doc.: IEEE 11-18-1236-01-00bb
July 2018
Project: IEEE 802.11bb Task Group Submission Title: IEEE 802.11bb Reference Channel Models for Indoor Environments Date Submitted: July 06, 2018 Source: Murat Uysal (Ozyegin University), Farshad Miramirkhani (Ozyegin University), Tuncer Baykas (Istanbul Medipol University), Nikola Serafimovski (pureLiFi Ltd.), and Volker Jungnickel (Fraunhofer HHI). Address: Ozyegin University, Nisantepe Mh. Orman Sk. No:34-36 Çekmekoy 34794 Istanbul, Turkey Voice: +90 (216) 5649329, Fax: +90 (216) 5649450, E-Mail:
[email protected] Abstract: This contribution proposes LiFi reference channel models for indoor environments such as office, home and manufacturing cell. Purpose: To introduce reference channel models for the evaluation of different PHY proposals. Notice: This document has been prepared to assist the IEEE 802.11. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by 802.11. Submission
1
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
IEEE 802.11bb Reference Channel Models for Indoor Environments
Submission
2
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Outline o
Introduction • Overview of Channel Modeling Methodology
o
Indoor Scenarios under Consideration: Empty Room, Office, Home, Manufacturing Cell • • • • • •
o
Modeling of the Indoor Environment Source Modeling Illumination Level Requirements Channel Impulse Responses (CIRs) Effective Channel Responses Channel Characteristics
Conclusions
Submission
3
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Overview of Channel Modeling Methodology
o
A flexible and efficient method for realistic VLC channel modeling • Wavelength dependency • Realistic light sources • Effect of objects within the environment and types of surface (coating) materials
For additional details see IEEE 15-15-0352-01-007a, “Channel Modeling for Visible Light Communications” IEEE 15-15-0746-01-007a, “TG7r1 channel model document for high-rate PD communications” Submission
4
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Channel Impulse Response (CIR) o o o
Based on Monte Carlo Ray Tracing.
o
The data from Zemax® output file is imported to MATLAB® and using these information, the multipath CIR is expressed as
Sobol sampling is used for speeding up ray tracing. The Zemax® non-sequential ray-tracing tool generates an output file, which includes all the data about rays such as the detected power and path lengths for each ray.
Nr
h t Pi t i i 1
ith
Pi = the power of the ray τi = the propagation time of the ith ray δ(t) = the Dirac delta function Nr = the number of rays received at the detector
Submission
5
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Effect of LED Response o
In addition to the multipath propagation environment, the low-pass characteristics of the LED sources should be further taken into account in channel modelling. 0
fcut-off =5 MHz
LED Model 1 [1]
1 1 j
f
f
cut-off
=15 MHz
-1
f cut-off
|HLED(f)|2 [dB]
H LED f
f cut-of f =10 MHz -0.5
LED Model 2 [2]
-1.5
f
cut-of f
=20 MHz
-2
ln
H LED f e
2 f
f cut-off
2
-2.5 LED Model 1 LED Model 2 -3
fcut-off : 3 dB cut-off frequency of the LED
0
5
10 Frequency [MHz]
15
20
[1] L. Grobe, and K. D. Langer, “Block-based PAM with frequency domain equalization in visible light communications,” In IEEE Globecom Workshops (GC Wkshps), pp. 1070-1075, 2013. [2] M. Wolf, S. A. Cheema, M. Haardt, and L. Grobe, “On the performance of block transmission schemes in optical channels with a Gaussian profile,” In 16th International Conference on Transparent Optical Networks (ICTON), pp. 1-8, 2014.
Submission
6
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Simulation Scenario 0: Empty Room o
We consider an empty room with a size of 6 m × 6 m × 3 m with plaster ceiling/walls and pinewood floor.
Submission
7
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Simulation Parameters Room size Materials Objects specifications
Luminary Specifications Number of luminaries Number of PDs Receiver area
Submission
6m×6m×3m Walls: Plaster, Ceiling: Plaster, Floor: Pinewood Cell phone: Black gloss paint (5.5 cm × 10.5 cm × 0.5 cm) Human body: Shoes: Black gloss paint Head & Hands: Absorbing Clothes: Cotton Brand: CR6-800L Cree Inc. Half viewing angle: 40º 9 7 1 cm2
8
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Light Source o
In simulation study, we use the LED luminary “CR6-800L” from Cree.
