performance of fuel production from biomass and stresses the importance of ... à l
'exemple de la production de Gaz Naturel de Synthèse (GNS) par gazéi .....
process design methodology (Douglas, ½ ), the block flow diagram of the
conversion ...
Process Design Methodology for Thermochemical Production of Fuels from Biomass. Application to the Production of Synthetic Natural Gas from Lignocellulosic Resources
THÈSE NO 4693 (2010) PRÉSENTÉE LE 25 JUIN 2010 À LA FACULTÉ SCIENCES ET TECHNIQUES DE L'INGÉNIEUR LABORATOIRE D'ÉNERGÉTIQUE INDUSTRIELLE PROGRAMME DOCTORAL EN ENERGIE
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES
PAR
Martin Gassner
acceptée sur proposition du jury: Prof. D. Bonvin, président du jury Dr F. Maréchal, directeur de thèse Prof. R. Gani, rapporteur Prof. W. Marquardt, rapporteur Prof. A. Wokaun, rapporteur
Suisse 2010
! " # " $ $% # $ $ & $' $ $ " (
$%
) ( * + ) ) ) , ) ) )# )) ) - .+ / * ! /)# " ) /)" ) 0 ) )# ) * ) )) ) . ) )) . $% ) " ) ) " ) ) * .) % 1 ) ) ) * ) . ) )) % 2 ) )) ) , )) # .) ) ) . " )) 3 ) ) )) ) " * ) * ( ) * ) # - . ) ))
)) ) )) ) ) ) ) )) ) ) $%
4 4 5 6 7) " 8 " % . . ( ( , 7 ((,7$(8! 4 4 % 4 5 % 9 7 7// 5 : 8 4 " ; , 94 ; ; +
< 5 < 5 =
=
−1 dry −1 dry
; 2 =
9 =
=
3 =
Δh0 / + (
+
0 '+ ' ' + +
7
$ " 5 $
#
, % "# ! +! ( # " 5 " ; + (?2 $# / ! ' # # 8 # 9 > ! ---
"$
" 4 + + # ; "
" " $ ; # + ( 3 ! + " "# , & " " " 3 # "+ 7
. * , T " T , " 9 = 4. 7 ! : 1 9 = 3 1 =# = 1 9 Δh 4 7 ? ! - = 7 2 1 ? # 2 829
? 7
7> > 7 2 29 =# @ 2 9 2 1 # 1 2 829 2 82 2 83 1 9 829 !& # 5 A > 9
6 - = ' 6 $ # 4 5 10 air,out
H2O,sat
2
0 wood
−3 gas
−1
2
2
2
4
4
2
2
2
2
2
4
2
2
4
2
−1
,
Up Δplm # $ ' J Δplm =
Δp1 − Δp2 ln(Δp1 /Δp2 )
!
Δp1 ' Δp2 Up " 5% ! 11.16 · 10−3 −1 ( . ; UT J Δhvap m ˙ H2O,vap = UT ΔT lm ! m ˙ steam
UT " $ 9 # > ! B 4−1 @−1 th,d " e+d # " , ! # 4 , !J th,d = e+ d =
Δhvap m ˙ H2O,vap ˙ Q+ d E˙ + d m ˙ H2O,vap
! !
5 & th,d H + H 5 " 4B 4−1 H2O, vap -- -
"$
4 + 4 $ $
& )*+ &
80
400 Air drying Steam drying Thermal drying efficiency Specific energy consumption
300
60
200
εth,d [%]
e+d [kJ/kgH2O,vap]
70
50 160
180
200
220
100 240
Inlet temperature [°C]
' - . /
; + 0 9 / ! " ' # & "+ # ; !! "+ & " # 7 1 ! 0 ? B ! 0> 8 ! "+ I # B 3 8 9 ! / ! # " 0 ! ! @ ! ! # ' ΔT eq J ˆ p = Kp (T g + ΔT eq ) K
!
