Project: IEEE 802.11bb Task Group

6 downloads 0 Views 2MB Size Report
Jul 6, 2018 - Room size. 14 m × 14 m × 3 m. Materials. Walls: Plaster, Ceiling: Plaster, Floor: Pinewood. Objects. 6 desks and a chair paired with each desk.
doc.: IEEE 11-18-1236-01-00bb

July 2018

Project: IEEE 802.11bb Task Group Submission Title: IEEE 802.11bb Reference Channel Models for Indoor Environments Date Submitted: July 06, 2018 Source: Murat Uysal (Ozyegin University), Farshad Miramirkhani (Ozyegin University), Tuncer Baykas (Istanbul Medipol University), Nikola Serafimovski (pureLiFi Ltd.), and Volker Jungnickel (Fraunhofer HHI). Address: Ozyegin University, Nisantepe Mh. Orman Sk. No:34-36 Çekmekoy 34794 Istanbul, Turkey Voice: +90 (216) 5649329, Fax: +90 (216) 5649450, E-Mail: [email protected] Abstract: This contribution proposes LiFi reference channel models for indoor environments such as office, home and manufacturing cell. Purpose: To introduce reference channel models for the evaluation of different PHY proposals. Notice: This document has been prepared to assist the IEEE 802.11. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by 802.11. Submission

1

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

IEEE 802.11bb Reference Channel Models for Indoor Environments

Submission

2

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Outline o

Introduction • Overview of Channel Modeling Methodology

o

Indoor Scenarios under Consideration: Empty Room, Office, Home, Manufacturing Cell • • • • • •

o

Modeling of the Indoor Environment Source Modeling Illumination Level Requirements Channel Impulse Responses (CIRs) Effective Channel Responses Channel Characteristics

Conclusions

Submission

3

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Overview of Channel Modeling Methodology

o

A flexible and efficient method for realistic VLC channel modeling • Wavelength dependency • Realistic light sources • Effect of objects within the environment and types of surface (coating) materials

For additional details see  IEEE 15-15-0352-01-007a, “Channel Modeling for Visible Light Communications”  IEEE 15-15-0746-01-007a, “TG7r1 channel model document for high-rate PD communications” Submission

4

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Channel Impulse Response (CIR) o o o

Based on Monte Carlo Ray Tracing.

o

The data from Zemax® output file is imported to MATLAB® and using these information, the multipath CIR is expressed as

Sobol sampling is used for speeding up ray tracing. The Zemax® non-sequential ray-tracing tool generates an output file, which includes all the data about rays such as the detected power and path lengths for each ray.

Nr

h t    Pi  t   i  i 1

ith

Pi = the power of the ray τi = the propagation time of the ith ray δ(t) = the Dirac delta function Nr = the number of rays received at the detector

Submission

5

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Effect of LED Response o

In addition to the multipath propagation environment, the low-pass characteristics of the LED sources should be further taken into account in channel modelling. 0

fcut-off =5 MHz

LED Model 1 [1]

1 1 j

f

f

cut-off

=15 MHz

-1

f cut-off

|HLED(f)|2 [dB]

H LED  f  

f cut-of f =10 MHz -0.5

LED Model 2 [2]

-1.5

f

cut-of f

=20 MHz

-2

 ln

H LED  f   e



 2  f

f cut-off

2

  

-2.5 LED Model 1 LED Model 2 -3

fcut-off : 3 dB cut-off frequency of the LED

0

5

10 Frequency [MHz]

15

20

[1] L. Grobe, and K. D. Langer, “Block-based PAM with frequency domain equalization in visible light communications,” In IEEE Globecom Workshops (GC Wkshps), pp. 1070-1075, 2013. [2] M. Wolf, S. A. Cheema, M. Haardt, and L. Grobe, “On the performance of block transmission schemes in optical channels with a Gaussian profile,” In 16th International Conference on Transparent Optical Networks (ICTON), pp. 1-8, 2014.

Submission

6

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Simulation Scenario 0: Empty Room o

We consider an empty room with a size of 6 m × 6 m × 3 m with plaster ceiling/walls and pinewood floor.