Simulated emission pattern in Zemax®
Submission
9
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Illumination Levels o
Based on the properties of luminary, required illumination level (150 lx) and the size of room, we arrange the luminaries as follows: Delivered light output from 737 lumens each luminary Average of illumination level 153 lx Uniformity of illumination 0.6422
Arrangement of luminaries
Submission
Evaluation of illumination level in Zemax® 10
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Illumination Patterns
110 20 15
10 10
5 Cells in Y Direction
100
5 0
0
90 Cells in X Direction
15 9
168
133
159
159
133
142
2 14 25 1
150 133
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Cells in X Direction
Illumination level contours in Matlab®
Simulated illumination levels in Zemax®
o
0 15 142
15
168
133
120
80 20
168
150
130 100
Cells in Y Direction
120
159
140
142
150 140
159
Illumination Level (Lux)
160
159
168
160
13 125 3
142
150
150
180
133
142 13 3
170
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
142 150
180
The minimum and maximum values of illumination are 98.69 lx and 176.40 lx.
Submission
11
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Location of Test Points (Receivers) o o
We consider 100 cells with equidistant spacing of 0.6 m in x and y directions. We consider a user with a height of 1.8 m who holds the phone in his hand next to his ear with 45° rotation upward the ceiling and at a height of 1.65 m. The cell phone is equipped with a single photodetector. We consider seven possible locations for the photodetectors.
Room under consideration with green circles denoting luminaires
Submission
Location and rotation of test points 12
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Sample CIR Results for D5 (1/2) 3
x 10
-4
P3,1 3
x 10
P7,2
-4
6
x 10
-6
P1,3
5 4
Power
Power
Power
2
2
2
1
1
3
1 0 0
20 40 Time(ns) 6
x 10
60
-5
0 0
20 40 Time(ns)
P4,4 3
x 10
60
-4
0 0
20 40 Time(ns)
60
P6,5
5 2 Power
Power
4 3 2
1
1 0 0
Submission
20 40 Time(ns)
0 0
60
13
20 40 Time(ns)
60
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Sample CIR Results for D5 (2/2) 3
x 10
-5
P10,6 5
x 10
P8,7
-5
2
x 10
-4
P2,8
4 3
Power
Power
Power
2
2
1
1 1
20 40 Time(ns)
Power
2
x 10
-4
0 0
20 40 Time(ns)
P5,9 2
1
0 0
Submission
60
Power
0 0
20 40 Time(ns)
x 10
14
-5
0 0
20 40 Time(ns)
60
P9,10
1
0 0
60
60
20 40 Time(ns)
60
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Sample Optical Channel Responses for D5 -60
P3,1 P7,2 P1,3
-70
P4,4 P6,5 P10,6
-80
|H(f)|2 [dB]
P8,7 P2,8 -90
P5,9 P9,10
-100
-110
-120
Submission
0
5
10 Frequency [MHz]
15
15
20
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Sample Effective Channel Responses for D5 P7,2
-70
P6,5
-90
P10,6 P8,7
-100
-80
P4,4 P6,5
-90
P10,6 P8,7
-100
-110
-110
P5,9 P9,10 0
5
10 Frequency [MHz]
15
-120
20
P9,10 0
5
10 Frequency [MHz]
15
P7,2 P4,4 P6,5
-90
P10,6 P8,7
-100
P7,2
P5,9 P9,10 20
10 Frequency [MHz]
15
-80
P4,4 P6,5
-90
P10,6 P8,7
-100
-120
P5,9 P9,10 0
5
10 Frequency [MHz]
15
-120
P5,9 P9,10 0
5
10 Frequency [MHz]
15
P7,2
P3,1
-80
P4,4 P6,5
-90
P10,6 P8,7
-100
P2,8 -110
P5,9 P9,10 0
5
10 Frequency [MHz]
15
20
P7,2
-70
P1,3 -80
P4,4 P6,5
-90
P10,6 P8,7
-100
P2,8 -110 -120
P5,9 P9,10 0
5
10 Frequency [MHz]
15
o
In the effective channel responses of P1,3, P10,6 and P9,10, frequency selectivity are more pronounced. It is a result of the fact that these locations are close to the walls (see p. 12) and therefore more reflected rays are received (see corresponding CIRs in p. 13 and p. 14).
o
In the rest of this presentation, the “LED Model 1” with cut-off frequency of 20 MHz is considered.