Kp Kˆ p # + "
,
T g J j
Kp (T ) = exp
nj g˜0j (T ) − ˜ RT
n
pj j ˆ Kp = ni i pi
i
ni g˜0i (T )
! !
j
n i ˜ j p g˜ R ; 82 (? (?2 (84 (2 84 82? 2 ( ! ; ' " ! ! ! $ ! ; " 82 (? (?2 (84 (284 = = ( ! " 82 (84 (2 84 ( ! + & " 1 9 - ! " " (? (?2 9 - ! " + # (?2 (? ! ' + +
(?2 ; ' & 4 " + , ! (84$ ' - f (i, t ) = a + a t + a t + a t + a t !$
r
0
1 r
2 2 r
3 3 r
4 4 r
J m ˙ i,out = f (i, tr1 )m ˙ i,in m ˙ i,rec = f (i, tr2 )m ˙ i,in − m ˙ i,out
tr2 = (1 − tr1 )tr2 + tr1
! !
f (i, tr ) i tr ; 0 /4 8 ! f (i, tr ) th 5 5 $" 0 1 ! ; + ( ; 0; " ;! $+ 7B 4−1 ! H2O $ ,+ 2 Φ + = T + ' ' 1 1 1 1 4. ' 62 2 4.
9 9 8 + 4 4
1 1 1 1 1 1 1 7> 1 2 1 # > 2 # 1 1 1 = 1 7 ' 341 " 0 E '> 0 2 1 # 7> 1 7 1 29 1 # = = 9 1 p 4 . = 29 5 7 # T + ; # 2 # 7 # , -
& )*+ &
" 7 - /
+ " H 3 # " "
7,9 4 E 7 7> 7
2
T d,in T d,in pd Φd,wood T t,in T t,out Tg pg Tg pg rS/B T g,ph T m,in T m,out pm Ws,n rCO2,rem rCH4 pP SA psel Asel
5, 3 = = 1
−3
C C
B C B C B C B C B C B C
B B
8
pm pm
1
=
* 8? B C B C B C B C B C
;
7 . #
2
> 7 9 6 ' 7 ' 7 8 6 7 , 6 > 2 # # > 2 >
+ ) /' 012 ) 012 ) (
4
' > 1 ' ' 4. 6 62 " 2 1 6
"
Ws,n θ1 θ2 pf 1 pf 2 pf 3 sin,2 ps,p T s,s N s,u T s,u3 T s,c
;
5, 3 1 1 1 1 −3
* 8? B C B C B C B C B C B C B C B C B C B C B C B C
7 . #
, 6 7 7 ; 3 # ' # 2 #
'
) ,
'/ ! )
5
4
# 1
; ( # " ? & % # " ; " # $ 5 $ % $% $ + % # # ' 1// 1// ' ! ; % 5 chem $ " , ! % # ; % " cGR , ! J cGR =
C GR 0 Δhbiomass m ˙+ biomass
!
% 7) ! 7# 62
" ( " " $ # $ 0 400°C)
Combustion
air
1 bar, >900°C +
Q (180°C)
H2O(v) 0.42 kg/s 300°C
Wood Steam drying
Q+ (900°C) 4.2 MW
char: 1.8 MW 0.05 kg/s
Gasification
20 MWth 5 bar, 180°C, 10%wt 1.19 kg/s 100°C 2.15 kg/s H2O(l) Φ=50% 0.96 kg/s
1 bar, 850°C
3.1 MW 0.21 kg/s
19.6 MW 1.56 kg/s 850°C
-
Q (800-150°C)
Gas cooling and cold cleaning
400°C H2O(v) 0.44 kg/s 399°C
Q (400°C) air 320°C +
Q (181°C)
Wood Steam drying
H2O(v) 0.42 kg/s 300°C
H2O(v) 0.20 kg/s 344°C
-
Q (800-344°C)
Gasification
20 MWth 5 bar, 181°C, 10%wt 1.19 kg/s 30 bar, 800°C 100°C 2.15 kg/s H2O(l) Φ=50% O2 0.96 kg/s 0.26 kg/s (278 kWel)
17.4 MW 1.87 kg/s 800°C
Hot gas cleaning
Q (900°C
fumes/CO2 1.23 kgCO2/s
depleted stream 1.18 kg/s
-
Methanation 17.4 MW 1.87 kg/s 344°C
Combustion
15.7 MW 1.49 kg/s 25°C
3+1 membranes SNG & compressions 13.6 MW hydrogen 0.01 kg/s recycling
0.30 kg/s 25°C, 50 bar
( * '
,
th,biomass
0
.
