Proof of Kepler's Third Law arising out of the Equation

0 downloads 0 Views 512KB Size Report
the ordinary differential equation (ODE):. 2 . 2 ... Murray R. Spiegel, Schaum's Outline Series, International Edition, 1982). Note, this theory does notΒ ...
Proof of Kepler’s Third Law arising out of the Equation of Path of a Planetary Body about a Local Star We seek to solve the following integral: 2πœ‹

∫0

𝑇 4

π‘‘πœ™ 1 3πœ‹ 2 [1+ cos(πœƒ+ )] 4 √2

= ∫0

π‘Ÿ02

πΊπ‘€π‘Ÿ0

√

2

𝑑𝑑

( 1)

which comes from the equation of path: 𝑒=

2 1 3πœ‹ [1 + cos (πœƒ + )] π‘Ÿ0 4 √2

for a planet (or a comet) orbiting its local star. This is also the particular-solution to the ordinary differential equation (ODE): 𝑑2𝑒 𝐺𝑀 + 𝑒 = π‘‘πœƒ 2 β„Ž2 governing the body’s motion for an orbit of eccentricity 𝑒 = 1/√2 within the given integral limits (see β€˜A First Course in Mechanics’, by Dr Mary Lunn, Oxford University Press, 1992; also see β€˜Theory and Problems of Theoretical Mechanics’, by Murray R. Spiegel, Schaum’s Outline Series, International Edition, 1982). Note, this theory does not work for Mercury, due to the relativistic gravitational precession of its orbit of 43 seconds of arc per century. We write the integral on the left-hand-side of equation (1) as: 2πœ‹

∫0 where we have set πœ™ = πœƒ +

2πœ‹

π‘‘πœ™ π‘ž 𝑝

(1+ cos πœ™)

2

= ∫0

𝑝2 π‘‘πœ™ (𝑝+π‘ž cos πœ™)2

( 2)

3πœ‹ 4

, √2 = 𝑝 and 1 = π‘ž for the general case.

Put: πœ™

𝑑 = tan ( ) 2

( 3)

so that: 1

πœ™

𝑑𝑑 = 2 sec2 ( 2 ) π‘‘πœ™ where: 1 πœ™ 𝑑𝑑 = (1 + tan2 ( )) π‘‘πœ™ 2 2 or:

Page | 1

𝑑𝑑 =

1 (1 + 𝑑 2 )π‘‘πœ™ 2

so that: 2𝑑𝑑

π‘‘πœ™ = (1+𝑑 2 )

( 4)

From the trigonometric relationship implied by equation (3): πœ™

𝑑

πœ™

1

sin ( 2 ) = √1+𝑑 2

( 5)

and: cos ( 2 ) = √1+𝑑 2

( 6)

Now, since: πœ™ πœ™ sin(πœ™) = 2 sin ( ) cos ( ) 2 2 then: 2𝑑

sin(πœ™) = (1+𝑑2 )

( 7)

Also, since: πœ™ πœ™ cos(πœ™) = cos 2 ( ) βˆ’ sin2 ( ) 2 2 then 𝑑2

1

1βˆ’π‘‘ 2

cos(πœ™) = 1+𝑑 2 βˆ’ 1+𝑑 2 = 1+𝑑 2

( 8)

Substituting: 2𝑑𝑑

π‘‘πœ™ = (1+𝑑 2 )

( 9)

and: cos(πœ™) =

1βˆ’π‘‘ 2

( 10 )

1+𝑑 2

into equation (2), we have: ∫

𝑝2 π‘‘πœ™ =∫ (𝑝 + π‘ž cos πœ™)2

2𝑝2 𝑑𝑑 2

1 βˆ’ 𝑑2 (1 + 𝑑 2 ) (𝑝 + π‘ž ( )) 1 + 𝑑2

or: 𝑝2 π‘‘πœ™

∫ (𝑝+π‘ž cos πœ™)2 = ∫

2𝑝2 𝑑𝑑 2 𝑝(1+𝑑2 )+π‘ž(1βˆ’π‘‘2 ) (1+𝑑 2 )[ ] 1+𝑑2

=∫

2𝑝2 𝑑𝑑 2 (𝑝+π‘ž)+(π‘βˆ’π‘ž)𝑑2 ] 1+𝑑2

(1+𝑑 2 )[

Page | 2

Factoring out the (𝑝 βˆ’ π‘ž) term, we obtain: 2𝑝2 π‘‘πœ™

2𝑝2

∫ (𝑝+π‘ž cos πœ™)2 = (π‘βˆ’π‘ž)2 ∫

(1+𝑑 2 )𝑑𝑑

( 11 )

(π‘Ž+𝑑 2 )2

𝑝+π‘ž

where π‘Ž = π‘βˆ’π‘ž. The integral can now be expanded, via partial fractions, to yield: (1 βˆ’ π‘Ž)𝑑𝑑 2𝑝2 π‘‘πœ™ 2𝑝2 𝑑𝑑 ∫ {∫ ∫ } = + (𝑝 + π‘ž cos πœ™ )2 (𝑝 βˆ’ π‘ž)2 ( π‘Ž + 𝑑 2 )2 π‘Ž + 𝑑2 or: ∫