Submission

7

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Simulation Parameters Room size Materials Objects specifications

Luminary Specifications Number of luminaries Number of PDs Receiver area

Submission

6m×6m×3m Walls: Plaster, Ceiling: Plaster, Floor: Pinewood Cell phone: Black gloss paint (5.5 cm × 10.5 cm × 0.5 cm) Human body:  Shoes: Black gloss paint  Head & Hands: Absorbing  Clothes: Cotton Brand: CR6-800L Cree Inc. Half viewing angle: 40º 9 7 1 cm2

8

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Light Source o

In simulation study, we use the LED luminary “CR6-800L” from Cree.

Simulated emission pattern in Zemax®

Submission

9

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Illumination Levels o

Based on the properties of luminary, required illumination level (150 lx) and the size of room, we arrange the luminaries as follows: Delivered light output from 737 lumens each luminary Average of illumination level 153 lx Uniformity of illumination 0.6422

Arrangement of luminaries

Submission

Evaluation of illumination level in Zemax® 10

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Illumination Patterns

110 20 15

10 10

5 Cells in Y Direction

100

5 0

0

90 Cells in X Direction

15 9

168

133

159

159

133

142

2 14 25 1

150 133

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Cells in X Direction

Illumination level contours in Matlab®

Simulated illumination levels in Zemax®

o

0 15 142

15

168

133

120

80 20

168

150

130 100

Cells in Y Direction

120

159

140

142

150 140

159

Illumination Level (Lux)

160

159

168

160

13 125 3

142

150

150

180

133

142 13 3

170

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

142 150

180

The minimum and maximum values of illumination are 98.69 lx and 176.40 lx.

Submission

11

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Location of Test Points (Receivers) o o

We consider 100 cells with equidistant spacing of 0.6 m in x and y directions. We consider a user with a height of 1.8 m who holds the phone in his hand next to his ear with 45° rotation upward the ceiling and at a height of 1.65 m. The cell phone is equipped with a single photodetector. We consider seven possible locations for the photodetectors.

Room under consideration with green circles denoting luminaires

Submission

Location and rotation of test points 12

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Sample CIR Results for D5 (1/2) 3

x 10

-4

P3,1 3

x 10

P7,2

-4

6

x 10

-6

P1,3

5 4

Power

Power

Power

2

2

2

1

1

3

1 0 0

20 40 Time(ns) 6

x 10

60

-5

0 0

20 40 Time(ns)

P4,4 3

x 10

60

-4

0 0

20 40 Time(ns)

60

P6,5

5 2 Power

Power

4 3 2

1

1 0 0

Submission

20 40 Time(ns)

0 0

60

13

20 40 Time(ns)

60

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Sample CIR Results for D5 (2/2) 3

x 10

-5

P10,6 5

x 10

P8,7

-5

2

x 10

-4

P2,8

4 3

Power

Power

Power

2

2

1

1 1

20 40 Time(ns)

Power

2

x 10

-4

0 0

20 40 Time(ns)

P5,9 2

1

0 0

Submission

60

Power

0 0

20 40 Time(ns)

x 10

14

-5

0 0

20 40 Time(ns)

60

P9,10

1

0 0

60

60

20 40 Time(ns)

60

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Sample Optical Channel Responses for D5 -60

P3,1 P7,2 P1,3

-70

P4,4 P6,5 P10,6

-80

|H(f)|2 [dB]

P8,7 P2,8 -90

P5,9 P9,10

-100

-110

-120

Submission

0

5

10 Frequency [MHz]

15

15

20

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Sample Effective Channel Responses for D5 P7,2

-70

P6,5

-90

P10,6 P8,7

-100

-80

P4,4 P6,5

-90

P10,6 P8,7

-100

-110

-110

P5,9 P9,10 0

5

10 Frequency [MHz]

15

-120

20

P9,10 0

5

10 Frequency [MHz]

15

P7,2 P4,4 P6,5

-90

P10,6 P8,7

-100

P7,2

P5,9 P9,10 20

10 Frequency [MHz]

15

-80

P4,4 P6,5

-90

P10,6 P8,7

-100

-120

P5,9 P9,10 0

5

10 Frequency [MHz]

15

-120

P5,9 P9,10 0

5

10 Frequency [MHz]

15

P7,2

P3,1

-80

P4,4 P6,5

-90

P10,6 P8,7

-100

P2,8 -110

P5,9 P9,10 0

5

10 Frequency [MHz]

15

20

P7,2

-70

P1,3 -80

P4,4 P6,5

-90

P10,6 P8,7

-100

P2,8 -110 -120

P5,9 P9,10 0

5

10 Frequency [MHz]

15

o

In the effective channel responses of P1,3, P10,6 and P9,10, frequency selectivity are more pronounced. It is a result of the fact that these locations are close to the walls (see p. 12) and therefore more reflected rays are received (see corresponding CIRs in p. 13 and p. 14).

