Processing and Properties of Advanced Ceramics ...

4 downloads 0 Views 593KB Size Report
Amanda Muraca', Naphtali O'Connor^, Ravnit Kaur-Bhatia^ Nicoleta Apostol\i Jitianu". Mihaela Jilianu'. 'William Paterson University, Department of Chemistry.
UTSA Libraries

5

DOOD

DDDSmiOb

5

Processing and Properties of Advanced Ceramics and Composites VI Edited by

J. P. Singh Narottam P. Bansal Amar S. Bhatia Morsi M. Mahmoud Navin Jose Manjooran Gurpreet Singh Jacques Lamon Sung R. Choi Gary Pici;CLUSIONS TiOi-MgAl-LDH and N-doped Ti02-MgAl-LDH composite materials using a standard commercially available P25-Ti02 were successftilly prepared, characterized and tested against vanillin, a phenol-model compound. XPS data confirmed the interstitial character of Nitrogen doping in the TiOi lattice. Ti02 lattice parameters values illustrated also successful nitrogen doping and also the partial incorporation of Mg^"^ and A H ^ in the lattice. The values correlated well with L D H lattice parameters values and M g Is and A l 2s XPS data. Nitrogen doping increased the activity of Ti02 as a photocatalyst. The composites performed even better as photocatalysts against vanillin, the highest activity was observed for the N-doped Ti02-MgAlLDH composite. The catalytic results confirm the hypothesis that a synergic effect between nitrogen doping of TiOj and the presence of L D H occurs and contributes to a high overall photocatalytic activity. The composite materials prepared display a higher photocatalytic activity than P25-Ti02 alone for the photodegradation of vanillin, P25 being a standard commercially available Ti02

Processing and Properties of Advanced Ceramics and Composites VI

• 133

Titanium Dioxide Nanocomposites—Synthesis and Photocataiysis

catalyst, therefore expected to best perform in the photocatalytic reaction, O n the other hand, M g A l - L D H is not known to have photocatalytic activity by itself, studies being focused mostly on ZTLA.1-LDH SO far'^. However, the P 2 5 - M g A l - L D H composite materials performed better, on the account o f the L D H layered structure possibly inducing electron transfer and preventing the recombination o f electrons and holes'^. Moreover, Mg^"" and Al^"" incorporation in the T i O : lattice during the synthesis o f the L D H composites led to improving o f P25-TiO; photoefTiciency. A s previous studies on this type o f composites'''*'"", our so-prepared photocatalysts show once again the major role that L D H structure has on the photocatalytic properties o f T i O : . Furthermore, homogeneous precipitation o f L D H using urea (a sodium-free precipitation agent) led to an exceptional increase o f the photocatalytic activity o f the composites as compared to pristine P 2 5 - T i O : .

RLrLRLNCL^ 1. Tvl. ITadnad ev-Kostic, T, Vulltj J. RanogajeCj R., Mariiiltovic-Slcduciii. and A . RadosavijcvicMUlfljlVYlVi TxiVrmfti wis! plJUWV«t»lyiiV PVU»viur v r lifLUli WUlpvsilva, J . Thirm. Arml, (Mlurim.. 111. l l J 3 - f i 2 ( 2 1 t l 3 t ,