Submission
16
20
P3,1 P1,3
20
P8,7
LED Model 2, fcut-off =20 MHz
-70
-120
P10,6 -100
-60
P2,8 -110
P6,5
-90
20
P1,3
P2,8 -110
5
P4,4
P2,8
P9,10 0
-80
-110
P5,9
P3,1
-70
|Heff (f)|2 [dB]
|Heff (f)|2 [dB]
-80
P1,3
LED Model 2, fcut-off =15 MHz
P1,3
15
P8,7
-100
-60
P3,1
10 Frequency [MHz]
P10,6
LED Model 2, fcut-off =10 MHz
-70
5
-90
-120
20
-60
0
P6,5
-110
P5,9
LED Model 2, fcut-off =5 MHz -60
-120
P4,4
P2,8
|Heff (f)|2 [dB]
-120
-80
P2,8
P2,8
P7,2
-70
P1,3 |Heff (f)|2 [dB]
P4,4
|Heff (f)|2 [dB]
|Heff (f)|2 [dB]
-80
P7,2
-70
P1,3
P1,3
P3,1
P3,1
|Heff (f)|2 [dB]
P7,2
-70
-60
-60
P3,1
P3,1
|Heff (f)|2 [dB]
-60
-60
LED Model 1, fcut-off =20 MHz
LED Model 1, fcut-off =15 MHz
LED Model 1, fcut-off =10 MHz
LED Model 1, fcut-off =5 MHz
20
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
D1
Spatial Distribution of DC Gains & Channel Characteristics (1/2)
-5
x 10
-5
x 10 2
2
1.5
1
1.5
1
H0
1
1
0.5
0 10 9
65
43
Cells in Y Direction
21
0
10 8 9 6 7 4 5 3 2 0 1 Cells in X Direction D2
-5
x 10
0 10 9
0.5 87
65
43
0 Cells in Y Direction
21
0
10 8 9 6 7 5 4 2 3 0 1 Cells in X Direction
0.5 87
65
Cells in Y Direction
43
21
0
9 10 7 8 5 6 4 2 3 0 1 Cells in X Direction
0
-5
D5
x 10 2
-5
x 10
2
1
0
-5
x 10 2
1 0.5
0 10 9
0.5 87
-5
x 10 2
2
1.5
H0
H0
D7 -5
x 10
1.5
0.5
2
1.5
1.5
1.5
1.5
1
1
H0
H0
x 10 2
2
1.5 1.5
0.5
1
1
0.5
0 10 9
0 10 9
0.5 87
65
43
Cells in Y Direction
21
0
-5
x 10
9 10 7 8 5 6 4 0 2 3 0 1 Cells in X Direction -5 D3 x 10 2
65
43
21
0
9 10 7 8 5 6 4 2 3 0 1 Cells in X Direction
0 -5
D6
x 10 2
-5
x 10 2
1.5
1.5
1.5 1
0.5
H0
1.5
1
0 10 9
0.5 87
Cells in Y Direction
2
H0
-5
D4 -5
x 10
1
1
0.5 0.5 87
65
Cells in Y Direction
43
21
Submission
0
9 10 7 8 5 6 4 2 3 0 1 Cells in X Direction
0
0 10 9
0.5 87
65
Cells in Y Direction
43
21
0
9 10 7 8 5 6 4 2 3 0 1 Cells in X Direction
17
D1 D2 D3 D4 D5 D6 D7
Average over 100 Cells RMS (ns) H0 13.92 6.00×10-6 14.10 6.08×10-6 14.07 6.33×10-6 14.09 6.89×10-6 14.10 7.19×10-6 14.06 6.25×10-6 13.22 3.05×10-6
0
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Spatial Distribution of DC Gains & Channel Characteristics (2/2) -5
2
x 10
D1 D2 D3 D4 D5 D6 D7
1.8 1.6 1.4
H0
1.2 1 0.8 0.6 0.4 0.2 0
Submission
1
2
3
4 5 6 7 Cells in X/Y Direction 18
8
9
10
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Cumulative Distribution Function (CDF) of Path Loss 1
Cumulative Density Function (CDF)
0.9 0.8 0.7 0.6 0.5 0.4
D1 D2 D3 D4 D5 D6 D7
0.3 0.2 0.1
0 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 Path Loss [dB]
o
It can be noted that D1, D2, D3, D4, D5 and D6 have similar path loss values in the range of 51.95 dB-52.94 dB. In comparison to them, D7 has about 2.2 dB-3.2 dB more path loss on average since there is no LOS component.