o

In the rest of this presentation, the “LED Model 1” with cut-off frequency of 20 MHz is considered.

Submission

16

20

P3,1 P1,3

20

P8,7

LED Model 2, fcut-off =20 MHz

-70

-120

P10,6 -100

-60

P2,8 -110

P6,5

-90

20

P1,3

P2,8 -110

5

P4,4

P2,8

P9,10 0

-80

-110

P5,9

P3,1

-70

|Heff (f)|2 [dB]

|Heff (f)|2 [dB]

-80

P1,3

LED Model 2, fcut-off =15 MHz

P1,3

15

P8,7

-100

-60

P3,1

10 Frequency [MHz]

P10,6

LED Model 2, fcut-off =10 MHz

-70

5

-90

-120

20

-60

0

P6,5

-110

P5,9

LED Model 2, fcut-off =5 MHz -60

-120

P4,4

P2,8

|Heff (f)|2 [dB]

-120

-80

P2,8

P2,8

P7,2

-70

P1,3 |Heff (f)|2 [dB]

P4,4

|Heff (f)|2 [dB]

|Heff (f)|2 [dB]

-80

P7,2

-70

P1,3

P1,3

P3,1

P3,1

|Heff (f)|2 [dB]

P7,2

-70

-60

-60

P3,1

P3,1

|Heff (f)|2 [dB]

-60

-60

LED Model 1, fcut-off =20 MHz

LED Model 1, fcut-off =15 MHz

LED Model 1, fcut-off =10 MHz

LED Model 1, fcut-off =5 MHz

20

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

D1

Spatial Distribution of DC Gains & Channel Characteristics (1/2)

-5

x 10

-5

x 10 2

2

1.5

1

1.5

1

H0

1

1

0.5

0 10 9

65

43

Cells in Y Direction

21

0

10 8 9 6 7 4 5 3 2 0 1 Cells in X Direction D2

-5

x 10

0 10 9

0.5 87

65

43

0 Cells in Y Direction

21

0

10 8 9 6 7 5 4 2 3 0 1 Cells in X Direction

0.5 87

65

Cells in Y Direction

43

21

0

9 10 7 8 5 6 4 2 3 0 1 Cells in X Direction

0

-5

D5

x 10 2

-5

x 10

2

1

0

-5

x 10 2

1 0.5

0 10 9

0.5 87

-5

x 10 2

2

1.5

H0

H0

D7 -5

x 10

1.5

0.5

2

1.5

1.5

1.5

1.5

1

1

H0

H0

x 10 2

2

1.5 1.5

0.5

1

1

0.5

0 10 9

0 10 9

0.5 87

65

43

Cells in Y Direction

21

0

-5

x 10

9 10 7 8 5 6 4 0 2 3 0 1 Cells in X Direction -5 D3 x 10 2

65

43

21

0

9 10 7 8 5 6 4 2 3 0 1 Cells in X Direction

0 -5

D6

x 10 2

-5

x 10 2

1.5

1.5

1.5 1

0.5

H0

1.5

1

0 10 9

0.5 87

Cells in Y Direction

2

H0

-5

D4 -5

x 10

1

1

0.5 0.5 87

65

Cells in Y Direction

43

21

Submission

0

9 10 7 8 5 6 4 2 3 0 1 Cells in X Direction

0

0 10 9

0.5 87

65

Cells in Y Direction

43

21

0

9 10 7 8 5 6 4 2 3 0 1 Cells in X Direction

17

D1 D2 D3 D4 D5 D6 D7

Average over 100 Cells  RMS (ns) H0 13.92 6.00×10-6 14.10 6.08×10-6 14.07 6.33×10-6 14.09 6.89×10-6 14.10 7.19×10-6 14.06 6.25×10-6 13.22 3.05×10-6