"
$ # " ( $%# 0$ & " # " + " # " 0 5(5 $
" ; ; # ? H " " $ 5 " ; $ # 5 5(5 " 3 (5# $? " " 3 " ' " "
# 0 # #
# !" # $ % # 1 # # # *
8 " "# 4 4 # " 7 ! @ ! , ! 0 ! ,+ #
1 )*+
T T # ! H > > ? 6 ( < 3 7 # 9 # / 1: # 1 /
6 @ 7 6 - # !2 ? 7 O 9 ! 3 5 9!3 1 6 @ ! / 2 > 7 ! !2>7! % 4 ? 2 )O# O $ OO ' 7 2
2
2 (
2 1 / . 1 ' 3?!% 2 ;> " 3 6 % 6 ! !7 % " ? 3 " 9 $ # $ . $ 2 ! H " 62! / 1 $ 0 ( 4 2 > H " I G 3 , $ 291219 @ 6 7 4 2 > H " I G 3 , $ 291219 @ 66 4 2 > H " I ? > # 2 $ 32 ( 2 4 H " %# 2 3 2 > # > 6 7 4 ' " > 2 O 7 3 4 34 . 7 ! 6 7 ! 4G 9 5 ; > 4 $ * 1% ? % 2 29 @ > / 2 7 H 9 'G >8 34 '?!7
9 5 2 3 : > 7 2 ; 9 9 7 ' T # ' !23 7
3 9 5 2 3 : > 7 2 ; 9 9 7 ' T # ! H
9 5 2 3 # 9: 5 4 : > 7 ! / @ ' 1 1 1 1 H 9 5 ; > K ( 5 2 4 > 7 # 7 H
9 9 ? . / $ > H 9 1' ( ( * ' /
$ , 3 K5 . / . H ( > 9 . - ' 6 2 ! % 7 , ! 36' 2 , 5 36' % 7 , * : , 7 * " !
" 2 3 4 4 ( > > > 3 7 >: 2 9 " / - 1
1 2 2 ! /
' H 7 % # 1 $ 6 ! 2 H 7
> * % ? 7 L > > * 7 * ' * 7 * ' / 4N 2 ' 9 * / ( ( ? % ? . 297 4 H 6 @ , 2 ' ! ! 6 2 7 /
? ? ? " , ' 2 ! 7 H ? ? 6 @ !22 ? ? 4 4 @ 4 5 6 @ ;
)
! , 1*29 ?$ 917 % 7 "5 H>
4, H48! H ? 2 9 ) / # # 1 # 8 9 1: # # 5 > ! H
4 L ( " " . ' ? "!1 213' ; " ! 7 2 9 5 2 3 # 9 # ? ! ' $ # . H ' " ? 9 %
> !# 1: # / ! H ' , 7 4 / 7 9 3 K5 ; 41" > , 3 K5 ; 4 " * # 7 ' 2 > ! 7 3 9 ;7 %%2 # 8 8 8 ; , 4 ( %
9 ' ( / ! ! ! 5 1 ' 16 N ; 1 1 ! / 5 * ?# 4
7 H ,O 2 ? > 9 @ '
H , 4 *1$ $ J6 > 2 H , 6 # 8 K5 ( ?E" ? " # / ! H I ? L 9 4 9 ? %
,M 7 5/ # ! 5 @ 5 # & ' % ' ? !7> I O 4 7O 1% # I W , ? I K K # " 7 ! H I K K % ' ? I ; $ ' H I ? , ? 9 9 - 1 3 4 34 1' ' ! H
$
# ' !" - . + + ' 2
$ + - * )3
.
