L G } +K _-CD D y GL DD y IML _ GI FCD UH IK L J Cz GC E J Q |&I JC }N L L PC I } {&IG FPC DI y z F I+K0C E L P|N I+L C H I J V G } } L L C }I {E K E DL _H H I KC E D N E L | D E L G D P I CC Ry y I IJ IJ I D C y F IK D J CI DC JF E S I S] IL C K0DG D zy LL DP I L MJ I C D P I E S y } G J+E C+J I F E J I { 0 + < : 4 < ? < 5 ¡ ¢ £07 4¥¤ ¦: 9 ¡ 7 4 5 ¢ §?: 4 ã ô ýþ á â ö ü ø ýö ø þ ñ û õ ñ ò ô ýþ6ô ýþ ÿ ò ñ ÷ ó ñò ô ùñ ÷ ñ ö ó ý ø ) ÿ ñ6ø ý ÷ ú ü þ ÿ ö ñ * þ á ó ü ú ÷ô ýþ â ÿ ÿ ýô ôH÷ ü ô ú ü ø ù ô ÷ ñ ê ëIä ì ê åèIî ëIä ì ê ç è ê û +-, +/.!0 1 243$56 783 9 3 :3 ? 9 6 ;@ .5=BA C ý ü ÷ ó ñ ú( ñ ú ö ü ù ùü ýùñ ÷ ú ø ö! ô ò ñ þü ý ú ü ô ø õ ø ò ÷ ø öö ü ýò ø þ ñ ú ô ÷ ø ü ýø òDE ø ý F ÷ ú ü þ ÿ ö ñ þ$ á ÷ ô ý õ õô ýþð2ô õ ÷ $ ã G ô ýþ ÿ ò ñ þñ ö õ ÿ ò ø ( ñ õ ü ýø ý ÿ ÷ò ô ö ñ ò ø ÷ ó ý ü ù ø Jýô õPô ÷ ÷ ú ø ÿ ÷ ñ ò ûH ñ ÷ å2é ä å#í æ I I I æ å-J è ô ýþ çé ä ç í æ I I I æ ç J è ñ÷ ü"ñ ô ùK õ ñ ò ø ýL M í-N M % ô ýþ ê N M ê ø ò8 ý ø ÷ ñ ûO ó ñDE ù ñ ÷ ú ø ö6ø òþ ñ ý ñ þ ô ò8 ü õ õ ü ! J PQQ ä å æ ì è ä å æ ì è ä ç æ ì M M M è î äG è DE ä åIæ ç èé R í !S8T ä å M è>UV í!S8T ä å M è T ä ç M è>UV í M T T T ó ñ ú ñ ä å M æ ì è ø ò÷ ó ñ ý ÿ ù! ñ úHü P ñ ô ùK õ ñ ò÷ óô ÷óô ( ñK( ô õ ÿ ñ å M ü úH÷ ó ñKW F ÷ ó2ô ÷ F ÷ ú ø ÿ ÷ ñT ô ýþ ô ú ñ6ø ý"ö õ ô ò ò ì % ô ýþ ä å M è ø òP÷ ó ñý ÿ ùK ñ úü ñ ô ùK õ ñ òP÷ óô ÷Póô ( ñ( ô õ ÿ ñ å M ü ú÷ ó ñ*W F ÷ óBô ÷ ÷ ú ø ÿ ÷ ñ û4& ú T ü ô ø õ ø ÷ ø ñ òô ú ñ"ñ ò ÷ ø ù"ô ÷ ñ þX ø ÷ ó# ú ñ ) ÿ ñ ýö B öüÿ ý÷ò ÷ ó ñ ýDE ö ô ýô õ ò üK ñú ø ÷ ÷ ñ ý ø ý ÷ ó ñ! ü õ õ ü ø ý K ü ú ù$ J PQQ äY è DE ä åIæ ç èPé R ä ëIä ì ê å M è í ä ëIä ì ê å M è>î ëIä ì ê ç M è è M í í V V DE óô òý ü2ö õ ñ ô úZ ÿ ò ÷ ø ö ô ÷ ø ü ý:ô ýþBò ñ ñ ù"òH÷ üBô ò ò ÿ ùñô ÷ ÷ ú ø ÿ ÷ ñ"ø ýþ ñ ñ ýþ ñ ýö ñ û & ÷6ø òñ ô ò "÷ ü"ö ü ýö ñ ø ( ñô ý ø õ õ F ü ú ùñ þ þ ô ÷ ô ò ñ ÷ ó ñ ú ñô õ õI÷ ó ñ ëIä ì ê å M è ô ú ñHñ ) ÿ ô õ ä ü ú ñ ô ùK õ ñP÷ ó ñ8ô ú ø ÷ ø ÷Pö õ ô ò ò è ô ýþH÷ ó ñ ú ñ ü ú ñ'DE ø ò#ý ü ÷Pô õ ñ÷ üþ ø ò ÷ ø ý ÿ ø ò óô ù ü ý ÷ ó ñ ö õ ô ò ò ñ ò û[ ñ ( ñ ú ÷ ó ñ õ ñ ò òDE % ô ýþ ô"ò