0

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Spatial Distribution of DC Gains & Channel Characteristics (2/2) -5

2

x 10

D1 D2 D3 D4 D5 D6 D7

1.8 1.6 1.4

H0

1.2 1 0.8 0.6 0.4 0.2 0

Submission

1

2

3

4 5 6 7 Cells in X/Y Direction 18

8

9

10

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Cumulative Distribution Function (CDF) of Path Loss 1

Cumulative Density Function (CDF)

0.9 0.8 0.7 0.6 0.5 0.4

D1 D2 D3 D4 D5 D6 D7

0.3 0.2 0.1

0 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 Path Loss [dB]

o

It can be noted that D1, D2, D3, D4, D5 and D6 have similar path loss values in the range of 51.95 dB-52.94 dB. In comparison to them, D7 has about 2.2 dB-3.2 dB more path loss on average since there is no LOS component.

Submission

19

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Simulation Scenario 1: Office o

Typical office places include furniture (e.g., desk, chairs, cubicles etc), various equipments (e.g., computers, printers etc) and personnel. Open Office

Submission

Office With Cubicles

20

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Simulation Parameters Room size Materials Objects

Objects specifications

Luminary Specifications Number of luminaries Receiver area

Submission

14 m × 14 m × 3 m Walls: Plaster, Ceiling: Plaster, Floor: Pinewood 6 desks and a chair paired with each desk 6 laptops on each desk 6 cubicles (optional) 9 human bodies Cubicles: Plaster Desk: Pinewood (Typical height of 0.85 m) Chair: Pinewood Laptop: Black gloss paint Human body:  Shoes: Black gloss paint  Head & Hands: Absorbing  Clothes: Cotton Brand: LR24-38SKA35 Cree Inc. Half viewing angle: 40º 32 1 cm2

21

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Light Source (Transmitter) o

In simulation study, we use the LED luminary “LR24-38SKA35” from Cree.

Simulated emission pattern in Zemax®

Submission

22

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Illumination Levels o

Based on the properties of employed luminary, required illumination level (500 lx) and the size of office place, we arrange the luminaries as follows: Delivered light output from 3504 lumens each luminary Average of illumination level 533 lx Uniformity of illumination 0.5211

Evaluation of illumination levels in Zemax®

Arrangement of luminaries

Submission

23

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Illumination Patterns 616 567

664

47 1

664

616

664

616

47519 567 1

567

519

519

616

519 423471

51 567 9 664

664 664

Cells in Y Direction

567 616

Illumination Level (Lx)

471423 519

423

7 56

Simulated illumination levels in Zemax®

423

616

250 Cells in X Direction

519

0

664

5 0

423

1 47

5 Cells in Y Direction

300

10

1 47

15

10

664

20

7 616 56 519471 423

350

15

519

400

567

200 20

616 567 519

450

567 519

300

471

664

500

400

567 616

550 500

664

600

519

423

6 61

600

616

700

471

9 51567

519

650

423

7 56

800

423

9 51

700

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

423471 519 5 616 67

750

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Cells in X Direction

Illumination level contours in Matlab®

o

Different colors show different values of illumination (lx) at the height of desk in office place. Red indicates the highest illumination level.

o

The minimum and maximum values of illumination are 278 lx and 712 lx respectively.

Submission

24

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Location of Test Points (Receivers) o

24 test points are chosen which are categorized into three groups: In the corridors at a height of 1.7 m with 45º rotation (e.g., D1-D12 people who stand with a cell phone in hand) On the top of chairs at a height of 0.95 m with 45º rotation D13-D18 (i.e., people with a cell phone in hand) On the top of chairs at a height of 1.1 m with 45º rotation D19-D24 (e.g., people who sit with a cell phone in hand to his/her ear)

D19 D13 D1

Location and rotation of test points

Submission

25

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Test Points (Open Office)

Submission

26

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Test Points (Office with Cubicles)

Submission

27

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Optical Channel Responses (Open Office) -55

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24

-60

|H(f)|2 [dB]

-65

-70

-75

-80

-85

0

2

4

6

8

10

12

14

16

18

20

Frequency [MHz]