2. Faustiva, J. KD'Sfl. J, iirkuvsKy. u. [vifliitiui. and Y . rrcvtju rtioiocamiviic tieliavior or nannsijed Wih Immiililll/cd tin laitrcra dotihlE hydroxides by dcianiinailon/rcsiacKiiig process. t'.nviron. Sci. mm. Ken. i**, 371)^-18. (2012). 3. R. Boreilo. C . Minero, E . Pramauro, E . Peiizzetli, N . Serpone and H . Hidaka, Fhotocatalylic degradation o f D D T mediated in Aqueous Semiconductor Slurries by Simulated Sunlight. Environ. Toxicol. Chem. 8(11), 997-1002, (1989). 4. D . F . Ollis; N . Serpone and E. Pelizzetd, Eds., Photocataiysis Fundamentals and Applications, W i l e y , N e w Y o r k , 618, (1989). 5. D . M . Blake, J. Webb, C . Turchi and K . Magrini, Kinedc and Mechanistic overview o f TiO:photocatalized oxidation reactions in aqueous solution, Sol Energy Mater. 24, 584-93. (1991). 6. H . Gerischer and A . Heller, The role o f oxygen in photooxidation o f organic molecules on semiconductor particles, J . Phys. Chem. 9 5 , 5261-67, (1991). 7. R . W . Matthews. Kinetics o f photocatalytic oxidation o f organic solutes over titanium dioxide. / Calal. 111.264-72,(1988). 8. A . Fujishima, T . N . R a o , D . A . Tryk, Titanium dioxide photocataiysis. Journal of Pholochemistrv and Photobiology C: Photochemistry Reviews 1, 1-2 , (2000), 9. C . S . Turchi, D . F . O l l i s , Photocatalytic degradation o f organic water contaminants; Mechanisms involving hydroxyl radical attack, J . Catal. 122 (I), 178-92, (1990). 10. T. Tachikawa . M . Fujitsuka, T. Majima, Mechanistic Insight into the TiO: Photocatalytic Reactions: Design ofNewPhotocatalysts, J, Phys. Chem. C. I l l (14). 5259-75, (2007), 11. A . L . Linsebigler , G . L u , J,T. Y'ates, Photocataiysis on T i O i Surfaces: Principles. Mechanisms, and Selected Results, Chem. Rev.. 95 (3), 735-58, (1995). 12. W . Melcprasart and W Pecharapa, Synthesis and diaracterization o f nitrogen-doped T i O : and its photocatalytic activity enhancement under visible light. Energy Procedia 9 509- 4. (2011). 13. T. M o r i k a w a . R . Asahi, T. O h w a k i , K . A o k i , K . Suzuki and Y . Taga, R&D Rev. Toyota CRDL 40, 45-, (2005). 14. S. Shanmugasundaram and K . Horst, Daylight Photocataiysis by Carbon-Modified Titanium Dioxide, Angew. Chem. Int. Ed. 42, 4908-11 (2003). 15. S.P. Paredes, M . A . Valenzuela, G , Fetter, S.O. Flores, T i O : / M g A i layered double hydroxides meclianieal mixtures as efficient Photocatalysts in phenol degradation. Journal of Physics and Chemistry of Solids 72 (8) 914-. (201 1). 16. E. Dvininov, M . fgnat, P. Barvinschi, M . A , Smithers, E. Popovici, N e w SnO:/MgAl-layered double hydroxide composites as photocatalysts for cationic dyes bleaching. Journal of Hazardous Materials 111, 150-58, (2010). 17. F. Cavani. F. Trifiro and A . Vaccari. Hydrolalcite-type anionic clays: preparation, properties and applications. Catal. Today 11. 173-301, (1991), 18. T. Hibino, H . Ohya, Synthesis o f crystalline layered double hydroxides: Precipitation by using urea hydrolysis and subsequent hydrothermal reactions in aqueous solutions, Applied Clav Science 45, 123-132,(2009). 19. (J. Costantino. F-. Mannottini, M . Nocchetti and R. Vivani. N e w synthetic routes to hydrotalcHe-like compounds - characterisation and properties o f tlie obtained materials Eur. J.

134



Processing a n d Properties of A d v a n c e d Ceramics and C o m p o s i t e s VI

