Mar 24, 2005 - A method for controlling a production process involving selection of process .... and chips that are used to create engineered products vary widely in terms of the ... tion the quality of the product being produced is unknown because it cannot ... characteristic of the product, the process concludes by manually ...
US 20060218107A1
(19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0218107 A1 Young (43) Pub. Date: Sep. 28, 2006 (54)
METHOD FOR CONTROLLING A PRODUCT
Publication Classi?cation
PRODUCTION PROCESS
(51)
(75) Inventor: Timothy M. Young, Knoxville, TN
(Us) Correspondence Address:
(52)
LUEDEKA, NEELY & GRAHAM, P.C.
Int. Cl. G06N 3/00 G06N 3/12 G06F 15/18 C01F 15/00 C01G 43/00 US. Cl.
.............................................................. .. 706/13
(57)
P 0 BOX 1871
(2006.01) (2006.01) (2006.01) (2006.01) (2006.01)
ABSTRACT
A method for controlling a production process involving selection of process variables a?‘ecting product characteris tics and using genetic algorithms to modify a set of seed
KNOXVILLE, TN 37901 (US)
(73) Assignee: The University of Tennessee Research Foundation
neural networks based upon the process variables to an create an optimal neural network model. A commercial
statistical software package may be used to select the process variables. Real-time process control data are fed into the optimal neural network model and used to calculate a
(21) Appl, No.1
11/088,651
projected product characteristic. Aproduction control opera tor uses the list of process variables and knowledge of
(22)
Filed:
10
associated process control settings to control the production process.
Mar. 24, 2005
$
12
14 \
Process
Sensors
l6 \
l8 \
Data
Process
Process
Relationship
Quality
Time
Statistics
Alignment
Algorithm
Lagging
‘
1
I
t
1
1 T-SQL Database Management System
24
Wonderware
SQL Lab
IndSQL
Destructive Test Database
Data Warehouse
20 \
'»
22
Human
Computer
Interface
Patent Application Publication Sep. 28, 2006 Sheet 1 of 14 1O
‘
12
Process ensofs S
14 \
16 \
18 \
Data
Process
Process
Relationship
Quality
Time
Statistics
Alignment
Algorithm
Lagging
‘
1
I
I
I
22
ompu er
Wonderware
SQL Lab
IndSQL
Destructive
Data Warehouse
Test Database
Figure 1_
2O \
I ‘ 4 Interface Iélumant
T-SQL Database Management System
24
US 2006/0218107 A1
Patent Application Publication Sep. 28, 2006 Sheet 2 of 14 50
76 54
! in 54a
>
52
Industrial Process . Data Wamhouse
54b _i' n
T-SQL algorithm
546
procedure '
. 54d \!\n
i
Relational Database §
\a Genetic Algorithm 5
78
Processor
US 2006/0218107 A1
Patent Application Publication Sep. 28, 2006 Sheet 3 of 14
US 2006/0218107 A1
100
102\
Select a source for the data ?le to be used to
generate the neural network model.
Select the end products that are to be used for
generating the neural network model.
Choose the statistical method for selecting parameters that will be used for generating the neural network model.
Identify process parameters that will be excluded ?'om the neural network model.
Choose the number of parameters that will be included in the neural network model. 7
Choose the start date and end date for data to be used in the neural network model.
Select the parameters that will be included in the neural network model (automatic, based upon
statistical method for selecting parameters).
Adjust options. (Optional) 7
Run the genetic algorithm software to generate the neural network model.
Figure 3
Patent Application Publication Sep. 28, 2006 Sheet 4 0f 14
Fig. 4
US 2006/0218107 A1
Patent Application Publication Sep. 28, 2006 Sheet 5 0f 14
I P‘rbduct Width
Pmduét Density
IPOMIDTHI
[P0 nsnsmn 4U 42 4E 47 48
.625 Thick, 51 Wide. 4B*Density
I Add Pmducgm I
.75 Thick, 51 Wide, 48 Density Delete Product
-' " < Previous
Cancel
Fig. 5
Next >
US 2006/0218107 A1
Patent Application Publication Sep. 28, 2006 Sheet 6 0f 14
Fig. 6
US 2006/0218107 A1
Patent Application Publication Sep. 28, 2006 Sheet 7 0f 14
US 2006/0218107 A1
é Select the Parameters to be Excluded ' ' ‘
Excluded while Modelling
"'iDO AM On» Cum
-
Step 4 a 7 - Exdmled zvemmgxwjmpmmm
verily the EveniLogKey: ard Puamdenvlo be emhded from the model
Emhded Perennials“
( Premus'
Fig. 7
Cancel
Patent Application Publication Sep. 28, 2006 Sheet 8 0f 14
US 2006/0218107 A1
Step 5 of 7 - Number of Parameters
Choose the ‘number of parameters to be used for the GANN Model.~ Clicking next w?l start JMR arid the parameter selection process will commence.