Submission

28

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Effective Channel Responses (Open Office) -55

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24

-60

|Heff (f)|2 [dB]

-65

-70

-75

-80

-85

0

2

4

6

8

10

12

14

16

18

20

Frequency [MHz]

Submission

29

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Channel Characteristics D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24

Submission

 RMS (ns)

H0

15.51 18.84 18.92 16.97 16.75 17.33 20.44 17.83 16.11 15.97 18.99 19.57 15.37 16.09 17.70 14.74 18.10 16.67 15.25 15.81 17.36 18.02 17.99 17.85

2.60×10-6 1.36×10-6 2.40×10-6 3.32×10-6 2.34×10-6 2.60×10-6 1.36×10-6 2.79×10-6 2.40×10-6 3.12×10-6 2.40×10-6 1.82×10-6 2.27×10-6 2.21×10-6 1.36×10-6 2.34×10-6 1.30×10-6 1.95×10-6 2.73×10-6 1.82×10-6 1.69×10-6 1.36×10-6 1.49×10-6 1.75×10-6 30

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Optical Channel Responses (Office with Cubicles) -55

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24

-60

|H(f)|2 [dB]

-65

-70

-75

-80

-85

0

2

4

6

8

10

12

14

16

18

20

Frequency [MHz]

Submission

31

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Effective Channel Responses (Office with Cubicles) -55

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24

-60

|Heff (f)|2 [dB]

-65

-70

-75

-80

-85

0

2

4

6

8

10

12

14

16

18

20

Frequency [MHz]

Submission

32

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Channel Characteristics D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24

Submission

 RMS (ns)

H0

13.80 17.33 16.47 14.39 15.17 16.14 18.87 16.77 13.91 14.80 16.64 17.80 12.80 14.31 14.74 12.36 14.92 13.35 13.49 13.36 13.38 15.79 15.45 14.54

2.48×10-6 1.30×10-6 2.30×10-6 3.18×10-6 2.16×10-6 2.48×10-6 1.24×10-6 2.76×10-6 2.30×10-6 2.97×10-6 2.39×10-6 1.79×10-6 2.08×10-6 1.38×10-6 1.27×10-6 2.31×10-6 1.07×10-6 1.76×10-6 1.95×10-6 1.73×10-6 1.67×10-6 1.23×10-6 1.44×10-6 1.62×10-6 33

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Simulation Scenario 2: Office with Secondary Light o

In this office environment, there are two light sources; one of them is the main light source at the ceiling and the other one is mounted on the desk to provide task lighting.

Submission

34

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Simulation Parameters Room size Materials Objects

Objects specifications

Luminary Specifications Number of luminaries Receiver area

Submission

5m×5m×3m Walls: Plaster, Ceiling: Plaster, Floor: Pinewood 1 desk and a chair paired with desk 1 laptop on the desk, 1 desk light on the desk, 1 library 1 couch, 1 coffee table, window, 2 human bodies Desk: Pinewood (Typical height of 0.88 m) Chair: Black gloss paint, Laptop: Black gloss paint Desk light: Black gloss paint, Library: Pinewood, Window: Glass Couch: Cotton, Coffee table: Pinewood Human body:  Shoes: Black gloss paint  Head & Hands: Absorbing  Clothes: Cotton Brand: LR24-38SKA35 Cree Inc. Half viewing angle: 40º 1 on the ceiling 1 for the desk light 1 cm2

35

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Light Source (Transmitter) o

In simulation study, we use the LED luminary “LR24-38SKA35” from Cree.

Simulated emission pattern in Zemax®

Submission

36

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Illumination Levels o

Based on the properties of employed luminary, required illumination level (500 lx) and the size of office place, we arrange the luminaries as follows: Delivered light output from 3796 lumens each luminary Average of illumination level 270 lx Uniformity of illumination 0.4409

Evaluation of illumination levels in Zemax®

Arrangement of luminaries

Submission

37

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Illumination Patterns

400

0 20

300

5 Cells in Y Direction

200

10 5 0

0

100 Cells in X Direction

Simulated illumination levels in Zemax®

o

689

15

10

333

20

4 40

404

15

190

190

500

200

333

262

400

262

618 547 475

600

2 26

47 5

700 600

Cells in Y Direction

800

0 19

Illumination Level (Lx)

800

618 547 760 832

1000

190

900

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

262

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Cells in X Direction

Illumination level contours in Matlab®

The minimum and maximum values of illumination are 119 lx and 902 lx respectively.

