Progress towards Damage Diagnostics & Prognostics ...

2 downloads 0 Views 3MB Size Report
Elbert Green Hubbard. Outline showing the basic processes of cognitive visualization and analysis for impact damage characterization. Schematic indicating the ...
Progress towards Damage Diagnostics  & Prognostics using SOA Computed  Tomography Speaker:  Joseph M. Wells, Sc.D. Associate Director for Materials Science & Engineering U.S. Office of Naval Research Global – London [email protected] Office: +44(0) 1895‐61‐6282 Mobile: +44(0) 774‐074‐0921

2nd International Conference of Engineering Against fracture, (ICEAFII) Mykonos, Greece    22‐24 June, 2011

Overview • Introduction • Damage Diagnostic Approaches – Invasive – Non‐Invasive

• • • • •

Damage Characterization & Visualization Predictive Modeling, Validation & Verification Application Areas What’s Next? Summary Comments

Introduction • For structural materials, failure ultimately occurs due to the  initiation and growth of pre‐existing defects or service  induced damage.  • One can try to monitor the operating performance (health)  of the structure or do non‐invasive damage diagnostics to  locate and characterize such damage (or do both!).  • Predicting failure without the due consideration of physical  defects or damage within the material is an inexcusable  omission.  • The challenge, of course, is: – to develop high resolution (and optimally, field portable) non‐ invasive damage diagnostic tools for true multi‐scale  volumetric damage diagnostics and analysis.  – Reduce volumetric damage characterization data down to  descriptive  yet tractable modeling parametrics. – Incorporate such damage knowledge into truly PREDICTIVE  materials/structural component failure models.

Introduction Cont. • Prognostic ‐ prog∙nos∙tic/präg nästik/ Noun: An advance indication or portent of a future  event. • “Descriptive” simulations masquerading as  “Predictive” models. – Finite Element simulations using adjustable parameters  which are “calibrated” for individual events of known  results.

• “Predictive” models approximate material ‐ structural behavior of events with otherwise un‐ known final results.

Background •

Previous Related Workshops (co‐ organized by author) – Feb. 2006  “Role of Damage in the  Ballistic Impact Behavior” at  Arlington, VA  {Army Research Office} – 1‐3 June 2010  “High Resolution, Non‐ invasive Damage Diagnostics and  Predictive Modeling of  Materials/Structural Behavior” – Ruislip, UK {ONRG} – March 2011  “TomoDamage II” – 2nd  High Resolution Non‐Invasive Damage  Diagnostics and Predictive Modeling  Workshop –Diamond Light Source  {ONRG/ONR/EOARD/AFRL/DTRA/DSTL /AWE} – 2012 (Date TBD) – “TomoDamage III”  being planned for EMI‐Fraunhofer Institute,  [email protected]

Damage Diagnostic  Approaches • Invasive (i.e. destructive) – Sectioning (2D) or progressive sectioning (3D)

• Non‐Invasive: – Indirect functional monitoring (eg. vibration analysis) – Traditional NDT  (2D & 3D) (eg. ultrasound) – 3D Computed Tomography (also laminography);  Many Forms: • X‐ray (micro and meso‐tomography), XCT • Neutron Tomography ‐ Optical Projection Tomography • Electron Beam Tomography ‐ Atom Probe Tomography • Ultrasonic Tomography ‐ Electrical Capacitance Tomography • Positron Emission Tomography ‐ Optical Coherence Tomography • Others….

Tomography Modalities Table 1. Multiple Tomographic Modalities Type of Tomography

Source of data

Atom Probe  Confocal Microscopy

Ions Laser Scanning Confocal  Microscopy

Cryo‐electron  Electrical Capacitance Electrical Resistivity Electrical Impedance Electron Beam Tomography Functional Magnetic Resonance Imaging Magnetic Induction Magnetic Resonance Imaging Neutron Ocean acoustic tomography Optical coherence tomography Optical projection tomography Positron emission tomography Quantum tomography Single Photon Emission Computed Tomography

Cryo‐electron microscopy Electrical Capacitance Electrical Resistivity Electrical Impedance Electrons Magnetic Resonance Magnetic Induction Nuclear Magnetic Moment Neutron Sonar Interferometry Optical microscope Positron emission Quantum state Gamma ray

Seismic tomography Thermoacoustic imaging Ultrasound‐modulated optical tomography

Seismic waves Photoacoustic spectroscopy Ultrasound

Ultrasound transmission tomography X‐ray tomography

Ultrasound X‐ray

Modified from Wikipedia ‐ http://en.wikipedia.org/wiki/Tomography

Abbreviation APT LSCM Cryo‐ET ECT ERT EIT EBT or 3D TEM fMRI MIT MRI NCT OCT OPT PET SPECT