ñ ÷6ü P ùü þ ø ñ þ( ñ ú ò ø ü ýò! ï \ % % ã ] % ü ú ò ) ÿ ø ÷ ñ ñ õ õ#ü ý ú ñ ô õIþ ô ÷ ôò ñ ÷ ò û ðSø õ ò ü ýBô ýþX ô ú ÷ øý ñ " ñ ÷ ñ ýþ ñ þXDE ÷ üø ýò ÷ ô ýö ñ ò! ø ÷ óBý ÿ ùñ ú ø ö ô ÷ ÷ ú ø ÿ ÷ ñ ò ã ] û O ó ñ ñ ò ò ñ ý ÷ øô õõ þ ø ò ö ú ñ ÷ ø ñP÷ ó ñPý ÿ ùñ ú ø öPô ÷ ÷ ú ø ÿ ÷ ñ ò ä E8DE è ô ýþ6÷ ó ñ ýHò ùü ü ÷ ó
^ _ 8` _ a b ^ c d e f gh` b ^ a g*f ^ a c i!c j k4l m n o p q r4s t!f u ` e f d a i dv w8_ `8gK` ^ e a x'c s ^ f a i ` yza ^ _K^ _f ^ { e c x ` y | e `Ka bx f } } ` y~ Xv4w8_ ` t$f } b cb | d d ` b ^ f_ ` ^ ` e c d ` i ` c |b ^ _f ^!x c g* s a i ` b8f i*'|x } a y ` f iKg*` ^ e a xj c e'i | g*` e a x8j ` f ^ | e ` bl p- À À À p r8f iyK*>l À À À r8f e ` ^ z8c!` z_ ` e ` Ç q l p q q ra b ^ _ `K f gKg*a i d f g { } ` b8^ _ ` i$ÁÂ Ã Äl p~ y5$.Õ Ã Å 6 Æ ~ |{> |y q| z q s |v{ ~ y ~$ À%s ~ z v.À y r z{ s ~ | v s v v s y ~ $s | ¿ z | y u.Õ y ~ @~ |{-7z ~
S B CEC N LAC D ? M(C < = @HL D C @ C < = C V3B C D CEM(C > @ F D C= B C1: G > @ @ ? oA: > = ? ; : : F D > : ? C @ ; IY= B C Z m ]]Ä> G J ; D ? = B MÅfH? = BÇÆ È&T\M(C = D ? :\q `YkARHq T u u1> ? < C VdFA@ m ? < Ji]> ? K C1^H> _ C @E`Y@ = ? M> = ; D1q ` kARYq U u u> FA@ @ ? > = ; D1q ` kAR q Z Z u u RYS B C3> : : F D > : ? C @E> D C3: ; M1LA> D C V\= ;\= B ; @ C; IË ÌË e q `YkARHq Í u u(> = ? ; = fHB C D : B ? < JEI ; D = B CÆ È&TE< C > D C @ =Y< C ? J B WA; D ; I > M1L G CÐ3; < G _1= B CE@ C =H; I&Ï3g`Hh e < C ? J B WA; D @Y; IÐ\> D CE: ; D CE: ; M1L F = C V; ? < ? < J@ C =ÏÑÇÒÓB ; G V @ u R
Ô Õ Ö(×3Õ ØÙ Ú ×i× Û ÜA× Ý Þ Ö(× ß Ù à1á Ý ×iâ Õ ßAã äAâ Ù × ãdá ã Õ Ü Ù Þ ß å9á à1æ)Ù Ú ×iâ Ý Õ à à ç è á é Þ ã á Ù × ã è á é ä ×iæAê&ëHìí ßÇà Õ Ö1×3â á à × à îï ×iá é à Õ\â Ý Õ à à ð è á é Þ ã á Ù ×1Ù Ú ×iâ Ú Õ Þ â ×Õ ØÙ Ú ×3× à Ù Þ Öá Ù Õ Ý ì ñ Ú × ßÇÙ Ú Þ à1Þ à1Ù Ú ×\â á à ×iÙ Ú ×\× à Ù Þ Öá Ù Õ ÝÞ à1Þ ßAã Þ â á Ù × ãÇá àòEó ô ê&ë ìHõYÕ Ù ÚÇÙ Ú ×\â Ý Õ à à ð è á é Þ ã á Ù Þ Õ ßAàHá Ý ×Eâ á Ý Ý Þ × ã1Õ ä ÙHïHÞ Ù Úiáö ÷ ç Ø Õ é ã3â Ý Õ à à ð è á é Þ ã á Ù Þ Õ ß1Õ ß3× á â ÚÙ Ý á Þ ß Þ ß å(ÜAá Ý ç Ù Þ Ù Þ Õ ßì