Submission

38

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Location of Test Points (Receivers) o

2 test points are chosen: On the desk next to the laptop at a height of 0.88 m (e.g., a USB- D1 type device connected to laptop) On the top of desk light at a height of 1.5 m with 45º rotation D2 toward the source on the ceiling

D1 D2

Submission

39

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Optical and Effective Channel Responses & Channel Characteristics -75

-75 S R

-80

SR -80

RD S D

-85

-85 -90 |Heff (f)|2 [dB]

|H(f)|2 [dB]

-90 -95 -100

-95 -100

-105

-105

-110

-110

-115

-115

-120

RD SD

0

5

10

15

-120

20

0

5

Frequency [MHz]

Submission

10

15

20

Frequency [MHz]

 RMS (ns)

H0

S→R

11.52

2.84×10-5

R→D

8.07

5.21×10-4

S→D

11.11

1.12×10-5

40

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Simulation Scenario 3: Home o

We consider a living room with table, chairs, couch, coffee table and human bodies.

Submission

41

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Simulation Parameters Room size Materials Objects

Object Specifications

Luminary Specifications Number of luminaries Receiver area

Submission

6m×6m×3m Walls: Plaster, Ceiling: Plaster, Floor: Pinewood Table with 4 chairs Couch Coffee table 4 human bodies Tables: Wooden with size of 2 m × 1 m × 0.9 m Chairs: Wooden matched with table Couch: Cotton Coffee table: Glass Human body:  Shoes: Black gloss paint  Head & Hands: Absorbing  Clothes: Cotton Brand: CR6-800L Cree Inc. Half viewing angle: 40º 9 1 cm2

42

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Light Source o

In simulation study, we use the LED luminary “CR6-800L” from Cree.

Simulated emission pattern in Zemax®

Submission

43

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Illumination Levels o

Based on the properties of luminary, required illumination level (150 lx) and the size of room, we arrange the luminaries as follows: Delivered light output from each luminary Average of illumination level Uniformity of illumination

153 lx 0.9068

Evaluation of illumination level in Zemax®

Arrangement of luminaries

Submission

804 lumens

44

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Illumination Patterns 20 156 1469 149 14 19 18 16 166 3 11 15 1 17 6063 6 60 9 149 4 1 14 156 16 6 153 153 15 14 153 49 153 13 146 1 56 160 156 1 15 149 12 6 163 11 166 10 163 15 6 9 3 49 3 49 15 1 8 15 1 14 6 7 6 3 3 15 14 49 153 3 156 5 1 156 5 4 1 6 1 149 4 3 16 3 15 3 2 16106166 1493 156 160 15 149 3 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Cells in X Direction

5 Cells in Y Direction

5 0

0

130 Cells in X Direction

Simulated illumination levels in Zemax®

156

156

16 1630 166

135

10

156

149

20 15

10

149

140

Cells in Y Direction

135 20

149

145

143

140

0 16

Illumination Level (Lx)

150

145

6 16

150

149

155 155

153

160

15

o

143

160

165

16 16 0 3

170

14 3

165

15 3

15 16 6 1630 166

170

Illumination level contours in Matlab®

The minimum and maximum values of illumination are 139 lx and 169 lx.

Submission

45

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Location of Test Points (Receivers) o

8 test points are chosen which are categorized into four groups:

On the coffee table at a height of 0.6 m with 45º rotation Next to the wall at a height of 1.7 m (e.g., standing people) with 45º rotation On the table at a height of 0.9 m On the top of couch at height of 1.1 m (e.g., sitting people) with 45º rotation

Submission

46

D1 D2-D3

D4-D7 D8

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Optical Channel Responses -65

D1 D2 D3 D4 D5 D6 D7 D8

|H(f)|2 [dB]

-70

-75

-80

-85

0

2

4

6

8

10

12

14

16

18

20

Frequency [MHz]

Submission

47

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Effective Channel Responses -65