Submission
19
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Simulation Scenario 1: Office o
Typical office places include furniture (e.g., desk, chairs, cubicles etc), various equipments (e.g., computers, printers etc) and personnel. Open Office
Submission
Office With Cubicles
20
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Simulation Parameters Room size Materials Objects
Objects specifications
Luminary Specifications Number of luminaries Receiver area
Submission
14 m × 14 m × 3 m Walls: Plaster, Ceiling: Plaster, Floor: Pinewood 6 desks and a chair paired with each desk 6 laptops on each desk 6 cubicles (optional) 9 human bodies Cubicles: Plaster Desk: Pinewood (Typical height of 0.85 m) Chair: Pinewood Laptop: Black gloss paint Human body: Shoes: Black gloss paint Head & Hands: Absorbing Clothes: Cotton Brand: LR24-38SKA35 Cree Inc. Half viewing angle: 40º 32 1 cm2
21
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Light Source (Transmitter) o
In simulation study, we use the LED luminary “LR24-38SKA35” from Cree.
Simulated emission pattern in Zemax®
Submission
22
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Illumination Levels o
Based on the properties of employed luminary, required illumination level (500 lx) and the size of office place, we arrange the luminaries as follows: Delivered light output from 3504 lumens each luminary Average of illumination level 533 lx Uniformity of illumination 0.5211
Evaluation of illumination levels in Zemax®
Arrangement of luminaries
Submission
23
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Illumination Patterns 616 567
664
47 1
664
616
664
616
47519 567 1
567
519
519
616
519 423471
51 567 9 664
664 664
Cells in Y Direction
567 616
Illumination Level (Lx)
471423 519
423
7 56
Simulated illumination levels in Zemax®
423
616
250 Cells in X Direction
519
0
664
5 0
423
1 47
5 Cells in Y Direction
300
10
1 47
15
10
664
20
7 616 56 519471 423
350
15
519
400
567
200 20
616 567 519
450
567 519
300
471
664
500
400
567 616
550 500
664
600
519
423
6 61
600
616
700
471
9 51567
519
650
423
7 56
800
423
9 51
700
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
423471 519 5 616 67
750
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Cells in X Direction
Illumination level contours in Matlab®
o
Different colors show different values of illumination (lx) at the height of desk in office place. Red indicates the highest illumination level.
o
The minimum and maximum values of illumination are 278 lx and 712 lx respectively.