iÿ 8 9 8 : ; @1 A B 1 C 60896 : ;D< E?> - B B 1 - C4B K L M N LO9P N Q Q L M N LO9P N R M - S T 4U CU K V M M N WO Q N W M M X N YO9P Y N Z [ A1 - \.]^ - B ^ 1 A X _ N WO L N R Q X R N _O Q N X W [ A4T K 1 \ P X R N LO L N L W X Y N LO9P Z N M [ A4T K 1 \ Z M P N RO9P L N Z X X N MO9P L N P ^A` Q Y N RO Z N W M Q Z N RO(R N M W T 1 A abM Q N P O9P _ N P M _ N WO9P P N Q c-K W L N QO9P Y N P W Q N LO Q N P X K C- \\ X L N ZO9P P N L M _ N YO9P Y N L0d F : J ; e 1 f - . 4. 4\ Q Q N WO Q N M Z Q _ N LO M N L _ e U A \ 1 ]^ U C4^ Q _ N XO X N M R Q R N _O X N Q W e U S \1 ]5 U .1 \]Q R L _ N YO _ N M Q L _ N LO _ N X M 4U B U \ f e 1 A 1 Q X N WO _ N _ W L Z N WO(R N W Y?d =0g F : J ; 4A 4\ L W N _O W N R Q L R N XO X N Q Q C1 T X Q N WO9P W N R M P N WO9P M N L C1 T P M W Q N YO Q N Z _bd9E R _ N WO M N Q _ C45 1 A X X N XO9P Y N M W L N RO9P Z N M a7U B h \ ] P M X N P O9P Y N W P Y Y N O(Y N Y Y?d = a7U B h \ ] Z L P N P O M N _ _bd9E W X N RO M N X Q a7U B h \ ] _ P Y Y N O(Y N Y Y L L N MO(Y N M _ Uf 1AR Q N RO(R N R P R Q N WO(R N M Q f 4 a7- ] 4 B T 4 - B \ ] T 4 - [ 1 . 1 \ M Y N _O _ N W W M Y N _O _ N P M f U \. ]U f 1 A - . 45 1 W X N XO9P Q N R W _ N _O9P M N L f A U a7U . 1 A \ Q Q N WO M N Q P Q _ N QO9P Z N R \UB -A Q M N YO M N P L Q L N _O W N W M \ U V [ 1 - B ]C- AK 1 L Z N RO(R N L R L Y N WO W N X R \ U V [ 1 - B ] \ ab- C C P Y Y N O(Y N Y Y P Y Y N O(Y N Y Y L W N RO Z N _ X L X N _O Z N W _0d F : J ; i T[^ L X N YO W N P X L X N YO W N P X jUU
FHG I : ;60896 : ;< F7: J ; > L M N LO9P N Q Q M W N WO9P Y N P X Z N QO L N Q W X R N YO Q N W W M Y N WO Z Y N Q Q Y N QO Z N Q Q M M N WO9P R N Z W L N QO9P Y N P X Q N MO9P P N R Q Q N WO Q N M Z Q _ N _O M N Z Y L _ N MO _ N R R Q L N RO(R N Z Q L W N _O W N R Q X L N YO9P R N R W Q N YO Q N Z _0d E X Z N _O9P Z N W L Q N P O _ N R Y?d = L P N P O M N _ _0d E P Y Y N O(Y N Y Y R Q N XO(R N M R M Y N _O _ N W W W W N WO9P X N W Q Q N WO M N Q P Q X N YO M N M R L Z N RO(R N L R P Y Y N O(Y N Y Y L R N MO Z N Y P L X N YO W N P X