the Tevatron, LHC, RHIC, VLHC. Ã predictions on X-sections and their uncertainties for. Higgs-, top-productions, high pT jets, ... etc. Outlook. J. Pumplin, D.R. ...
A New Generation of Parton Distributions with Uncertainties from Global QCD Analysis What’s new in this Global QCD Analysis of PDF’s? • New Data, + all available correlated systematic errors (old & new) • New methods and techniques of analysis unable quantitative error treatments and reliable uncertainty studies: (J. Pumplin, D. Stump)
New Results and physical applications • New generation of CTEQ PDF’s: eigenvector sets which characterize the behavior of overall χ2 in the neighborhood of the global minimum; • Precision W/Z physics at the Tevatron/LHC • Parton Luminosities at the Tevatron, LHC, RHIC, VLHC Þ predictions on X-sections and their uncertainties for Higgs-, top-productions, high pT jets, ... etc.
Outlook
J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P. Nadolsky, and W.K. Tung Michigan State Univ. hep-ph/0201195
6 j mjhh (` Qq u ^ Ok $d V h0i u a>RhCg
h {|%|%|%|%} u Q1]\v ] u1x| {%{z {u Q]\veQ\[ xy%y%y%}%!y z h } u Q]\vw] u1x|%| {z!%| h "h#$J T%$ Qkjd V h%i u aRh gh & z%y%y%y z '%( ) h*#jK V J O>Q%k*+(h9iKRwPK%d>MUKO>M ,$/h .J X Q V 0k $d V h9i u aRh g/h 213 z%y%y%y !z 4 u Q1]\v3] u1x|%|%y 5%} {z +(hi*K RwP>Kd>MK%O>4 M ,$h .J X Q V k H&QP u h$pJ T Q52o ov |%} v y%} h h lC6 h "cK V"T3^ O8 k 7Z( h 9 : h 7J ;%Q V"T Rkcr/hgh0m T3^ V ` ^ O>t< k 7Zhmjh H u J V O>Q=k $d V h i u aRh g>h ?&@ z%y%y%y { h r/h(Hc
h 9 ^ Q1` Q K%O>M?mjh s9Q` ` Q V k0i u a>R
h 7$Q\N
h ACB>DE {|%| ' y%!| y%z F u Q1]\v3] u1x| '%y %| rhH
h 9 ^ Q1` Qk mjh h s9Q` ` Q V K%OM lC>h hjsjJ%R J>IZQ V k G3i*K V T J OUl ^ R TWV ^ ;%d T3^ J < O ,d%O>P T3^ J 8 O H&O\v PQ V T K ^ O T3^ Q\Rk I u Q]\vw] u1xy {!y y%}%z h ghjijd X ]%` ^ Ok&lC0h 7Zh*m T d X ]K%O>Mrh9shHd%O>tk9i u a>R*h 7$Q\Nh { u Q]\vw] u1xy%y%y ' {| P{ h AKJLBM z%y%y%z y N{ y {%O gh+ijd X ]%` ^ R O QS=TVU W"ki u aRLh 7$Q\N2h AXJLB z%y%y%z y N{ y { u Q1]\v ] u1xy {y {y %z h lCYh 7Zh&m T d X @ ] QVSZTU W"ki u aRYh 7$Q\N[h A\JB] z%y%y%z y N{ y {z u Q]\vw] u1xy {y {y%} P{ h
^
Global QCD Analysis in a Nutshell Master Equation for QCD Parton Model { the Factorization Theorem m M m ^ Q M a FA(x; ; ) = fA(x; ) Fa (x; ; )+O(( )2) Q Q
X
a
Q
H
H F^a
FA
a
A
fAa
A
Experimental Input
Q
Hard Cross-section perturbative calculable (may contain snLogn(M/Q))
Parton Dist. Fn. Non-Perturbative Parametrization at Q0 GLAP Evolution to Q
Sources of Uncertainties and Challenges: (and uncertainties on errors!) Experimental errors; Parametrization dependence; Higher-order corrections; Large Logarithms; Power-law (higher twist) corrections.