Submission
24
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Location of Test Points (Receivers) o
24 test points are chosen which are categorized into three groups: In the corridors at a height of 1.7 m with 45º rotation (e.g., D1-D12 people who stand with a cell phone in hand) On the top of chairs at a height of 0.95 m with 45º rotation D13-D18 (i.e., people with a cell phone in hand) On the top of chairs at a height of 1.1 m with 45º rotation D19-D24 (e.g., people who sit with a cell phone in hand to his/her ear)
D19 D13 D1
Location and rotation of test points
Submission
25
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Test Points (Open Office)
Submission
26
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Test Points (Office with Cubicles)
Submission
27
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Optical Channel Responses (Open Office) -55
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24
-60
|H(f)|2 [dB]
-65
-70
-75
-80
-85
0
2
4
6
8
10
12
14
16
18
20
Frequency [MHz]
Submission
28
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Effective Channel Responses (Open Office) -55
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24
-60
|Heff (f)|2 [dB]
-65
-70
-75
-80
-85
0
2
4
6
8
10
12
14
16
18
20
Frequency [MHz]
Submission
29
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Channel Characteristics D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24
Submission
RMS (ns)
H0
15.51 18.84 18.92 16.97 16.75 17.33 20.44 17.83 16.11 15.97 18.99 19.57 15.37 16.09 17.70 14.74 18.10 16.67 15.25 15.81 17.36 18.02 17.99 17.85
2.60×10-6 1.36×10-6 2.40×10-6 3.32×10-6 2.34×10-6 2.60×10-6 1.36×10-6 2.79×10-6 2.40×10-6 3.12×10-6 2.40×10-6 1.82×10-6 2.27×10-6 2.21×10-6 1.36×10-6 2.34×10-6 1.30×10-6 1.95×10-6 2.73×10-6 1.82×10-6 1.69×10-6 1.36×10-6 1.49×10-6 1.75×10-6 30
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Optical Channel Responses (Office with Cubicles) -55
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24
-60
|H(f)|2 [dB]
-65
-70
-75
-80
-85
0
2
4
6
8
10
12
14
16
18
20
Frequency [MHz]
Submission
31
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Effective Channel Responses (Office with Cubicles) -55
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24
-60
|Heff (f)|2 [dB]
-65
-70
-75
-80
-85
0
2
4
6
8
10
12
14
16
18
20
Frequency [MHz]
Submission
32
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Channel Characteristics D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24
Submission
RMS (ns)
H0
13.80 17.33 16.47 14.39 15.17 16.14 18.87 16.77 13.91 14.80 16.64 17.80 12.80 14.31 14.74 12.36 14.92 13.35 13.49 13.36 13.38 15.79 15.45 14.54
2.48×10-6 1.30×10-6 2.30×10-6 3.18×10-6 2.16×10-6 2.48×10-6 1.24×10-6 2.76×10-6 2.30×10-6 2.97×10-6 2.39×10-6 1.79×10-6 2.08×10-6 1.38×10-6 1.27×10-6 2.31×10-6 1.07×10-6 1.76×10-6 1.95×10-6 1.73×10-6 1.67×10-6 1.23×10-6 1.44×10-6 1.62×10-6 33
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Simulation Scenario 2: Office with Secondary Light o
In this office environment, there are two light sources; one of them is the main light source at the ceiling and the other one is mounted on the desk to provide task lighting.
Submission
34
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Simulation Parameters Room size Materials Objects
Objects specifications
Luminary Specifications Number of luminaries Receiver area
Submission
5m×5m×3m Walls: Plaster, Ceiling: Plaster, Floor: Pinewood 1 desk and a chair paired with desk 1 laptop on the desk, 1 desk light on the desk, 1 library 1 couch, 1 coffee table, window, 2 human bodies Desk: Pinewood (Typical height of 0.88 m) Chair: Black gloss paint, Laptop: Black gloss paint Desk light: Black gloss paint, Library: Pinewood, Window: Glass Couch: Cotton, Coffee table: Pinewood Human body: Shoes: Black gloss paint Head & Hands: Absorbing Clothes: Cotton Brand: LR24-38SKA35 Cree Inc. Half viewing angle: 40º 1 on the ceiling 1 for the desk light 1 cm2
35
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Light Source (Transmitter) o
In simulation study, we use the LED luminary “LR24-38SKA35” from Cree.
Simulated emission pattern in Zemax®
Submission
36
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Illumination Levels o
Based on the properties of employed luminary, required illumination level (500 lx) and the size of office place, we arrange the luminaries as follows: Delivered light output from 3796 lumens each luminary Average of illumination level 270 lx Uniformity of illumination 0.4409
Evaluation of illumination levels in Zemax®
Arrangement of luminaries
Submission
37
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Illumination Patterns
400
0 20
300
5 Cells in Y Direction
200
10 5 0
0
100 Cells in X Direction
Simulated illumination levels in Zemax®
o
689
15
10
333
20
4 40
404
15
190
190
500
200
333
262
400
262
618 547 475
600
2 26
47 5
700 600
Cells in Y Direction
800
0 19
Illumination Level (Lx)
800
618 547 760 832
1000
190
900
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
262
1000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Cells in X Direction
Illumination level contours in Matlab®
The minimum and maximum values of illumination are 119 lx and 902 lx respectively.