,
t .' 1
v
'
L
(Previous
, Step
'Cancel
off?‘ - ‘Date Range Selection
Choose the start and ertct dates for the portion of the data-to beqsed in the GANN mociel}; '
Start Date
>
_
End Date _
P‘lnclude all dates greater than the stat date;
' 103/1 4/04 08:02 AM
7}]
'
Patent Application Publication Sep. 28, 2006 Sheet 9 0f 14
US 2006/0218107 A1
' Initial GA Parameters - {:23}
Hines: Fraction Hank ;"———~" """"""""""""""""" m“,
PredictionFI Square Error
i’?
f‘
f“
f“
F f“
iMate Networks
BestFitToStraighlLine
r
a
r
r
r
r
.~ PEDeletion
SumErrFunoErrorsi
' r
r"
r:
r
r“
r
§PEAddition
Active lnoutw‘eighrs
("
f"
f"
I?
l"
r
Insertion
NetworkSize
i"
r‘ i"
P 6“ r."
iWlDeletion
ExecutionTime
r r‘ r r r a"
iWlAddition
a Number oiSeed Nam» 1'
-
~
Mutate Network Component
5§——
Initial Number of Interior PEs per'Network
EE——
Interior PEs per Network Scaiier [inPEs]
F“
Initial Weight Filing Factor [2iv~v
{5W
i
i7 Mult'ple Mating: in One Generation F7 Save Best Network Dn/‘Dff
Weight Filing F actor ScatlerrlinX] i
‘
I"
i
I
Cancel J
OK
v a:
:- GA Operation Proportion:
Excluded Data Fraction [7.]
25
Passes Per Data Partition
1U
i
Step 7 of 7 - Confirm seleoteo-Parameters. and Adiust Advanced GANN options
Review the 20 parametersio be (reed for the GANN Modet
1. IMAL_B1_Ave_T 0t 2. JIEI304W
3. Mat_D ensity 4. Mat_Dry_Weighl 5. MALT EMF 8. MT4U1 9 7. PIC_4310PV .
_ GAHN Options. ..
8. PH_Acl_Pos_Press_Frame__23_Hight 9. PFi_Ac!_Pres_Frame_1l]_Lell 10. PR_Acl_Pres_Frame_27_Right 11 , PFLD i:t_5 P_Frame_l]7
12. PFLD ist_SP_Frame_12
.d____l
:J < Previous
i
Cancel
Fig. 10
Next >
Patent Application Publication Sep. 28, 2006 Sheet 10 0f 14 i. GANN (Running)
lnter'nél'Bohd‘és Predict'ed by GANN
‘130 "125 ‘
US 2006/0218107 A1
Patent Application Publication Sep. 28, 2006 Sheet 11 of 14
US 2006/0218107 A1
130
\ Store (a) raw and intermediate material properties, 132 \ (b) process control variables, and (0) end product property test values in a data Warehouse.
134 \ Identify the raw and intermediate material properties and process control variables that are most
in?uential in determining an end product property.
136
Quasi-randomly generate seed neural networks comprising heuristic equations predicting the end \ product property based upon raw and intermediate material properties and process control variables.
138 x 140
142 \ Use a genetic algorithm processor to modify the seed neural networks and arrive at the best GA
model for predicting the end product property.
144
Input real-time raw and intermediate material
\ properties and real~time process control data and predict the end product property. 7
Provide a human operator with the predicted end 146 \ product property and the prioritized list of raw material properties and process parameters that
in?uence the end product property.
7
Analyze residual errors in the best GA model to
148 '\ select material samples for laboratory testing to generate additional end product property test values.
Figure 12
/ 150
Patent Application Publication Sep. 28, 2006 Sheet 12 of 14
US 2006/0218107 A1
XY scatter plot of actual and predicted internal bond for product type 3.
Figure 13
D
'
’
XY scatter plot of actual and predicted internal bond for product type 8.
Figure 14
Patent Application Publication Sep. 28, 2006 Sheet 13 of 14
US 2006/0218107 A1
XY scatter plot of actual and predicted internal bond for product type 9.
Figure 15
XY scatter plot of actual and predicted internal bond for product type 7.
Figure 16
Patent Application Publication Sep. 28, 2006 Sheet 14 of 14
a
US 2006/0218107 A1
-
XY scatter plot of actual and predicted internal bond for product type 4.
Figure 17 220
~
200 —
180