TAT UOT UT XCT

Some Expertise Centers • X‐ray CT, XCT: – USA: LANL, LLNL, Carl Zeiss IMT, Ford, ARL, AFRL, NRL, ..etc. – UK:  ‐U. Manchester (P. Withers) ; ‐ U. Southampton (I. Sinclaire) – EU: EMPH, French (???), Germany (EMI‐Franhofer, BAM)

• Neutron CT: – USA:Oak Ridge Natl Lab., U.Tenn (D. Panumadu) – EU: PSI‐Switzerland; Germany; Austria; Italy; France; UK; etc…    

• Electron Beam CT: Karlsruher Inst. For Technology, Germany; ESRF‐ Grenoble, Fr;  EMAT‐Antwerp, Belgium; Utrecht, The Netherlands; Japan, USA,  etc…

• Synchrotrons: – UK (Diamond); France (Grenoble); USA (UCBerkley, Stanford, Argonne,  etc.),….

Physical Damage Perspective • Defect/Damage can be considered as ….any  physical change in the condition of a  material  structure which results in a decrement in its  structural integrity and/or functionality. • Multi‐scale aspects…nano‐ micro‐ meso‐ macro • Characterization of damage…nature, extent, shape, size,   • Visualization of damage…3D morphology vs 2D planar  projection, asymmetric vs axisymmetric , real time vs post‐ mortem,  etc.

• Complexity… mixed modes, asymmetry, convoluted,  • Other..???

Damage Characterization &  Visualization (Example Application of Ballistic  Impact Damage)

Impact Damage Has Many Forms! What Damage Manifestations Do We Look For (Beyond “Detection”)? Defect Characteristics: IMPACT DEFECTS • Surface Irregularities • Dimensional Variants • Density Variations • Microstructural (e.g. twining,  G.B. variations) • Cracking (various forms)  • Ceramic Fragmentation • Porosity (Inhomogeneous) • Residual Proj. Fragments • Others…(TBD)?

• Spatial Location • Size, Shape, Volume, • Statistical Distribution Relationships of Defects to: • Detection/Characterization Capabilities • Probability of Detection • Ability to Segment • Ability to Quantify & 3D Map • Data Format for Models • Effect on Penetration • Ballistic Performance

Ballistic Impact Event: 1.

2.

BAD*

3.

* Behind Armor Debris

1. Penetrator Behavior – Blunting, Erosion, Fragmentation



3. Target Damage –

2. Impact & Penetration – Dwell, Initiation, Penetration

“Traditional Penetration Modeling”

+

– – – – – – – –

Surface Cavitation / Radial Expansion Ring & Radial Cracks Conical & Laminar Cracks Hourglass & Spiral Cracking Bulk Ceramic Fragmentation Embedded Fragments Impact Induced Porosity Other…..

Future Physical Damage‐based  Modeling

Impact Observations & Diagnostic Tools Dynamic Impact Events:

• •

• • •

Projectile Impact ‐ Surface Interaction / Vpenetration Impact Shock Wave: – Compressive, Shear, Tensile Reflection – Interference / Reinforcement – Loading / Unloading Effects Dynamic Strain Rate & Strain Gradient Effects Transient Thermal Gradient Effects Real Tine Damage & Shock Wave Evolution  (Edge on Impact)

Diagnostic Tools Flash X-rays Hi Speed Camera Modeling, Simulation, & Prediction

Post ‐ Impact Damage Observables:

• • • • • • • • •

Surface: Erosion, Cratering, Rubble Mixing, Flow Multiple Cracking Morphologies Asymmetrical Target Radius/Dia. Changes Impact‐Induced Voids/Porosity Distribution Residual Penetrator Fragments Target Material Fragmentation Microstructural Changes Penetration Cavity Features Others?

Visual Destructive Sectioning Ultrasonic NDE Digital X- rays Microwave XCT (Meso- & Micro) Other ??

Schematic of X‐ray Tomography,  XCT 

XCT scanning approaches - 3D Microfocus with a planar detector array- (left) and 2D Meso/Macro XCT with a linear detector array (right).