Submission
38
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Location of Test Points (Receivers) o
2 test points are chosen: On the desk next to the laptop at a height of 0.88 m (e.g., a USB- D1 type device connected to laptop) On the top of desk light at a height of 1.5 m with 45º rotation D2 toward the source on the ceiling
D1 D2
Submission
39
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Optical and Effective Channel Responses & Channel Characteristics -75
-75 S R
-80
SR -80
RD S D
-85
-85 -90 |Heff (f)|2 [dB]
|H(f)|2 [dB]
-90 -95 -100
-95 -100
-105
-105
-110
-110
-115
-115
-120
RD SD
0
5
10
15
-120
20
0
5
Frequency [MHz]
Submission
10
15
20
Frequency [MHz]
RMS (ns)
H0
S→R
11.52
2.84×10-5
R→D
8.07
5.21×10-4
S→D
11.11
1.12×10-5
40
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Simulation Scenario 3: Home o
We consider a living room with table, chairs, couch, coffee table and human bodies.
Submission
41
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Simulation Parameters Room size Materials Objects
Object Specifications
Luminary Specifications Number of luminaries Receiver area
Submission
6m×6m×3m Walls: Plaster, Ceiling: Plaster, Floor: Pinewood Table with 4 chairs Couch Coffee table 4 human bodies Tables: Wooden with size of 2 m × 1 m × 0.9 m Chairs: Wooden matched with table Couch: Cotton Coffee table: Glass Human body: Shoes: Black gloss paint Head & Hands: Absorbing Clothes: Cotton Brand: CR6-800L Cree Inc. Half viewing angle: 40º 9 1 cm2
42
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Light Source o
In simulation study, we use the LED luminary “CR6-800L” from Cree.
Simulated emission pattern in Zemax®
Submission
43
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Illumination Levels o
Based on the properties of luminary, required illumination level (150 lx) and the size of room, we arrange the luminaries as follows: Delivered light output from each luminary Average of illumination level Uniformity of illumination
153 lx 0.9068
Evaluation of illumination level in Zemax®
Arrangement of luminaries
Submission
804 lumens
44
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Illumination Patterns 20 156 1469 149 14 19 18 16 166 3 11 15 1 17 6063 6 60 9 149 4 1 14 156 16 6 153 153 15 14 153 49 153 13 146 1 56 160 156 1 15 149 12 6 163 11 166 10 163 15 6 9 3 49 3 49 15 1 8 15 1 14 6 7 6 3 3 15 14 49 153 3 156 5 1 156 5 4 1 6 1 149 4 3 16 3 15 3 2 16106166 1493 156 160 15 149 3 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Cells in X Direction
5 Cells in Y Direction
5 0
0
130 Cells in X Direction
Simulated illumination levels in Zemax®
156
156
16 1630 166
135
10
156
149
20 15
10
149
140
Cells in Y Direction
135 20
149
145
143
140
0 16
Illumination Level (Lx)
150
145
6 16
150
149
155 155
153
160
15
o
143
160
165
16 16 0 3
170
14 3
165
15 3
15 16 6 1630 166
170
Illumination level contours in Matlab®
The minimum and maximum values of illumination are 139 lx and 169 lx.
Submission
45
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Location of Test Points (Receivers) o
8 test points are chosen which are categorized into four groups:
On the coffee table at a height of 0.6 m with 45º rotation Next to the wall at a height of 1.7 m (e.g., standing people) with 45º rotation On the table at a height of 0.9 m On the top of couch at height of 1.1 m (e.g., sitting people) with 45º rotation
Submission
46
D1 D2-D3
D4-D7 D8
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Optical Channel Responses -65
D1 D2 D3 D4 D5 D6 D7 D8
|H(f)|2 [dB]
-70
-75
-80
-85
0
2
4
6
8
10
12
14
16
18
20
Frequency [MHz]
Submission
47
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Effective Channel Responses -65
D1 D2 D3 D4 D5 D6 D7 D8
|Heff (f)|2 [dB]
-70
-75
-80
-85
0
2
4
6
8
10
12
14
16
18
20
Frequency [MHz]
Submission
48
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Channel Characteristics D1 D2 D3 D4 D5 D6 D7 D8
Submission
RMS (ns)
H0
12.49 11.50 10.72 12.70 12.90 12.48 13.01 11.88
6.75×10-6 1.22×10-5 1.20×10-5 9.03×10-6 9.56×10-6 1.01×10-5 8.55×10-6 9.13×10-6
49
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Simulation Scenario 4: Manufacturing Cell o
We consider a manufacturing cell with two robots.