Experimental Input: Phyical Processes & Experiments DIS
SLAC BCDMS NMC, E665 H1, ZEUS
*, W, Z
eN N
q
N N g
DY
pN N kN pN
Dir.Ph. pN N kN pN
CDHS, CHARM CCFR CHORUS
q q
E605, E772 NA51 E866
*, W, Z
q q
q
*, W, Z
CDF, D0
(dir)
g
q
WA70, UA6 E706 CDF, D0
Jet Inc. pp
CDF, D0
Q (GeV)
100 100
101
102
101
1/X
102
103
104
DIS (fixed target) HERA (’94) DY W-asymmetry Direct-γ Jets
The kinematic range in the (x, Q) plane of data points included in a typical global QCD analysis – CTEQ5
Whats new/old since CTEQ5? z New Data ◆
◆
◆
◆
new DIS data from H1/ZEUS jet cross sections from D0 as a function of η updated E866 DrellYan deuteron/proton ratio re-analyzed CCFR F2
z Old data ◆ ◆
BCDMS DIS NMC DIS now use measurements at separate energies with full correlation info
◆ ◆ ◆ ◆ ◆
CCFR F3 E665 DIS E605 DY CDF W asym CDF inclusive jets
!" #%$'&%(*) +-,/. &(1032/&*45) 06) 785 ? ?EGF? H FC ? < 2NMO0M = BDC ? : JK L ? < 0*$&O7P Q 9:; < >? I : I ~ /~ C < Bv H W/ g q ~ @A #%f $'&-40 06) 5,WMPM+&O0V&WPc( ) . .&
v'6bB 0*H$&O7Pc&O06) u'M/.+72/&.
~ bB u7NPDPc&'u*06) 785'([7P(1Q(10V&W+ZM06) u-&WPDPX7PX( U a//. ) (O$&2&OT/,/&WP\) +&W50M/.N&P\Pc7NPc(' w ? ) (0*$& (10M/52NMPc2Z2/&O) M06) 7857[0*$&3P^M/5278+a/5uO7P\P^&W. M0V&2 &P\Pc7NP U ? ~ ) (G0*$&H (10M/52NMPc22/&*/) MO06) 7857[? 0*$&0*$ B u78+-,/. &*0V&. Q u7NPDPc&. MO0V&'2 (1Q(10V&W+ZM06) u-&WPDPX7P785 C U
g
#7G0M &b) 5017 M'u'uO78a/50 0*$&%(1? QE(10V &W+Zf M06) u%? &EGP\PcF 7N? Pc ('d &-2/&O45& f H e f = C : w > ~: ~ ?~D/~ 9 : BDv ~ < >? g f : ~ @A M/5'2 +%) 5) +% f ) & ) 0*$Pc&(O ,&'u*0 017
~ U#Z$&GP^&O(Oa/. 0) ( H
~ < > A B (1Q(10V&W+ZM06) u%(O$) [^0 ~ D ~ ~ g ~ k $'&Pc& e = w? ?
~D~ ? /~ /? ~ ? @A ? EG: F ? H = /~ BDC w ? ? > ~ < : f q @A 70V& 0*$WMO0b0*$& ~ ( 2/&W,/&W527850*$& +72/&. ,WMP^M/+&*0V&PX(
v' U #Z$&5 H f H 9: BDv < +%f ) 5 9 : B\v ~
~
CTEQ6 pdfs low Q
high Q
H
78+-,WMP) (V785 7 [ # B 2NM'(O$&2 017 # B 270 2NM'(O$&2 ! ( H MO 0 < _ &3U B Z # $&sa/5/. M/&. &2 ua/P W&O( M P^& M/52 < U
%CN <8s8 > 8
8 9 ?3" !
H
! !
10
1
1.5
2
5
10
500 1000
x0.008
x0.005
x0.0032
x0.0021
50 100 Q GeV2 2
x0.00253
x0.00161
x0.00102
ZEUS data low x values
x0.0013
x0.0008
x0.000632
x0.0004
x0.000253
x0.000161
0
0.25
0.5
0.75
1
1.25
1.5
1.75
10
100
1000 Q GeV2 2
ZEUS data high x values
10000
x0.65
x0.4
x0.25
x0.18
x0.13
x0.08
x0.05
x0.032
x0.021
x0.013
ZEUS
Collaboration: S. Chekanov et al., Eur. Phys. J. C 21 (2001) 443 [hep-ex/0105090].