heat recovery from humid air air Td,in
humid air wet wood (chipped)
dried wood Φd,wood
rotary air dryer
$ + ' heat recovery from excess steam
wet wood (chipped & pressurised)
dried wood Φd,wood fixed bed steam dryer, pd superheated steam, Td,in
( + ' torrefaction gas & steam
torrefaction gas, to combustion
dried wood Φd,wood waste water, to treatment torrefied wood
torrefaction unit Tt,in
> '
producer gas, to gas cooling & cleaning
flue gas
cyclone
hot bed material
dried (& opt. torrefied) wood
additional fuel, chosen by MILP
fluidised bed gasification char, to combustion
air preheating fluidised bed combustion
steam generation
ash
2 + '/ " : $ 0 (
'/ '+4! 2 ' + '/ ? '+
' (+ 2% 34
% # 3 # - + $ . % % $ 3 ' * / ' / # 4
4 4 .
$ ' # $
$ # * #
!
2000
2200 5 MW, optimised 20 MW, optimised 100 MW, optimised 5 MW, downscaled from 20 MW 100 MW, upscaled from 20 MW
Specific investment cost [EUR/kW]
Specific investment cost [EUR/kW]
2200
1800
1600
1400
1200
1000
800 56
58
60
62
64
66
68
70
72
2000
5 MW, optimised 20 MW, optimised 100 MW, optimised 5 MW, downscaled from 20 MW 100 MW, upscaled from 20 MW
1800
1600
1400
1200
1000
800 66
74
68
SNG efficiency equivalent [%]
70
72
74
76
SNG efficiency equivalent [%]
< $ 2200
Specific investment cost [EUR/kW]
Specific investment cost [EUR/kW]
2200
2000
1800
1600
1400
5 MW, optimised 20 MW, optimised 100 MW, optimised 5 MW, downscaled from 20 MW 100 MW, upscaled from 20 MW
1200
1000
800 62
64
66
68
70
72
2000
1800
1600
1400
1200
1000
800 64
74
5 MW, optimised 20 MW, optimised 100 MW, optimised 5 MW, downscaled from 20 MW 100 MW, upscaled from 20 MW
66
SNG efficiency equivalent [%]
68
70
72
74
76
74
76
SNG efficiency equivalent [%]
( 7 34 '> ' # * ,9* , #
,
α 2 # # -
α # δ '5 Δh % # ˜ Δh Δh 9 # Δk ! # Δp 7 ΔT ' & $ ΔT ΔT ? ! - 2 - ε - ε 2 # - η ! - 0 0 r
vap 0
eq
min ref
cg
cc
5,8 ( 1 A 5# 62 ># & . /
1
7 1 @ 2 2 1 # . ? . 1 62 . 0 , . 1 2 1 .
0 , .
5 0 .
/
2 2 29
2
2
th,biomass
th,biomass
2
4
$ # # /
7 # # $ = -
- #
#
4 # - . # 5
1 1& ,
1 1& ,
1 1& ,
!# . 7 / , > ' > 4. > 4 > :
> 34 62 . 62 . 2 1 . 2 1 . 2 7 hT 1. 2 6 0 2 829 1
th,biomass
th,biomass
th
th
2
4
& ! / * α & α ΔT b 7 4. 4 5 10 ? ? . > 7 # ; - #
" . # ? $ , ? 4. 5 !
! -
! . 62 . " 34
2 0 # 34 2 34 j
ref
th,wood
ref
HE
' 4 $ 7 " # " # : # 5 / -
" # : # 5 / " # : # 5 / 22 / - & #/
7 . # / ? . ! " #
. 62 . " #
. 2 1 . 4 . #/ ' 34 ' - 0 # " # ./
" # ./
, 51 # # # " # ./
, 51 # # # " # ./
, 51 # # #
2
chem
th,biomass
th,biomass
th,biomass
" # ./ 51 #
, # # /
? .
7 5 2 ? # 2 129
th,biomass
2
4
3 (/ (
7 ;,9 1 R&
%' )
=
=
= =
!
03 1 , , 0 5)) 1 ,051! / 9 A4 1 4 # B 9 J 0 9 1 , ,051 ,+ # $ 4
7 ,051 / ,+ ( C
,(? M# $ M M, M$ : 7 ,051