D1 D2 D3 D4 D5 D6 D7 D8

|Heff (f)|2 [dB]

-70

-75

-80

-85

0

2

4

6

8

10

12

14

16

18

20

Frequency [MHz]

Submission

48

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Channel Characteristics D1 D2 D3 D4 D5 D6 D7 D8

Submission

 RMS (ns)

H0

12.49 11.50 10.72 12.70 12.90 12.48 13.01 11.88

6.75×10-6 1.22×10-5 1.20×10-5 9.03×10-6 9.56×10-6 1.01×10-5 8.55×10-6 9.13×10-6

49

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Simulation Scenario 4: Manufacturing Cell o

We consider a manufacturing cell with two robots.

Submission

50

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Simulation Parameters Room size Materials

Objects Object Specifications

LED Specifications Number of LEDs Receiver area

Submission

8.03 m × 9.45 m × 6.8 m (See p.48 for exact layout) Red Walls: Concrete Green Walls: Aluminum metal Blue Walls: Plexiglas (PMMA) Ceiling: Aluminum metal Floor: Concrete Two robots Robot: Galvanized steel metal Height of Robot: 2.7 m Height of Plexiglas boundary: 2.5 m Brand: MC-E Cree Xlamp Inc. Half viewing angle: 60º 6 1 cm2

51

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Light Source (Transmitter) o

In simulation study, we use the LED “Xlamp MC-E” from Cree.

Simulated emission pattern in Zemax®

Emission pattern of six LEDs which cover 360º

Submission

52

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Location of Luminaries (Transmitters) o

6 transmitters are located at the head of the robot, arranged on the six sides of a cube to cover 360º.

LED2 LED1 LED5

LED6

LED3 LED4

Submission

53

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Location of Test Points (Receivers) o

Test points are considered on the top of the Plexiglas boundary which are looking in the direction of the robots.

Submission

54

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Optical Channel Responses LED2

-110

-130 -140

-100 -110 -120 -130 -140

-90

-90

D1 D2 D3 D4 D5 D6 D7 D8

-100 -110 -120 -130 -140

-110 -120 -130 -140

-150

-150

-150

-160

-160

-160

-160

-170

-170

-170

-170

-180

-180

-180

10

15

20

0

5

Frequency [MHz]

10

15

20

0

5

Frequency [MHz]

10

15

-100 -110 -120 -130 -140

-100 -110 -120 -130 -140

-110 -120 -130 -140 -150

-160

-160

-160

-170

-170

-170

-180

-180

Frequency [MHz]

Submission

15

20

-180 0

5

15

10

15

Frequency [MHz]

55

20

D1 D2 D3 D4 D5 D6 D7 D8

-100

-150

10

10

All LEDs D1 D2 D3 D4 D5 D6 D7 D8

-150

5

5

-90

-90 D1 D2 D3 D4 D5 D6 D7 D8

0

Frequency [MHz]

LED6

LED5 -90

0

-180

20

Frequency [MHz]

|H(f)|2 [dB]

5

|H(f)|2 [dB]

0

D1 D2 D3 D4 D5 D6 D7 D8

-100

-150

|H(f)|2 [dB]

|H(f)|2 [dB]

-120

D1 D2 D3 D4 D5 D6 D7 D8

|H(f)|2 [dB]

-100

LED4

LED3

-90

|H(f)|2 [dB]

D1 D2 D3 D4 D5 D6 D7 D8

|H(f)|2 [dB]

LED1 -90

0

5

10

15

20

Frequency [MHz]

M. Uysal, F. Miramirkhani, T. Baykas, et al.

20

doc.: IEEE 11-18-1236-01-00bb

July 2018

Effective Channel Responses -110

-130 -140 -150

-110 -120 -130 -140 -150

LED4

-90

D1 D2 D3 D4 D5 D6 D7 D8

-100 -110 -120 -130 -140 -150

-90

-110 -120 -130 -140 -150

-160

-160

-160

-170

-170

-170

-170

-180

-180

-180

10

15

20

0

5

Frequency [MHz]

10

15

20

0

5

Frequency [MHz]

10

15

-100 -110 -120 -130 -140

-100 -110 -120 -130 -140

-110 -120 -130 -140 -150

-160

-160

-160

-170

-170

-170

-180

-180

Frequency [MHz]