XCT Resolution range as a function of  object size and x‐ray facility type

Also f(Density)

An empirical relationship between the material  density and maximum beam path length for the  225kV XCT

(With î Power)

(Courtesy of M Glasow, C. ZeissIMT)

Damage Feature Presentation

3D XCT Impact Damage Visualizations

TiB2 1S w/o Prestress Ring

As = 4794 mm2 V = 2076 mm3

Hour-Glass & Spiral Cracking Indications –surfaced point cloud*

TiB2 2S with Prestress Ring

As = 8911 mm2 V = 2859 mm3

Damage Profile by Depth

Segmented Fragments & Impact‐Induced  Porosity

Porosity

Al2O3 ‐ Fragment Axial X‐Sections

Current SOA for Impact Damage  Diagnostics •

Complete volumetric digitization of both metallic and ceramic terminal ballistic  targets demonstrated.



3D rendering of high resolution virtual solid object target reconstructions



Virtual sectioning of such targets on arbitrarily oriented planes revealing multiple  complex impact damage features.



3D Visualization of multiple impact cracking modes  (Includes the detection of 3‐D spiral and hourglass shaped cracking modes not previously reported in  the ballistic literature).



Segmentation and in‐situ metrology of residual projectile fragment distributions



Quantification and 3D visualization of impact‐induce porosity (void) distributions.



Axisymmetric quantification and 3D mapping of impact cracking & projectile  fragment damage.



XCT Damage Diagnostics demonstrated for Transparent as well as Opaque targets and light weight cellular impact & blast resistant targets.

• Separation of  damage type • Relative  significance • Approximate  Math  Descriptions • Morphology • Extent • Size

Predictive Modeling

• Diagnostics • Type • Location • Extent • Size • Shape • Metrology • Visualization • Analysis

Predictive Modeling

Representation

Damage Knowledge

Damage 

• Verification of  descriptive  equations • Failure  Mechanisms • Failure Model • Validation

Predictive Modeling • True Predictive Modeling  for Materials / Structure Failure  Behavior is Difficult and not often seen! • Failure depends on material structural defect/damage condition  (Structural Integrity) as well as loading condition. • Different defects/damage features contribute to failure in  different ways and should be accounted for in predictive  models. • Need full identification and characterization of defects/damage  features present  (including 3‐Dimensional morphology & size) • Defect/Damage feature knowledge needs to be formulated into  realistic representations/parameters capable of inclusion into  mathematical models • Defect/damage features present a pathway to understanding  and mitigating failure mechanisms "A pessimist sees the difficulty in every opportunity; an optimist sees the  opportunity in every difficulty." ‐ Winston Churchill

Missing Physical Damage Details  in J‐H Models Damage Processes? •Micro-cracked Comminuted Zone •Voids & Bulk MesoCrack Formation Outside of C-Zone? •Dynamic Constraint of Comminuted Zone?

Ref. Johnson & Holmquist http://www.x-cd.com/papers/cesp_v26_i7_003.pdf

•Gradual Loss of Structural Integrity with Evolving Damage? •Increasing Penetration?

• Physical Damage Definitions, Types, Extent, & Morphological Details? • Relationship of Bulk Damage Evolution to C-Zone Structural Stability? • Relationship of C-Zone Structural Stability to Penetration Process?

Size Scale Relationships

Ref:  NAS/NMAB Report 2010 ‐ Research Opportunities in Corrosion Science and Engineering

Validation & Verification • Damage Data Base for specific applications • Deconvolution of damage data into pragmatic  informatics • Development of modeling expressions for critical  damage features and their influence • Verification – (purely mathematical) ensures we  are solving the equations right • Validation – (assesses the physical merits of the  equations)  i.e. ensures we are solving the right  equations! • Predictive Models – for when we don’t know the  answer beforehand!

Examples of XCT Application  Areas • • • • • • • •

Ballistic Impact Tomographic damage  Blast characterization  included in current  Fire Damage ONR/ONRG S&T research  programs Corrosion Fatigue Damage  High Temp Degradation Bio‐inspired Materials Development Others ??

What’s Next???

The Damage Linkages ↑↑ Ballistic Matls/Design/Performance Armor Ceramic Matl Development

Design – Matls Selection- Matls Improvements – Ballistic Performance Knowledge Base

↓↓ Transition Time & Cost

Damage Tolerant Architectural Design Model Development Model Verification Model Validation

Analytical & Computational PENETRATION Models Models & Simulations

• • • •

Traditional Constitutive relations, Σεf, etc. Mesh Size & Alignment Hydro-code CTH, AUTODYN, etc. Finite Element Analysis

• Penetration Observations • V50, DOP Testing

DAMAGE Diagnostics

NDE Modalities: XCT + XµCT+??