Comparison of the CTEQ6M t to the ZEUS data in separate x bins. The data points include the estimated corrections for systematic errors. The error bars are statistical errors only.
F2 x,Q2 offset
2.5
F2 x,Q2 offset
11
0
20
40
60
80
4
2
k
0 i
k ki
2
i
ZEUS
i
4
0
20
40
60
80
4
2
0 Di Ti Αi
2
ZEUS
4
i
Dicorrected = Di
i
k=1
XK rbk ki
Histogram of residuals for the ZEUS data. The curve is a Gaussian of width X 1. (a) = (D rb T )= . (b) A similar comparison but without the corrections for systematic errors on the data points.
N
100
N
12
0 r
1
2
3
1
1
1
2
2
2
3
ZEUS shifts
4
3
4
k
k
1
2
3
4
2
1
NMC shifts
0 r
1
2
3
1
2
3
4
Systematic shifts for the ZEUS data (10 systematic errors) k 1 2 3 4 5 6 7 8 9 10 r^ 1:67 0:67 1:25 0:44 0:00 1:07 1:28 0:62 0:40 0:21 Systematic shifts for the NMC data (11 systematic errors) k 1 2 3 4 5 6 7 8 9 10 11 r^ 0:67 0:81 0:35 0:25 0:05 0:70 0:31 1:05 0:61 0:26 0:22
15
0.00001
0.001
0.1
100
200
300 pT GeV
D0 Jet cross section
400 500
1. 106
0.0001
0.01
1
100
100
200 300 pT GeV
CDF jet cross section
400
500
D
Collaboration: B. Abbott et al.; CDF Collaboration: T. Aolder et al..
Comparison of the CTEQ6M t to the inclusive jet data. (a) D (the boundary values of the 5 rapidity bins are 0; 0:5; 1:0; 1:5; 2:0 and 3:0). (b) CDF (central rapidity, 0:1 < jj < 0:7).
dΣdpT nbGeV
10
dΣdpT nbGeV
datatheorytheory versus pT GeV 1.5 1 0.5 0 0.5
1.5 1 0.5 0 0.5
0 Η 0.5
100 1.5 1 0.5 0 0.5
200
300
400
1.5 1 0.5 0 0.5
200
300
100
500 1.5 1 0.5 0 0.5
0.5 Η 1
100
1.5 Η 2
400
500
400
500
200
300
400
500
400
500
2 Η 3
100
200
300
1 Η 1.5
100
200
300
Closer comparison between CTEQ6M and the D jet data as fractional dierences. The Tevatron inclusive jet cross section implies a hard gluon: g (x) is large at large x. Recall CTEQ4HJ and CTEQ5HJ.
16
17
-50
0
50
-50 100
0
50
-50 100
0
50
100
50
100
200
250
300
350
Jet Transverse Energy
150
MRST
CTEQ4HJ
Statistical Errors only
CTEQ4M
400
GeV
0.4 0.3 0.2 0.1 0 0.1 0.2 100
200 300 pT GeV
CDF inclusive jet
400
corrected data theory theory
CDF inclusive jet cross section
CDF collaboration: T. Aolder, et al.