Submission

15

20

0

5

15

10

15

Frequency [MHz]

56

20

D1 D2 D3 D4 D5 D6 D7 D8

-100

-150

10

10

All LEDs

D1 D2 D3 D4 D5 D6 D7 D8

-150

5

5

-90

-90 D1 D2 D3 D4 D5 D6 D7 D8

0

Frequency [MHz]

LED6

LED5 -90

0

-180

20

Frequency [MHz]

|Heff (f)|2 [dB]

5

|Heff (f)|2 [dB]

0

D1 D2 D3 D4 D5 D6 D7 D8

-100

-160

|Heff (f)|2 [dB]

|Heff (f)|2 [dB]

-120

D1 D2 D3 D4 D5 D6 D7 D8

-100

|Heff (f)|2 [dB]

-100

LED3

-90

|Heff (f)|2 [dB]

LED2 D1 D2 D3 D4 D5 D6 D7 D8

|Heff (f)|2 [dB]

LED1 -90

-180

0

5

10

15

20

Frequency [MHz]

M. Uysal, F. Miramirkhani, T. Baykas, et al.

20

doc.: IEEE 11-18-1236-01-00bb

July 2018

Channel Characteristics TX-RX D1 D2 D3 LED1 D4 D5 D6 D7 D8 D1 D2 D3 LED2 D4 D5 D6 D7 D8 D1 D2 D3 LED3 D4 D5 D6 D7 D8

Submission

 RMS (ns)

H0

15.20 15.68 17.84 17.53 10.96 15.13 15.03 12.11 13.29 13.51 13.66 9.64 14.03 16.79 13.00 18.82 13.93 11.16 10.09 17.59 14.66 15.94 14.29 14.24

5.81×10-7 1.08×10-6 4.64×10-7 1.01×10-6 5.79×10-6 7.67×10-7 4.82×10-7 4.77×10-6 6.94×10-7 5.21×10-7 4.68×10-7 2.50×10-5 6.30×10-7 4.05×10-7 5.47×10-7 1.96×10-6 8.78×10-7 6.35×10-6 1.09×10-5 5.70×10-7 1.32×10-7 3.55×10-7 3.53×10-7 1.13×10-6

TX-RX D1 D2 D3 LED4 D4 D5 D6 D7 D8 D1 D2 D3 LED5 D4 D5 D6 D7 D8 D1 D2 D3 LED6 D4 D5 D6 D7 D8

 RMS (ns) 12.71 13.23 17.82 16.81 16.81 12.92 11.66 11.48 16.99 15.89 12.96 16.52 14.77 13.00 14.48 10.08 14.81 13.98 12.19 8.84 15.39 14.40 14.24 13.19 57

H0 6.79×10-7 1.01×10-6 5.61×10-7 6.60×10-7 2.17×10-7 3.90×10-7 4.29×10-7 1.27×10-6 2.55×10-7 4.21×10-7 4.32×10-7 6.92×10-7 2.88×10-7 7.10×10-7 3.37×10-7 8.34×10-6 1.05×10-6 2.68×10-6 5.75×10-6 5.78×10-5 3.48×10-7 1.25×10-6 9.74×10-7 2.75×10-6

TX-RX D1 D2 D3 All D4 LEDs D5 D6 D7 D8

 RMS (ns) 15.66 15.52 14.13 10.45 16.42 14.85 15.83 13.58

H0 7.78×10-7 1.99×10-6 2.96×10-6 1.43×10-5 1.29×10-6 8.15×10-7 3.78×10-7 3.10×10-6

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Conclusions o

This contribution proposes LiFi reference channel models for indoor environments to assist the IEEE 802.11bb.

o

Our results are extended versions of the previous contribution in 802.15.7r1 where the effect of LED response is further considered.

Submission

58

M. Uysal, F. Miramirkhani, T. Baykas, et al.

doc.: IEEE 11-18-1236-01-00bb

July 2018

Acknowledgement o

The work of M. Uysal and T. Baykas was supported by the Turkish Scientific and Research Council (TUBITAK) under Grant 215E311.

Submission

59

M. Uysal, F. Miramirkhani, T. Baykas, et al.