Non-Traditional (Physical Features) • 3D Impact Cracking Variants – (ring, radial, conoid, laminar, + spiral)

• Bulk Ceramic Fragmentation • Residual Penetrator Fragments • Impact-induced Porosity

Empirical Armor Ceramics ----Fab.--Shoot --Look

Schematic XCT Technology Time-Line ?? XCT Engineering – Terminal Ballistics 2008

2012

~ Near-Term

~

2016

Mid-Term

~

2020

Long-Term

XCT Diagnostic Capabilities Segmentation & Analysis of Ballistic Fragments & Host Ceramic Fragmentation Impact Induced Porosity Characterization Segmentation & Analysis of Cracking Damage Morphology Asymmetric Damage Quantification & 3D Mapping Damage Mode Deconvolution Dynamic Real Time Tomography !!!!……….

XCT Diagnostics Applications Characterization of Damage Features in Real Ballistic Targets Damage Quantification & 3D Mapping tied to Damage Model Development Baseline Calibration of Alternative NDE Modalities for Damage Characterization Prioritization of Damage Modes wrt Damage Resistance / Tolerance Predictive Damage-Based Numerical Modeling Improved Armor Ceramic Material Development !!!!!……….

The Way Ahead • Identification, characterization, and analysis of significant  damage morphological types under specific target/ (ballistic)  experimental conditions; • Effective representation and incorporation of such damage  features into evolving computational (ballistic) damage  modeling activities; • Determination of the degradation of the structural integrity  and the consequential effects of such damage details on the  penetration phenomena and, ultimately, the overall  (ballistic) performance; • Application of validated and verified (ballistic) damage  models to guide the design and development of more  damage‐resistant/damage‐tolerant (armor) materials.

Perspective

Outline showing the basic processes of cognitive  visualization and analysis for impact damage  characterization.

Schematic indicating the added  dimensionality of 3D Damage  Analysis and its potential effect on  improving performance.

“In these days, a man who says a thing cannot be done is quite apt to be interrupted  by some idiot doing it. “ ‐ Elbert Green Hubbard

Summary Comments • Need greater numbers of non‐medical tomography practitioners. • Tomography damage assessments are best non‐invasive  characterizations & 3D visualizations available. • Need faster XCT scanning / analysis capabilities • Need Real ‐Time Damage Evolution Diagnostics • Need to understand damage mechanisms, kinetics, & consequences • Need greater collaboration between Damage Diagnosticians,  Experimentalists,& Modelers • Predictive models for ballistic impact need to incorporate damage as  well as penetration considerations. • Predictive Models need to be reasonable, but not ultra precise. • Predictive Models are needed for guidance,  to reduce the burden of  extensive  and costly empiricism. • Predictive risk assessment models can greatly benefit from real  damage assessments.

? „

“We are continually faced by great  opportunities brilliantly disguised as insoluble  problems” ‐ Anon All truth passes through three stages: First, it is  ridiculed;  Second, it is violently opposed;  and Third, it is accepted as self‐evident. ‐ Arthur Schopenhauer

?

?

Backup Slides

Broaden Applications of XCT Damage Assessment Failure Analysis Interior Dimensioning Non-Intrusive Inspections ( mail, baggage, cargo, etc. Prototype Inspection & Quality Assurance Reverse Engineering & Design Verification Research – Model Development and Verification Scientific Quantitative Data Visualization, Image Processing and Analysis.

References • • • • • •

J.M. Wells, On Incorporating XCT into Predictive Ballistic Impact Damage  Modeling. Proc. of  22nd Int. Ballistics Symp., ADPA, v2,. 1223‐1230, 2005. J.M. Wells, On the Role of Impact Damage in Armor Ceramic Performance.  Proc. of 30th Int. Conf. on Advanced Ceramics & Composites‐Advances in  Ceramic Armor, 2006. J.M. Wells, On Continuing the Evolution of XCT Engineering Capabilities  for Impact Damage Diagnostics., Proc. 31st  Intn’l Conf. on Advanced  Ceramics & Composites, ACERS, 2007. J.M. Wells and R.M. Brannon, Advances In X‐Ray Computed Tomography  Diagnostics of Ballistic Impact Damage, Metallurgical and Materials  Transactions A, v. 38A, 2944‐2949, 2007. Brannon, Rebecca M.; Wells, Joseph M.; Strack, O. Erik, Validating Theories  for Brittle Damage , Metallurgical and Materials Transactions A ,38A, 2861‐ 2868 , 2007  Shen, Jie; Mao, Jianghui; Reyes, German; Chow, Chi L. ; Boileau, James; Su,  Xuming; Wells, Joseph M. ,  A Multiresolution Transformation Rule of  Material Defects , International Journal of Damage Mechanics,  v18, 739‐ 758 ,2009

Suggest Documents