𝑝2 π‘‘πœ™ 2𝑝2 𝑑𝑑 𝑑𝑑 ) {(1 ∫ ∫ } = βˆ’ π‘Ž + (𝑝 + π‘ž cos πœ™ )2 (𝑝 βˆ’ π‘ž)2 (π‘Ž + 𝑑 2 ) 2 π‘Ž + 𝑑2

The integral on the far right-hand-side is straightforward, where: 𝑑𝑑

1

𝑑

∫ π‘Ž+𝑑 2 = βˆšπ‘Ž tanβˆ’1 βˆšπ‘Ž

( 12 )

For the first integral on the right-hand-side, we use another trigonometric substitution: 𝑑 = βˆšπ‘Ž tan 𝑠

( 13 )

𝑑𝑑 = βˆšπ‘Ž sec2 𝑠 𝑑𝑠 = βˆšπ‘Ž(1 + tan2 𝑠)𝑑𝑠

( 14 )

so that:

Thus, we may now write: 3

(1 βˆ’

𝑑𝑑 π‘Ž) ∫ (π‘Ž+𝑑 2 )2

= (1 βˆ’

βˆšπ‘Ž sec2 𝑠 π‘Ž) ∫ π‘Ž2 (1+tan2 𝑠)2 𝑑𝑠

= (1 βˆ’

βˆšπ‘Ž sec2 𝑠 π‘Ž) ∫ π‘Ž2 (sec2 𝑠)2 𝑑𝑠

(βˆšπ‘Žβˆ’π‘Ž2 )

=

π‘Ž2

sec2 𝑠

∫ sec4 𝑠 𝑑𝑠

Henceforth: (1 βˆ’ π‘Ž) ∫

𝑑𝑑 1 1 1 1 1 = ( 3/2 βˆ’ ) ∫ 𝑑𝑠 = ( 3/2 βˆ’ ) ∫ cos 2 𝑠 𝑑𝑠 2 2 2 (π‘Ž + 𝑑 ) π‘Ž sec 𝑠 π‘Ž βˆšπ‘Ž βˆšπ‘Ž

Using the identity: 1

1

cos2(𝑠) = 2 + 2 cos(2𝑠)

( 15 )

we may write: (1 βˆ’ π‘Ž) ∫

𝑑𝑑 (π‘Ž+𝑑 2 )2

=(

1 π‘Ž3/2

βˆ’

1 1 1 ) ∫ { + cos(2𝑠)} 𝑑𝑠 π‘Ž 2 2 √

=(

1 2π‘Ž3/2

βˆ’

1 )𝑠 2βˆšπ‘Ž

+(

1 4π‘Ž3/2

βˆ’

1 ) sin(2𝑠) 4βˆšπ‘Ž

So that: ∫

2𝑝 2 π‘‘πœ™ 2𝑝 2 1 1 1 1 1 𝑑 = {( 3/2 βˆ’ ) 𝑠 + ( 3/2 βˆ’ ) sin(2𝑠) + tanβˆ’1 } 2 2 (𝑝 + π‘ž cos πœ™) (𝑝 βˆ’ π‘ž) 2π‘Ž 4π‘Ž 2βˆšπ‘Ž 4βˆšπ‘Ž βˆšπ‘Ž βˆšπ‘Ž Page | 3

Since, from equation (13), we have: 𝑠 = tanβˆ’1

𝑑 βˆšπ‘Ž

then, by trigonometry and use of the relationship sin(2𝑠) = 2 sin(𝑠) cos(𝑠), we have: sin 2𝑠 = 2 (

𝑑

2βˆšπ‘Žπ‘‘ βˆšπ‘Ž )( )= π‘Ž + 𝑑2 βˆšπ‘Ž + 𝑑 2 βˆšπ‘Ž + 𝑑 2

such that: ∫

2𝑝2 π‘‘πœ™ 2𝑝2 1 1 𝑑 1 1 2βˆšπ‘Žπ‘‘ 1 𝑑 = {( βˆ’ + ( 3/2 βˆ’ + tanβˆ’1 } ) tanβˆ’1 )( 2) (𝑝 + π‘ž cos πœ™)2 (𝑝 βˆ’ π‘ž)2 2π‘Ž3/2 2βˆšπ‘Ž π‘Ž + 𝑑 4π‘Ž 4βˆšπ‘Ž βˆšπ‘Ž βˆšπ‘Ž βˆšπ‘Ž

or: ∫

2𝑝2 π‘‘πœ™ 2𝑝2 1βˆ’π‘Ž 𝑑 1 βˆ’ π‘Ž 2βˆšπ‘Žπ‘‘ 1 𝑑 = {( ) tanβˆ’1 + ( 3/2 ) ( )+ tanβˆ’1 } 2 (𝑝 + π‘ž cos πœ™)2 (𝑝 βˆ’ π‘ž)2 2π‘Ž3/2 π‘Ž+𝑑 βˆšπ‘Ž βˆšπ‘Ž βˆšπ‘Ž 4π‘Ž

and, simplifying further, the above becomes: ∫

2𝑝2 π‘‘πœ™

=

(𝑝 + π‘ž cos πœ™)2

(1 βˆ’ π‘Ž ) 𝑑 2𝑝2 π‘Ž+1 𝑑 {( 3/2 ) tanβˆ’1 } + 2 (𝑝 βˆ’ π‘ž ) 2π‘Ž βˆšπ‘Ž 2π‘Ž(π‘Ž + 𝑑 2 )