Titanium Dioxide Nanocomposites—Synthesis and Photocataiysis

Chem., 1439-1446,{1998). 20. i.-M. Oh, S,-H. Hwang, and J.-H. Choy, The effect o f svnthetic conditions on tailoring the size of hydrotalcite particles, Solid Stale Ionics 151, 285-91, ('2002). 21. M , Oamar and M , Muneer, A comparative photocatalytic activity o f titanium dioxide and anc oxide by investigating the degradation o f vanillin. Desalination 249. 535-540 (2009). 22. F, Peng. L . Cai, H . Y u , HT Wang, and J. Yang, J . SynUiesis and Characterization o f sabstitutional and interstitial nitrogen-doped titanium dioxides with visible Hght photocatalytic iz\:mi\. Solid Slate Chem. 181, 130-36, (2008). B, H.'Qingyu. J. Yongjun, Y . Chun. Z . Erjun, Z . Y u e . D . H o n e y i n g , The Effect o f High N doped Anatase T i O ; on ihe Band Clap Narroving and Redshift by First-Principles. Modern Phys. Utt.B.26. 1250179-88, 24. Eiji Kanezaki, Thermal behavior o f the hydrota I cite-like layered structure o f M g and .Allayered double hydroxides with interlayer carbonate by means o f in situ powder H T X R D and m\fTG. Solid State Ionics 106, 279-284, (1998). 25, D.G, Evans, and R , C . T . Slade. Structural Aspects o f Layered Double Hydroxides Struct. Bond. 119. (2006)1-87. 26. Y, Gao. Y . Malsuda, Z . Peng, 1, Yonezawa. and K . Koumoto, J . Maler. Chem. 13, 608-13, (2003). 27, B. Klingenberg, and M . A . Vannice, Influence o f pretreatment on lanthanum nitrate, carbonate, and oxide powders. Chem. Mater. 8, 2755-68, (1996). 2B. M.J.H, Hemandez-Moreno. M..^.. (Jlibarri, J . L , Rendon and C . J . Sema IR Characteristics o f Hvdrotalcite-like compounds./"/(UT. Chem. Min. 12(1985) 34-38. 29.C..I, Sema, J.L. Rendon and J.E. Iglesias, C r \ s l a l chemical study o f layered IAl2Li(0H),,]'H" .nH:0, Clays Clay Minimi. (1982) 180-182. 35, D,L, Bish. Deviations from the ideal disordered structure in minerals o f the pyroaurite group; Pros'ani and Absfracts, 6 International Clay Conference: Oxford. 1978. 31. R. Zehr. ,A.. Solodukliin, B . C . Haynie, C , French, and 1, Harrison, Low-Temperature and Photon-Induced ChemisU^-of Nitrogen on P t ( i l l ) , y Phys. Chem. B 104,3094-3106, (20OO). 31. H, G, Huang, Z, H . Wans, and G . Q. X u . The Selective Formation of D i - o N - S i Linkages in Pyrazine Binding on Si( 111 )-^x7. J Phvf^. Chem. B 108, 12560-67. (2004). 33, S. Lee. I. S. Cho, D . K . Lee, D . W . fcim, T . H . N o h . C . H . Kwak^ S. Park, K . S , H o n g , J . H . Lee, H.S. Jung. Influence o f nitrogen chemical states on photocatalytic activides o f nitrogen-doped TiO: nanoparticies under visible light. J . Photochem. Photobiol. A: Chemistry, 213. 129-135. (2010). U. Xiaobo Chen and Clemens Burda, Photoelectron Spectroscopic Investigation o f NitrogenDoped Titania Nanoparticies. / Phys. Chem. B, 108, 15446-49. (2604). 35, C M . Teodoreseu. J . M . Esteva, R . C . Kamatak. and A . El A f i f . A n approximation o f the Voigt 1 profile for the fitting o f experimental x-ray absorption data. I^ucl. instrum. and Method.1 RmarchAMSMlAl, (1994), 36, D, 1 tica.. C M , Tetidoreeoti.^ R, Atietvei. D, Wa£^ovpi. and n . Mai-d arc. Preparation and CI\9racieh?aiifMi oritit^eaced-Uffieienev PhotAcatalj-tic T;03-VV1V T ! , ; , , P;I,.,.. n ; , . ^ J - J r;}.^. S l l KftDVlU. (30071 ^T, 1. Takaliaehi, 0 , 1 Payne, li.C. Palpr^ve. R.O. F^dell, U'.Jt. rc=...Lt!o„ y.liov pl,o.o.n,u.;o., Study of HitCftgetl dftpefi l l C T l r i b l o -^IngL c-^-stals. Vh^^,. lc'/>. 4*4, 514-1^ ( l O O f i ) , ]|. Le.T.. Vama..ucv l i . k J . U ; i of W-Jopod TIO^ fdms pr