Submission
50
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Simulation Parameters Room size Materials
Objects Object Specifications
LED Specifications Number of LEDs Receiver area
Submission
8.03 m × 9.45 m × 6.8 m (See p.48 for exact layout) Red Walls: Concrete Green Walls: Aluminum metal Blue Walls: Plexiglas (PMMA) Ceiling: Aluminum metal Floor: Concrete Two robots Robot: Galvanized steel metal Height of Robot: 2.7 m Height of Plexiglas boundary: 2.5 m Brand: MC-E Cree Xlamp Inc. Half viewing angle: 60º 6 1 cm2
51
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Light Source (Transmitter) o
In simulation study, we use the LED “Xlamp MC-E” from Cree.
Simulated emission pattern in Zemax®
Emission pattern of six LEDs which cover 360º
Submission
52
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Location of Luminaries (Transmitters) o
6 transmitters are located at the head of the robot, arranged on the six sides of a cube to cover 360º.
LED2 LED1 LED5
LED6
LED3 LED4
Submission
53
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Location of Test Points (Receivers) o
Test points are considered on the top of the Plexiglas boundary which are looking in the direction of the robots.
Submission
54
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Optical Channel Responses LED2
-110
-130 -140
-100 -110 -120 -130 -140
-90
-90
D1 D2 D3 D4 D5 D6 D7 D8
-100 -110 -120 -130 -140
-110 -120 -130 -140
-150
-150
-150
-160
-160
-160
-160
-170
-170
-170
-170
-180
-180
-180
10
15
20
0
5
Frequency [MHz]
10
15
20
0
5
Frequency [MHz]
10
15
-100 -110 -120 -130 -140
-100 -110 -120 -130 -140
-110 -120 -130 -140 -150
-160
-160
-160
-170
-170
-170
-180
-180
Frequency [MHz]
Submission
15
20
-180 0
5
15
10
15
Frequency [MHz]
55
20
D1 D2 D3 D4 D5 D6 D7 D8
-100
-150
10
10
All LEDs D1 D2 D3 D4 D5 D6 D7 D8
-150
5
5
-90
-90 D1 D2 D3 D4 D5 D6 D7 D8
0
Frequency [MHz]
LED6
LED5 -90
0
-180
20
Frequency [MHz]
|H(f)|2 [dB]
5
|H(f)|2 [dB]
0
D1 D2 D3 D4 D5 D6 D7 D8
-100
-150
|H(f)|2 [dB]
|H(f)|2 [dB]
-120
D1 D2 D3 D4 D5 D6 D7 D8
|H(f)|2 [dB]
-100
LED4
LED3
-90
|H(f)|2 [dB]
D1 D2 D3 D4 D5 D6 D7 D8
|H(f)|2 [dB]
LED1 -90
0
5
10
15
20
Frequency [MHz]