From equation (3): 𝑑 = tan

πœ™ 2

so: 2𝑝2 π‘‘πœ™ ∫ (𝑝+π‘ž cos πœ™)2

2𝑝2

= (π‘βˆ’π‘ž)2 {(

2π‘Ž

Substituting in the value π‘Ž = ∫

π‘‘πœ™ 2 1 (1+ cos πœ™) 2 √

π‘Ž+1

𝑝+π‘ž π‘βˆ’π‘ž

βˆ’1 ( 3/2 ) tan

1

πœ™

βˆšπ‘Ž

tan ) + 2

πœ™ 2 πœ™ 2π‘Ž(π‘Ž+tan2 ) 2

(1βˆ’π‘Ž) tan

}

( 16 )

+𝐢

( 17 )

, where 𝑝 = √2 and π‘ž = 1, we get: πœ™

2√2sin(πœ™)

= 4√2tanβˆ’1 [(√2 βˆ’ 1)tan ( 2 )] βˆ’ 2+

√2cos(πœ™)

However, at πœ™ = 0, we note that the integral, ∫

dΟ• 2 1 (1+ cos Ο•) 2 √

is equal to a multiple of πœ‹,

or: ∫

dΟ• 2 1 (1 + cos πœ™) √2

=π‘›πœ‹+𝐢

But, if 𝑛 = 0, indicating the starting point on the ellipse of 0 radians, then 𝐢 = 0. This means that the integral must be solely equal to 𝑛 πœ‹, which leaves us to conclude that:

Page | 4

π‘‘πœ™

∫ (1 +

1 cos πœ™) √2

2

πœ™ 2√2sin(πœ™) = 4√2tanβˆ’1 [(√2 βˆ’ 1)tan ( )] βˆ’ + π‘›πœ‹ 2 2 + √2cos(πœ™)

If, instead, we simply work out the integral in equation (17), between the limits of πœ™ = 0 and πœ™ = 2πœ‹, we adopt the following procedure: 2πœ‹

πœ‹

π‘‘πœ™

∫

2 1 (1 + cos πœ™) √2

0

=4

[4√2tanβˆ’1 [(√2

πœ™ πœ‹/2 2√2sin(πœ™) ] βˆ’ 1)tan ( )]] βˆ’ 2[ 2 βˆ’πœ‹/2 2 + √2cos(πœ™)

βˆ’πœ‹

Note that we have changed the limits in each of the above terms, since we need to ensure – according to the law of areas, the rules of contour integration, and other πœ‹ analytic reasons associated with discontinuities at πœ™ = – that the symmetry of the 2

ellipse is preserved. Thus, we have: 2πœ‹

π‘‘πœ™

∫ 0

(1 +

2 1 cos πœ™) √2

πœ‹ πœ‹ = 4 [4√2tan-1 [(√2 βˆ’ 1)tan ( )] βˆ’ 4 [(√2 βˆ’ 1)tan (βˆ’ )]] βˆ’ 2[0 βˆ’ 0] 4 4

2πœ‹

π‘‘πœ™

∫ 0

(1 +

2 1 cos πœ™) √2

πœ‹ πœ‹ = 4 [4√2tan-1 [(√2 βˆ’ 1)tan ( )] + 4√2tan-1 [(√2 βˆ’ 1)tan ( )]] 4 4 βˆ’ 2[0 βˆ’ 0] 2πœ‹

π‘‘πœ™

∫ 0

(1 +

1 cos πœ™) √2

2

πœ‹ = 32√2 ( ) 8

or: 2πœ‹

π‘‘πœ™

∫

2 1 (1 + cos πœ™) √2

0

= 4√2πœ‹

Since we know from equation (1) that: 2πœ‹

∫0

2πœ‹

π‘‘πœ™

= ∫0

2 1 (1+ cos πœ™) √2

𝑇 4

2π‘‘πœ™ 2

(√2+1 cos πœ™)

= ∫0

π‘Ÿ02

πΊπ‘€π‘Ÿ0

√

2

𝑑𝑑

( 18 )

then: 4√2πœ‹ =

4 πΊπ‘€π‘Ÿ0 √ 𝑇 2 π‘Ÿ02

So, Kepler’s Third Law becomes: Page | 5

π‘Ÿ03 =

𝐺𝑀 2 𝑇 4πœ‹ 2

Note that we directly substituted angular values for πœ™ into equation (18), and not the relationship, πœ™ = πœƒ +

3πœ‹ 4

. This does not matter, as the result is still exactly the same,

whether one does so or not. Had we chosen to substitute πœ™ = πœƒ +

3πœ‹ 4

at that point,

there would simply have been more tedious and protracted algebra to negotiate in accomplishing the same result of Kepler’s Third Law.

Page | 6