(D-T)/T
!"#$! c2global 5
a= 1
c20 + Dc2
'% &( )+*,.-/0) 1 2436587:9;@?BA0CED FHG2+D 1JIK+L
4 3
2 0
c20
X
X0-DX
X0 X0+DX
M NOP QR4R$SNOTUVEP!'RXWYNO#B Z 7+[\]7 ^@[A _ = `ba c= a A.\ Ad`de+>Cgfih0>^+jk`d\l7 a ^@A0Cm5a ^ a 5a n+7:o `ba >^X`k>p>q0`^X> tvug; Z W A:jwjda 7^ 70`d\]a 9 Ad`de+>C$fHAd9xc= >x\lAy`de@ABz 7@\]a 70`ba >^$> t'G 20{|.} a ^8`de@AO^@A@a [eq >x\~e+>>CO> t `de@A8[= >q.7=5a ^ a 5 _ 5a ^`de@AsCa o 5A.^+jda >^.7='c.7@\l75Ad`wA \Yj:c.7@h0Ax;
k
PDF Uncertainties z Use Hessian technique (T=10)
Gluon Uncertainty z Gluon is fairly wellconstrained up to an xvalue of 0.3 z New gluon is stiffer than CTEQ5M; not quite as stiff as CTEQ5HJ
±
Fractional Uncertainty
≈
-0.1
0
20
0.1 ≈
0
0.1
-0.2
-0.1
0
0.1
0.2
0.3
0.4
50
√s^ (GeV)
102
− Q-Q --> γ* (Z)
− Q-Q --> W+ (W-)
G-G
Luminosity function at TeV RunII
200
400
≈
≈ 0.1
-0.1
0 20
≈
0.1
-0.1
0
≈
≈
-0.1
0
0.1
-0.1
0
0.1
50
√s^
(GeV)
102
Q-G --> γ*
Q-G --> W+
Q-G --> W-
Q-G --> Z
Luminosity function at TeV RunII
Fractional Uncertainty
2
' ' '
#@
200
400
≈
≈
≈
≈
-0.1
0
0.1≈
0
0.1
-0.2
-0.1
0
0.1
±
Fractional Uncertainty
0.2
50 102
^ √s (GeV)
200
− Q-Q --> W-
− Q-Q --> W+
G-G
500
Luminosity function at LHC
103
≈
≈
≈
≈
-0.1
0
0.1
≈
-0.1
0
0.1
-0.1
0
0.1
-0.1
0
0.1
50
102
√s^
(GeV)
200
500
Q-G --> W-
Q-G --> W+
Q-G --> Z
Q-G --> γ*
Luminosity function at LHC
Fractional Uncertainty
2
##
103
≈
≈
≈
Outlook This is only the very beginning of studying uncertainties in global QCD analysis in a quantitative manner This work demonstrates that the new techniques for global analysis developed recently are viable and practical. The new results are very useful for the physics programs of the Tevatron, Hera, and LHC, There is a lot of room for collaboration among theorists and experimentalists Many other sources of uncertainties in the overall global analysis have not yet been incorporated: Theoretical uncertainties due to higher-order PQCD corrections and resummation; Uncertainties introduced by the choice of parametrization have been explored extensively, but not yet quantitatively formulated. Heavy quark effects and charm production data in NC and CC experiments will be systematically analyzed
Þ More quantitative information on strange, charm, bottom distributions. Continued progress in this venture is of vital importance for our understanding of the parton structure of hadrons (fundamental physics of its own right), for precision SM physics studies at future colliders, and for New Physics searches.
:'
p i k NO_ \P7^.7 = jda j M >^+jda CA.\H`de@A G 2 jE> tJa ^@Ca za C _ 7 =$A:9cA.\a o 5A.^0`kj 70jJ7^ z 7@\]a 7q= A h e.7 ^@[A0jpt \S>5 a `kjgz.7= _ Ai7:`P`de@A [= >q.7 ='5a ^ a 5 _ 5O;
Eigenvector 4
CDFjet
D0jet
E866
CDFw
E605
CCFR3
CCFR2
NMCr
NMCp
ZEUS
H1b
H1a
20
BCDMSd
30
BCDMSp
40
distance
10 0 -10 -20 -30
Q ^+h+A.\`\v`de@Apa ^c _ `8A:9cA.\a o 5A.^0`kj7 = >^@[p`de@A ! a [A.^0z.A0h:`k>x\ Ca \lA0h:`ba >^; R e@Ape+>\]a n:>^:o `a ^0`kjsc.>jda `ba >^+js> t 5a ^ a 5 _ 5 G 2 t]>\4a ^@Ca za C _ 7 =Ad9xc A \]a 5A ^0`kj } 3 FHG !2 "$#&%' } { Cxa jk`