M. Uysal, F. Miramirkhani, T. Baykas, et al.
20
doc.: IEEE 11-18-1236-01-00bb
July 2018
Effective Channel Responses -110
-130 -140 -150
-110 -120 -130 -140 -150
LED4
-90
D1 D2 D3 D4 D5 D6 D7 D8
-100 -110 -120 -130 -140 -150
-90
-110 -120 -130 -140 -150
-160
-160
-160
-170
-170
-170
-170
-180
-180
-180
10
15
20
0
5
Frequency [MHz]
10
15
20
0
5
Frequency [MHz]
10
15
-100 -110 -120 -130 -140
-100 -110 -120 -130 -140
-110 -120 -130 -140 -150
-160
-160
-160
-170
-170
-170
-180
-180
Frequency [MHz]
Submission
15
20
0
5
15
10
15
Frequency [MHz]
56
20
D1 D2 D3 D4 D5 D6 D7 D8
-100
-150
10
10
All LEDs
D1 D2 D3 D4 D5 D6 D7 D8
-150
5
5
-90
-90 D1 D2 D3 D4 D5 D6 D7 D8
0
Frequency [MHz]
LED6
LED5 -90
0
-180
20
Frequency [MHz]
|Heff (f)|2 [dB]
5
|Heff (f)|2 [dB]
0
D1 D2 D3 D4 D5 D6 D7 D8
-100
-160
|Heff (f)|2 [dB]
|Heff (f)|2 [dB]
-120
D1 D2 D3 D4 D5 D6 D7 D8
-100
|Heff (f)|2 [dB]
-100
LED3
-90
|Heff (f)|2 [dB]
LED2 D1 D2 D3 D4 D5 D6 D7 D8
|Heff (f)|2 [dB]
LED1 -90
-180
0
5
10
15
20
Frequency [MHz]
M. Uysal, F. Miramirkhani, T. Baykas, et al.
20
doc.: IEEE 11-18-1236-01-00bb
July 2018
Channel Characteristics TX-RX D1 D2 D3 LED1 D4 D5 D6 D7 D8 D1 D2 D3 LED2 D4 D5 D6 D7 D8 D1 D2 D3 LED3 D4 D5 D6 D7 D8
Submission
RMS (ns)
H0
15.20 15.68 17.84 17.53 10.96 15.13 15.03 12.11 13.29 13.51 13.66 9.64 14.03 16.79 13.00 18.82 13.93 11.16 10.09 17.59 14.66 15.94 14.29 14.24
5.81×10-7 1.08×10-6 4.64×10-7 1.01×10-6 5.79×10-6 7.67×10-7 4.82×10-7 4.77×10-6 6.94×10-7 5.21×10-7 4.68×10-7 2.50×10-5 6.30×10-7 4.05×10-7 5.47×10-7 1.96×10-6 8.78×10-7 6.35×10-6 1.09×10-5 5.70×10-7 1.32×10-7 3.55×10-7 3.53×10-7 1.13×10-6
TX-RX D1 D2 D3 LED4 D4 D5 D6 D7 D8 D1 D2 D3 LED5 D4 D5 D6 D7 D8 D1 D2 D3 LED6 D4 D5 D6 D7 D8
RMS (ns) 12.71 13.23 17.82 16.81 16.81 12.92 11.66 11.48 16.99 15.89 12.96 16.52 14.77 13.00 14.48 10.08 14.81 13.98 12.19 8.84 15.39 14.40 14.24 13.19 57
H0 6.79×10-7 1.01×10-6 5.61×10-7 6.60×10-7 2.17×10-7 3.90×10-7 4.29×10-7 1.27×10-6 2.55×10-7 4.21×10-7 4.32×10-7 6.92×10-7 2.88×10-7 7.10×10-7 3.37×10-7 8.34×10-6 1.05×10-6 2.68×10-6 5.75×10-6 5.78×10-5 3.48×10-7 1.25×10-6 9.74×10-7 2.75×10-6
TX-RX D1 D2 D3 All D4 LEDs D5 D6 D7 D8
RMS (ns) 15.66 15.52 14.13 10.45 16.42 14.85 15.83 13.58
H0 7.78×10-7 1.99×10-6 2.96×10-6 1.43×10-5 1.29×10-6 8.15×10-7 3.78×10-7 3.10×10-6
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Conclusions o
This contribution proposes LiFi reference channel models for indoor environments to assist the IEEE 802.11bb.
o
Our results are extended versions of the previous contribution in 802.15.7r1 where the effect of LED response is further considered.
Submission
58
M. Uysal, F. Miramirkhani, T. Baykas, et al.
doc.: IEEE 11-18-1236-01-00bb
July 2018
Acknowledgement o
The work of M. Uysal and T. Baykas was supported by the Turkish Scientific and Research Council (TUBITAK) under Grant 215E311.
Submission
59
M. Uysal, F. Miramirkhani, T. Baykas, et al.